Generic placeholder image

Recent Patents on Mechanical Engineering

Editor-in-Chief

ISSN (Print): 2212-7976
ISSN (Online): 1874-477X

Review Article

Structures and Materials of System-in-Package: A Review

Author(s): Wenchao Tian, Chuqiao Wang*, Zhanghan Zhao and Hao Cui

Volume 14, Issue 1, 2021

Published on: 28 July, 2020

Page: [28 - 41] Pages: 14

DOI: 10.2174/2212797613999200728190605

Price: $65

Abstract

Background: As a new type of advanced packaging and system integration technology, System- in-Package (SiP) can realize the miniaturization and multi-functionalization of electronic products and is listed as an important direction of development by International Technology Roadmap for Semiconductors (ITRS).

Objective: This paper mainly introduces and discusses recent academic research and patents on package structure and packaging materials. Additionally, the trend of development is described.

Methods: Firstly, we analyze and summarize the challenges and existing problems in SiP. Then the corresponding solutions are introduced with respect to packaging structure and packaging materials. Finally, the research status of SIP and some patents in these aspects are reviewed.

Results: In order to increase the density of internal components, SiP products need to use a stacked structure. The causes of different performance in SiP products are: 1) the stress concentration and bonding quality problems caused by the chip stack structure; 2) the warpage and package thickness problems caused by the package stack; 3) thermal conductivity of materials and thermal mismatch between materials; and 4) dielectric properties and thermomechanical reliability of materials. The following solutions are summarized: 1) structural optimization of chip stacking and packaging stacking; 2) application of new packaging technology; 3) optimization of packaging materials; 4) and improvement of packaging material processing technology.

Conclusion: With the study of packaging structure and packaging materials, SiP can meet the requirements of the semiconductor industry and have great future prospects.

Keywords: Dielectric and interconnect materials, die stacking, package stacking, substrate materials, System in Package (SiP), thermal interface materials.

