Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Essential Oils Downregulate Pro-Inflammatory Cytokines and Nitric Oxide-Mediated Oxidative Stress in Alloxan-Induced Diabetogenic Rats

Author(s): Muhammad E. ul Haq, Muhammad S.H. Akash*, Kanwal Rehman* and Malik H. Mahmood

Volume 21, Issue 4, 2021

Published on: 29 July, 2020

Page: [756 - 767] Pages: 12

DOI: 10.2174/1871530320666200729113954

Price: $65

Abstract

Introduction: Hyperglycemia is associated with an elevated level of reactive nitrogen species (RNS) that leads to nitrosative stress and exacerbates the progression of diabetic complications.

Methods: Present study was aimed to evaluate the therapeutic effects of essential oils (EOs) on increased serum levels of nitric oxide (NO) in diabetogenic rats. Diabetogenic rats were treated with EOs separately and/or in combination at the dose of 100 mg/kg, orally for one month. Blood sampling was done at the 1st, 15th and 30th day of the treatment period to investigate the effect of treatment on biomarkers of diabetic complications.

Results: In diabetogenic rats, serum levels of NO, malondialdehyde (MDA) and pro-inflammatory cytokines were significantly increased when compared with that of the control group. Whereas, diabetogenic rats treated with EOs decreased serum levels of NO, MDA and pro-inflammatory cytokines up to a significant extent when compared with that diabetogenic rats treated with the standard antidiabetic drug. Moreover, EOs also increased insulin sensitivity in peripheral tissues and insulin secretion from β-cells of pancreatic islets more efficiently when compared with that of diabetogenic rats. Additionally, it was also found that EOs improved lipid profile and normal functions of kidney and liver as compared to that of diabetogenic rats.

Conclusion: Findings of this study indicate that EOs may reduce pro-inflammatory cytokine levels by modulating the expression of NO. EOs may also ameliorate the nitrosative stress and maintain glucose homeostasis that are major culprits of diabetic complications.

Keywords: Essential oils, pro-inflammatory cytokines, lipid peroxidation, nitric oxide, alloxan, diabetogenic rats.