[1]
Edenfeld D, Kahng AB, Rodgers M, Zorian Y. 2003 Technology roadmap for semiconductors. Computer 2004; 37(1): 47-56.
[http://dx.doi.org/10.1109/MC.2004.1260725]
[2]
Cognetti C. The third revolution in semiconductor packaging and system integration. 2008 15th IEEE International Conference on Electronics, Circuits and Systems. St. Julien's, Malta, September, 2008.
[3]
Hu Y, Cai J, Liqiang C, Lingzhi C, Ziyu L, Lulu S, et al. The research status and development trends of System in Package (SiP) technology. Equip Electron Prod Manuf 2012; 41(11): 1-6.
[4]
Agonafer D, Kaisare A, Hossain MM, Lee YJ, Dewan-Sandur BP, Dishongh T, et al. Thermo-mechanical challenges in stacked packaging. Heat Transf Eng 2008; 29(2): 134-48.
[http://dx.doi.org/10.1080/01457630701673170]
[5]
Wenchao T, Jianglei H. High-power and high-reliability RF MEMS switch review. Recent Pat Mech Eng 2016; 7(2): 1-8.
[6]
Wenchao T, Qiang C, Jing S. Reconfigurable antennas based on RF MEMS switches. Recent Pat Mech Eng 2016; 9(3): 230-40.
[http://dx.doi.org/10.2174/2212797609666160712230734]
[7]
Wenchao T, Xiaotong Z, Zhiqiang C. Performance analysis of MEMS phase shifters based on RF MEMS switches: A review. Recent Pat Mech Eng 2016; 10(2): 126-39.
[8]
Kuang R, Fei X. Research of orthogonal test on 25μm gold wire bonding. Semicond Technol 2010; 35(4): 369-72.
[9]
Beica R, Siblerud P, Sharbono C, Bernt M. Advanced metallization for 3D integration. 2008 10th Electronics Packaging Technology Conference. Singapore, Singapore, December, 2008.
[10]
Yu SY, Kwon YM, Kim J, Jeone T, Choi S, Paik KW. Studies on the thermal cycling reliability of BGA System-in-Package (SiP) with an embedded die. IEEE Trans Compon Packaging Manuf Technol 2012; 2(4): 625-33.
[11]
Yoon SW, Bahr A, Baraton X, Marimuthu PC, Carson F. 3D eWLB (embedded WAFER LEVEL BGA) Technology for 3DPackaging/ 3D-SiP (Systems-in-Package) Applications; 2009 11th Electronics Packaging Technology Conference. Singapore, Singapore, December, 2009.
[12]
Yanqiao W, Xiaoyang L, Ming Z. Development status of stacked 3D packaging technology. Electron Compon Mater 2013; 32(10): 67-70.
[13]
Wenchao T, Haoyue J. Recent research of electromagnetic characteristics in wire bonding. Recent Pat Mech Eng 2016; 9(2): 102-11.
[14]
Wei K. System in Package (SiP) technology applications. 2005 6th International Conference on Electronic Packaging Technology. Shenzhen, China, September, 2005.
[15]
Yihong P, Jun D. Multi-chip stacked package structure. CN206532776 (2017).
[16]
Sawada K, Aoki H, Matsuura E, Mukaida H, Minami F. Estimation method of cracking probability of stacked overhang die during wire bonding. 2015 International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC). Kyoto, Japan , April, 2015..
[http://dx.doi.org/10.1109/ICEP-IAAC.2015.7111115]
[17]
Li L, Xiaosong M, Zhou X. Analysis of thermal reliability for ultrathin chip stacking package device. Electron Compon Mater 2010; 29(1): 62-5.
[18]
van Driel WD, Mavinkurve A, van Gils MAJ, Zhang GQ, Yang DG, Ernst LJ. Multiphysics based structural similarity rules for the BGA package family. Proceedings Electronic Components and Technology, 2005 ECTC '05. Lake Buena Vista, FL, USA, June, 2005.
[19]
Liao X, Liang G. Application of wire bonding of multi-stack die in the ceramic package. Electron. Packag 2016.
[20]
Yu T, Pengfei Z, Zhizhong WU, Jiehao H, Guoyuan LI. Research of wire bonding technology in a stacked die package based on orthogonal test. Electron Compon Mater 2014; 7: 75-9.
[21]
Yen CL, Lee YC, Lai YS. Vibration and bondability analysis of fine-pitch Cu wire bonding. 2011 12th International Conference on Electronic Packaging Technology and High Density Packaging. Shanghai, China, August, 2011.
[22]
Hsu HC, Yu SW, Hsu YT, Chang WY, Lishan C. Parametric study and optimal design in wire bonding process for mini stack-die package. 2006 7th International Conference on Electronic Packaging Technology. Shanghai, China, August, 2006.
[23]
Qin I, Yauw O, Schulze G, Shah A, Chylak B, Wong N. Advances in wire bonding technology for 3D die stacking and fan out wafer level package. 2017 IEEE 67th Electronic Components and Technology Conference (ECTC). Orlando, FL, USA, June, 2017.
[24]