Graphical Abstract

[1]
Abo, K.A.; Fred-Jaiyesimi, A.A.; Jaiyesimi, A.E. Ethnobotanical studies of medicinal plants used in the management of diabetes mellitus in South Western Nigeria. J. Ethnopharmacol., 2008, 115(1), 67-71.
[http://dx.doi.org/10.1016/j.jep.2007.09.005] [PMID: 17950547]
[2]
Islam, M.S.; Choi, H. Comparative effects of dietary ginger (Zingiber officinale) and garlic (Allium sativum) investigated in a type 2 diabetes model of rats. J. Med. Food, 2008, 11(1), 152-159.
[http://dx.doi.org/10.1089/jmf.2007.634] [PMID: 18361751]
[3]
Li, Y.; Tran, V.H.; Duke, C.C.; Roufogalis, B.D. Preventive and protective properties of Zingiber officinale (ginger) in diabetes mellitus, diabetic complications, and associated lipid and other metabolic disorders: a brief review. Evid. Based Complement. Alternat. Med., 2012, 2012, 516870.
[http://dx.doi.org/10.1155/2012/516870] [PMID: 23243452]
[4]
Mang, B.; Wolters, M.; Schmitt, B.; Kelb, K.; Lichtinghagen, R.; Stichtenoth, D.O.; Hahn, A. Effects of a cinnamon extract on plasma glucose, HbA, and serum lipids in diabetes mellitus type 2. Eur. J. Clin. Invest., 2006, 36(5), 340-344.
[http://dx.doi.org/10.1111/j.1365-2362.2006.01629.x] [PMID: 16634838]
[5]
Andrade-Cetto, A. Becerra-Jim??nez, J.; Càrdenas-Vàzquez, R. Alfa-glucosidase-inhibiting activity of some Mexican plants used in the treatment of type 2 diabetes. J. Ethnopharmacol., 2008, 116(1), 27-32.
[http://dx.doi.org/10.1016/j.jep.2007.10.031] [PMID: 18082348]
[6]
Mirshafiey, A.; Hosseini, S.; Afraei, S.; Rastkari, N.; Zavareh, F.T.; Azizi, G. Anti-aging property of G2013 molecule as a novel immunosuppressive agent on enzymatic and non-enzymatic oxidative stress determinants in rat model. Curr. Drug Discov. Technol., 2016, 13(1), 25-33.
[http://dx.doi.org/10.2174/1570163813666160224123851] [PMID: 26906909]
[7]
Ballinger, S.W.; Patterson, C.; Yan, C.N.; Doan, R.; Burow, D.L.; Young, C.G.; Yakes, F.M.; Van Houten, B.; Ballinger, C.A.; Freeman, B.A.; Runge, M.S. Hydrogen peroxide- and peroxynitrite-induced mitochondrial DNA damage and dysfunction in vascular endothelial and smooth muscle cells. Circ. Res., 2000, 86(9), 960-966.
[http://dx.doi.org/10.1161/01.RES.86.9.960] [PMID: 10807868]
[8]
Ceriello, A.; Testa, R. Antioxidant anti-inflammatory treatment in type 2 diabetes. Diabetes Care, 2009, 32(Suppl. 2), S232-S236.
[http://dx.doi.org/10.2337/dc09-S316] [PMID: 19875557]
[9]
Afraei, S.; Azizi, G.; Zargar, S.J.; Sedaghat, R.; Mirshafiey, A. New therapeutic approach by G2013 in experimental model of multiple sclerosis. Acta Neurol. Belg., 2015, 115(3), 259-266.
[http://dx.doi.org/10.1007/s13760-014-0392-x] [PMID: 25388635]
[10]
Azizi, G.; Navabi, S.S.; Al-Shukaili, A.; Seyedzadeh, M.H.; Yazdani, R.; Mirshafiey, A. The role of inflammatory mediators in the pathogenesis of Alzheimer’s disease. Sultan Qaboos Univ. Med. J., 2015, 15(3), e305-e316.
[http://dx.doi.org/10.18295/squmj.2015.15.03.002] [PMID: 26357550]
[11]
Stewart, V.C.; Heales, S.J. Nitric oxide-induced mitochondrial dysfunction: implications for neurodegeneration. Free Radic. Biol. Med., 2003, 34(3), 287-303.
[http://dx.doi.org/10.1016/S0891-5849(02)01327-8] [PMID: 12543245]
[12]
Rachek, L.I.; Grishko, V.I.; Ledoux, S.P.; Wilson, G.L. Role of nitric oxide-induced mtDNA damage in mitochondrial dysfunction and apoptosis. Free Radic. Biol. Med., 2006, 40(5), 754-762.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.09.028] [PMID: 16520228]
[13]
Radi, R.; Cassina, A.; Hodara, R.; Quijano, C.; Castro, L. Peroxynitrite reactions and formation in mitochondria. Free Radic. Biol. Med., 2002, 33(11), 1451-1464.
[http://dx.doi.org/10.1016/S0891-5849(02)01111-5] [PMID: 12446202]
[14]
Al-Amin, Z.M.; Thomson, M.; Al-Qattan, K.K.; Peltonen-Shalaby, R.; Ali, M. Anti-diabetic and hypolipidaemic properties of ginger (Zingiber officinale) in streptozotocin-induced diabetic rats. Br. J. Nutr., 2006, 96(4), 660-666.