Faxing C, Kawano M, Mianzhi D, Yong H, Bhattacharya S. Study on low warpage and high reliability for large package using TSV-free interposer technology through smart codesign modeling. IEEE Trans Compon Packaging Manuf Technol 2017; 99: 1-12.
[25]
Yuchen L, Waikei M, Chris C, Tingchi W. Pad assignment for die-stacking system-in-package design. IEEE Trans Comput Aided Des Integrated Circ Syst 2012; 31(11): 1711-22.
[http://dx.doi.org/10.1109/TCAD.2012.2202395]
[26]
Charles G, Franzon PD. A multitier study on various stacking topologies of TSV-based PDN systems using on-chip decoupling capacitor models. IEEE Trans Compon Packaging Manuf Technol 2015; 5(4): 541-50.
[http://dx.doi.org/10.1109/TCPMT.2015.2416196]
[27]
Roullard J, Farcy A, Capraro S, Lacrevaz T, Bermond C, Houzet G, et al. Evaluation of 3D interconnect routing and stacking strategy to optimize high speed signal transmission for memory on logic. 2012 IEEE 62nd Electronic Components and Technology Conference. San Diego, CA, USA, June, 2012.
[28]
Wenle Z, Mong KY, Guan LT, Damaruganath P. Study of high speed interconnects of multiple dies stack structure with Through- Silicon-Via (TSV). 2010 IEEE Electrical Design of Advanced Package & Systems Symposium. Singapore, Singapore, December, 2010.
[29]
Kim J, Pak JS, Cho J, Song E, Cho J, Kim H, et al. High-frequency scalable electrical model and analysis of a Through Silicon Via (TSV). IEEE Trans Compon Packaging Manuf Technol 2011; 1(2): 181-95.
[http://dx.doi.org/10.1109/TCPMT.2010.2101890]
[30]
Ahmad W, Lirong Z, Qiang C, Tenhunen H. Peak-to-peak ground noise on a power distribution TSV pair as a function of rise time in 3-D stack of dies interconnected through TSVs. IEEE Trans Compon Packaging Manuf Technol 2011; 1(2): 196-207.
[31]
Lee H, Choi YS, Song E, Choi K, Cho T, Kang S, et al. Power delivery network design for 3D SIP integrated over silicon interposer platform. 2007 Proceedings 57th Electronic Components and Technology Conference. Reno, NV, USA, May, 2007.
[32]
Kuiyou L. Film flip chip package stack structure and manufacturing method. CN106169462 2019.
[33]
Hairong H, Ziren S. Package stack structure. CN208861978 (2019).
[34]
Ishihara M, Takehara Y, Yano T, Ino Y, Kawano H. A dual face package using a post with wire component: Novel structure for PoP, wafer level CSP and compact image sensor packages. 2008 58th Electronic Components and Technology Conference. Lake Buena Vista, FL, USA, May, 2008.
[35]
Dreiza M, Jin SK, Smith L. Joint project for mechanical qualification of next generation high density Package-on-Package (PoP) with through mold via technology. 2009 European Microelectronics and Packaging Conference. Rimini, Italy June,. 2009.
[36]
Kim J, Lee K, Park D, Hwang T, Kim K, Kang D, et al. Application of Through Mold Via (TMV) as PoP base package. 2008 58th Electronic Components and Technology Conference. Lake Buena Vista, FL, USA, May, 2008.
[37]
Yoshida A, Wen S, Lin W, Kim JY, Ishibashi K. A study on an Ultra Thin PoP using through mold via technology. 2011 IEEE 61st Electronic Components and Technology Conference (ECTC). Lake Buena Vista, FL, USA, May,2011.
[38]
Sha T, Liang Z, Shiyue H, Ping Q. A lead frame. CN209418493 (2019).
[39]
Ho SW, Daniel FM, Li YS, Seeton WH, Wen SL, Chong SC, et al. Double side redistribution layer process on embedded wafer level package for Package on Package (PoP) applications. 2010 12th Electronics Packaging Technology Conference. Singapore, Singapore, December, 2010.
[40]
Chong SC, Wee DHS, Rao VS, Vasarla NS. Development of package-on-package using embedded wafer-level package approach. IEEE Trans Compon Packaging Manuf Technol 2013; 3(10): 1654-62.
[http://dx.doi.org/10.1109/TCPMT.2013.2275009]
[41]
Peng S, Leung V, Yang D, Lou R, Shi D, Chung T. Development of a new Package-on-Package (PoP) structure for next-generation portable electronics. 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC). Las Vegas, NV, USA, June, 2010.
[42]
Katkar R, Prabhu A, Co R, Zohni W. High-Volume-Manufacturing (HVM) of BVA™ enabled advanced package-on-package (PoP). 2015 International Symposium on Next-Generation Electronics (ISNE). Taipei, Taiwan. May, 2015;
[43]
Solberg V, Haba B, Zohni W, Mohammed I. Bridging the infrastructure gap between traditional wire-bond and TSV semiconductor package technology. 2013 Eurpoean Microelectronics Packaging Conference (EMPC). Grenoble, France September. 2013.
[44]
Huang S, Delacruz J. Improvements of system-in-package integration and electrical performance using BVA wire bonding. IEEE Trans Compon Packaging Manuf Technol 2017; 7(7): 1020-34.
[http://dx.doi.org/10.1109/TCPMT.2017.2657380]
[45]
Carson F, Lee SM, Vijayaragavan N. Controlling top package warpage for POP applications. 2007 Proceedings 57th Electronic Components and Technology Conference. Reno, NV, USA, May, 2007.
[46]
Yim MJ, Strode R, Brand J, Adimula R, Zhang JJ, Yoo C. Ultra thin PoP top package using compression mold: Its warpage control. 2011 IEEE 61st Electronic Components and Technology Conference (ECTC). Lake Buena Vista, FL, USA, June, 2011.
[47]
Yaguchi R, Kamijo EJ. Study on metallizing of AlN ceramic substrate. J Jpn Soc Powder Powder Metall 1997; 44(2): 190-3.
[48]
Pengfei Z. Preparation and Properties of AlN Ceramic Substrate for High-power LED. ME Dissertation Nanjing University of Aeronautics and Astronautics, Nanjin, China 2016
[49]
Lili W, Yu W, Dean Y. Glass binder in thick film metallization paste for AlN. Key Eng Mater 2010; 434-435: 366-8.
[50]
Yeh CT, Tuan WH. Pre-oxidation of AlN substrates for subsequent metallization. J Mater Sci Mater Electron 2015; 26(8): 5910-6.
[http://dx.doi.org/10.1007/s10854-015-3160-7]
[51]
Yeh CT, Tuan WH. Accelerating the oxidation rate of AlN substrate through the addition of water vapor. J Asian Ceram Soc 2017; 5(4): 381-4.
[52]
Mingsheng M, Zhipu L, Yongxiang L. A low dielectric constant low temperature co-fired ceramic material and preparation method. CN105712704 2017.
[53]
Jungho J, Ji-Hoon K, Seungcheol Y, Byeong-Soo B. Rollable transparent glass-fabric reinforced composite substrate for flexible devices. Adv Mater 2010; 22(40): 4510-5.
[http://dx.doi.org/10.1002/adma.201002198] [PMID: 20830715]
[54]
Ernst G, Broholm C, Kowach GR, Ramirez AP. Phonon density of states and negative thermal expansion in ZrW2O8. Nature 1998; 396(6707): 56-7.
[http://dx.doi.org/10.1038/24115]
[55]
Evans JSO, Mary TA, Vogt T, Subramanian MA. Sleight AWJCoM. Negative thermal expansion in ZrW2O8 and HfW2O8. Chem Mater 1996; 8(12): 2809-23.
[http://dx.doi.org/10.1021/cm9602959]
[56]
Guifang X. Preparation and properties of controllable thermal expansion composite for electronic packaging ME Dissertation Jiangsu University, Zhenjiang, China 2008.
[57]
Xiaoliang Z, Shuhui Y, Sun R, Ruxu D. High thermal conductive BT resin/silicon nitride composites. 2011 12th International Conference on Electronic Packaging Technology and High Density Packaging. Shanghai, China, August, 2011.
[58]
Harada M, Hamaura N, Ochi M, Agari Y. Thermal conductivity of liquid crystalline epoxy/BN filler composites having ordered network structure. Compos, Part B Eng 2013; 55(9): 306-13.
[http://dx.doi.org/10.1016/j.compositesb.2013.06.031]
[59]
Hui W, Peng C, Jian S, Junkuang X, Kunyao Z. Study on high thermal conductive BN/epoxy resin composites. Appl Mech Mater 2012; 105-107: 1751-4.
[60]
Tianle Z, Xin W, Mingyuan GU, Liu X. Study of the thermal conduction mechanism of nano-SiC/DGEBA/EMI-2,4 composites. Polymer 2008; 49(21): 4666-72.
[http://dx.doi.org/10.1016/j.polymer.2008.08.023]
[61]
Permal A, Devarajan M, Hung HL, Zahner T, Lacey D, Ibrahim K. Thermal and mechanical properties of epoxy composite filled with binary particle system of polygonal aluminum oxide and boron nitride platelets. J Mater Sci 2016; 51(16): 7415-26.
[http://dx.doi.org/10.1007/s10853-016-0016-3]
[62]
Raj PM, Lee DW, Li L. Embedded Passives. In: Lu D, Wong CP.Materials for Advanced Packaging. Cham: Springer International Publishing 2017; pp. 537-88.
[http://dx.doi.org/10.1007/978-3-319-45098-8_13]
[63]
Roy M, Nelson JK, Maccrone RK, Schadler LS, Reed CW, Keefe RJ. Polymer nanocomposite dielectrics-the role of the interface. IEEE Trans Dielectr Electr Insul 2005; 12(4): 629-43.
[http://dx.doi.org/10.1109/TDEI.2005.1511089]
[64]
Liang Z, Minghui S, Yonghuan G. A 3D chip stacked interconnect material containing Eu and nano Au. CN105177387 2017.
[65]
Liang Z, Lei S, Yonghuan G. A 3D chip stacked interconnect material containing Ce and nano Co. CN105185768 2018.
[66]
Liang Z, Lei S, Yonghuan G. Three-dimensional package chip stack interconnection material containing La and nano Ni. CN105185767 2018.
[67]