[http://dx.doi.org/10.1079/BJN20061849] [PMID: 17010224]
[15]
Shidfar, F.; Rajab, A.; Rahideh, T.; Khandouzi, N.; Hosseini, S.; Shidfar, S. The effect of ginger (Zingiber officinale) on glycemic markers in patients with type 2 diabetes. J. Complement. Integr. Med., 2015, 12(2), 165-170.
[http://dx.doi.org/10.1515/jcim-2014-0021] [PMID: 25719344]
[16]
Ramadan, G.; Al-Kahtani, M.A.; El-Sayed, W.M. Anti-inflammatory and anti-oxidant properties of Curcuma longa (turmeric) versus Zingiber officinale (ginger) rhizomes in rat adjuvant-induced arthritis. Inflammation, 2011, 34(4), 291-301.
[http://dx.doi.org/10.1007/s10753-010-9278-0] [PMID: 21120596]
[17]
El-Ghorab, A.H.; Nauman, M.; Anjum, F.M.; Hussain, S.; Nadeem, M. A comparative study on chemical composition and antioxidant activity of ginger (Zingiber officinale) and cumin (Cuminum cyminum). J. Agric. Food Chem., 2010, 58(14), 8231-8237.
[http://dx.doi.org/10.1021/jf101202x] [PMID: 20590154]
[18]
Maizura, M.; Aminah, A.; Wan, Aida W. Total phenolic content and antioxidant activity of kesum (Polygonum minus), ginger (Zingiber officinale) and turmeric (Curcuma longa) extract. Int. Food Res. J., 2011, 18, 529-534.
[19]
Thomson, M.; Al-Qattan, K.K.; Al-Sawan, S.M.; Alnaqeeb, M.A.; Khan, I.; Ali, M. The use of ginger (Zingiber officinale Rosc.) as a potential anti-inflammatory and antithrombotic agent. Prostaglandins Leukot. Essent. Fatty Acids, 2002, 67(6), 475-478.
[http://dx.doi.org/10.1054/plef.2002.0441] [PMID: 12468270]
[20]
ElRokh, S.M.; Yassin, N.A.; El-Shenawy, S.M.; Ibrahim, B.M. Antihypercholesterolaemic effect of ginger rhizome (Zingiber officinale) in rats. Inflammopharmacology, 2010, 18(6), 309-315.
[http://dx.doi.org/10.1007/s10787-010-0053-5] [PMID: 20730603]
[21]
Chang, J.S.; Wang, K.C.; Yeh, C.F.; Shieh, D.E.; Chiang, L.C. Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J. Ethnopharmacol., 2013, 145(1), 146-151.
[http://dx.doi.org/10.1016/j.jep.2012.10.043] [PMID: 23123794]
[22]
Saxena, A.; Tripathi, R.; Singh, R. Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity. Dig. J. Nanomater. Biostruct., 2010, 5, 427-432.
[23]
Santas, J.; Almajano, M.P.; Carbo, R. Antimicrobial and antioxidant activity of crude onion (Allium cepa, L.) extracts. Int. J. Food Sci. Technol., 2010, 45, 403-409.
[http://dx.doi.org/10.1111/j.1365-2621.2009.02169.x]
[24]
Eidi, A.; Eidi, M.; Esmaeili, E. Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats. Phytomedicine, 2006, 13(9-10), 624-629.
[http://dx.doi.org/10.1016/j.phymed.2005.09.010] [PMID: 17085291]
[25]
Thomson, M.; Al-Amin, Z.M.; Al-Qattan, K.K.; Shaban, L.H.; Ali, M. Anti-diabetic and hypolipidaemic properties of garlic (Allium sativum) in streptozotocin-induced diabetic rats. Int. J. Diabetes Metab., 2007, 15, 108-115.
[26]
Cavagnaro, P.F.; Camargo, A.; Galmarini, C.R.; Simon, P.W. Effect of cooking on garlic (Allium sativum L.) antiplatelet activity and thiosulfinates content. J. Agric. Food Chem., 2007, 55(4), 1280-1288.
[http://dx.doi.org/10.1021/jf062587s] [PMID: 17256959]
[27]
Saravanan, M; Ignacimuthu, S Hypocholesterolemic effect of indian medicinal plants-A review., Med chem J, 2015, 5, 040-049..
[http://dx.doi.org/10.4172/2161-0444.1000241]
[28]
Brankovic, S.; Radenkovic, M.; Kitic, D.; Veljkovic, S.; Ivetic, V.; Pavlovic, D.; Miladinovic, B. Comparison of the hypotensive and bradycardic activity of ginkgo, garlic, and onion extracts. Clin. Exp. Hypertens., 2011, 33(2), 95-99.
[http://dx.doi.org/10.3109/10641963.2010.531833] [PMID: 21269057]
[29]
Ogunmodede, O.; Saalu, L.; Ogunlade, B.; Akunna, G.; Oyewopo, A. An evaluation of the hypoglycemic, antioxidant and hepatoprotective potentials of onion (Allium cepa L.) on alloxan-induced diabetic rabbits. Int. J. Pharmacol., 2012, 8, 21-29.
[http://dx.doi.org/10.3923/ijp.2012.21.29]
[30]