Liang Z, Yonghuan G, Lei S. A chip stack interconnection material containing Pr, submicron TiN. CN105140210 2018.
[68]
Liang Z, Lei S, Sujuan Z, Jia M, Li B. A chip stack interconnection material containing Nd, submicron memory particle CuZnAl. CN105070709 2017.
[69]
Lizhu L, Xiaohui G, Ling W, Hui S, Cheng W. Preparation of highdielectric- constant Ag@Al2O3/polyimide composite films for embedded capacitor applications. 2012 IEEE 10th International Conference on the Properties and Applications of Dielectric Materials. Bangalore, India, July, 2012.
[70]
Qianshan X, Weng L, Liwen Y, Lizhu L, Maochang C, Junwang L. Preparation and dielectric properties of nano-TiC/polyimide composite films as embedded-capacitor application. Ifost. Ulaanbaatar, Mongolia, June 2013.
[71]
Zhiming D, Lin Y-H, Cewen N. Novel ferroelectric polymer composites with high dielectric constants. Adv Mater 2010; 15(19): 1625-9.
[72]
Zhiming D, Yang S, Cewen N. Dielectric behavior of three-phase percolative Ni-BaTiO3/polyvinylidene fluoride composites. Appl Phys Lett 2002; 81(25): 4814-6.
[73]
Pengli Z, Rong S, Zhengping W. Nanomaterials and nanotechnologies in the high density system level packages. Integr Technol 2012; 1(3): 35-41.
[74]
Lee S, Lim JS, Baik SJ. Integration of carbon nanotube interconnects for full compatibility with semiconductor technologies. J Electrochem Soc 2011; 158(11): K193-6.
[http://dx.doi.org/10.1149/2.018111jes]
[75]
Kaushik BK, Majumder MK, Kumar VR, Magazine S. Carbon nanotube based 3-D interconnects - a reality or a distant dream. IEEE Circuits Syst Mag 2014; 14(4): 16-35.
[http://dx.doi.org/10.1109/MCAS.2014.2360787]
[76]
Wei Z, Huagang X, Shaokai W, Min L, Yizhuo G. Electromagnetic characteristics of carbon nanotube film materials. Chin J Aeronauti 2015; 28(4): 1245-54.
[http://dx.doi.org/10.1016/j.cja.2015.05.002]
[77]
Pingwu Z, Maoli M, Yanhu Y, Shengli Y, Xiangwang Z, Hongyin Y. Electromagnetic interference shielding of carbon nanotube macrofilms. Scr Mater 2011; 64(9): 809-12.
[http://dx.doi.org/10.1016/j.scriptamat.2011.01.002]
[78]
Wei M, Hansson J, Sun S, Edwards M, Liu J. Double-Densified Vertically Aligned Carbon Nanotube bundles for application in 3D integration high aspect ratio TSV interconnects. 2016 IEEE 66th Electronic Components and Technology Conference (ECTC). Las Vegas, NV, USA, June, 2016.
[79]
Jiang D, Mu W, Chen S, Yifeng F, Johan L. Vertically stacked carbon nanotube-based interconnects for through silicon via application. IEEE Electron Device Lett 2015; 36(5): 499-501.
[http://dx.doi.org/10.1109/LED.2015.2415198]
[80]
Ghosh K, Verma YK, Chuanseng T. Implementation of carbon nanotube bundles in sub-5 micron diameter through-silicon-via structures for three-dimensionally stacked integrated circuits. Materials Today Communications 2015; 2: e16-25.
[http://dx.doi.org/10.1016/j.mtcomm.2014.11.004]
[81]
Rao M. Electrical modeling and characterization of copper/carbon nanotubes in tapered through silicon vias. 2017 30th International Conference on VLSI Design and 2017 16th International Conference on Embedded Systems (VLSID). Hyderabad, India, January, 2017.
[82]
Ke W, Wang Z. High-frequency characterization of through-silicon-vias with benzocyclobutene liners. IEEE Trans Compon Packaging Manuf Technol 2017; 7(11): 1859-68.
[http://dx.doi.org/10.1109/TCPMT.2017.2751480]
[83]
Dequivre T, Kolhatkar G, Youssef AH, Le XT, Brisard GM, Ruediger A, et al. Wet metallization of high aspect ratio TSV using electrografted polymer insulator to suppress residual stress in silicon. IEEE Trans Device Mater Reliab 2017; 17(3): 514-21.
[http://dx.doi.org/10.1109/TDMR.2017.2716943]
[84]
Guoji X, Chunyue H, Tianming L, Liang Y, Wenliang T, Wu S, et al. Study on different material parameters on TSV interconnect structures stress and strain under random vibration load. 2014 15th International Conference on Electronic Packaging Technology. Chengdu, China, August, 2014.
[85]
Yousuf AHB, Hossain NM, Chowdhury MH. Performance analysis of Through Silicon Via (TSV) and Through Glass Via (TGV) for different materials. 2015 IEEE International Symposium on Circuits and Systems (ISCAS). Lisbon, Portugal May, 2015..
[http://dx.doi.org/10.1109/ISCAS.2015.7169057]
[86]
Shin JW, Choi YW, Kim YS, Kang UB, Sun KS, Paik KW. A novel fine pitch TSV interconnection method using NCF with Zn nano-particles. 2