Akhtar, M.A.; Rashid, M.; Wahed, M.I.I.; Islam, M.R.; Shaheen, S.M.; Islam, M.A.; Amran, M.S.; Ahmed, M. Comparison of long-term antihyperglycemic and hypolipidemic effects between Coccinia cordifolia (Linn.) and Catharanthus roseus (Linn.) in alloxan-induced diabetic rats. J Medicine Med Sci, 2007, 2, 29-34.
[31]
Akash, M.S.H.; Rehman, K.; Chen, S. Spice plant Allium cepa: dietary supplement for treatment of type 2 diabetes mellitus. Nutrition, 2014, 30(10), 1128-1137.
[http://dx.doi.org/10.1016/j.nut.2014.02.011] [PMID: 25194613]
[32]
Akash, M.S.H.; Rehman, K.; Tariq, M.; Chen, S. Zingiber officinale and type 2 diabetes mellitus: evidence from experimental studies. Crit. Rev. Eukaryot. Gene Expr., 2015, 25(2), 91-112.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2015013358] [PMID: 26080605]
[33]
Bakhshaeshi, M.; Khaki, A.; Fathiazad, F.; Khaki, A.A.; Ghadamkheir, E. Anti-oxidative role of quercetin derived from Allium cepa on aldehyde oxidase (OX-LDL) and hepatocytes apoptosis in streptozotocin-induced diabetic rat. Asian Pac. J. Trop. Biomed., 2012, 2(7), 528-531.
[http://dx.doi.org/10.1016/S2221-1691(12)60090-2] [PMID: 23569964]
[34]
Zhu, J.; Chen, H.; Song, Z.; Wang, X.; Sun, Z. Effects of ginger (Zingiber officinale Roscoe) on type 2 diabetes mellitus and components of the metabolic syndrome: a systematic review and meta-analysis of randomized controlled trials. Evid. Based Complement. Alternat. Med., 2018, 2018, 5692962.
[http://dx.doi.org/10.1155/2018/5692962] [PMID: 29541142]
[35]
Bang, M.A.; Kim, H-A.; Cho, Y-J. Alterations in the blood glucose, serum lipids and renal oxidative stress in diabetic rats by supplementation of onion (Allium cepa. Linn). Nutr. Res. Pract., 2009, 3(3), 242-246.
[http://dx.doi.org/10.4162/nrp.2009.3.3.242] [PMID: 20090891]
[36]
Rains, J.L.; Jain, S.K. Oxidative stress, insulin signaling, and diabetes. Free Radic. Biol. Med., 2011, 50(5), 567-575.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.12.006] [PMID: 21163346]
[37]
Coskun, O.; Kanter, M.; Korkmaz, A.; Oter, S. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas. Pharmacol. Res., 2005, 51(2), 117-123.
[http://dx.doi.org/10.1016/j.phrs.2004.06.002] [PMID: 15629256]
[38]
Ahmed, R.S.; Suke, S.G.; Seth, V.; Chakraborti, A.; Tripathi, A.K.; Banerjee, B.D. Protective effects of dietary ginger (Zingiber officinales Rosc.) on lindane-induced oxidative stress in rats. Phytother. Res., 2008, 22(7), 902-906.
[http://dx.doi.org/10.1002/ptr.2412] [PMID: 18389491]
[39]
Cai, S.; Khoo, J.; Channon, K.M. Augmented BH4 by gene transfer restores nitric oxide synthase function in hyperglycemic human endothelial cells. Cardiovasc. Res., 2005, 65(4), 823-831.
[http://dx.doi.org/10.1016/j.cardiores.2004.10.040] [PMID: 15721862]
[40]
Belkina, L.M.; Smirnova, E.A.; Terekhina, O.L.; Kruglov, S.V.; Boichuk, E.S. Role of nitric oxide in the pathogenesis of alloxan diabetes. Bull. Exp. Biol. Med., 2013, 154(5), 602-605.
[http://dx.doi.org/10.1007/s10517-013-2009-4] [PMID: 23658878]
[41]
Yang, P.; Cao, Y.; Li, H. Hyperglycemia induces inducible nitric oxide synthase gene expression and consequent nitrosative stress via c-Jun N-terminal kinase activation. Am. J. Obstet. Gynecol., 2010, 203(2), 185.e5-e11.
[http://dx.doi.org/10.1016/j.ajog.2010.05.003]] [PMID: 20541731]
[42]
Zhang, X.; Fu, Y.; Xu, X.; Li, M.; Du, L.; Han, Y.; Ge, Y. PERK pathway are involved in NO-induced apoptosis in endothelial cells cocultured with RPE under high glucose conditions. Nitric Oxide, 2014, 40, 10-16.
[http://dx.doi.org/10.1016/j.niox.2014.05.001] [PMID: 24813399]
[43]
Honing, M.L.; Morrison, P.J.; Banga, J.D.; Stroes, E.S.; Rabelink, T.J. Nitric oxide availability in diabetes mellitus. Diabetes Metab. Rev., 1998, 14(3), 241-249.
[http://dx.doi.org/10.1002/(SICI)1099-0895(1998090)14:3<241:AID-DMR216>3.0.CO;2-R] [PMID: 9816472]
[44]
Kurohane Kaneko, Y.; Ishikawa, T. Dual role of nitric oxide in pancreatic β-cells. J. Pharmacol. Sci., 2013, 123(4), 295-300.
[http://dx.doi.org/10.1254/jphs.13R10CP] [PMID: 24285083]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy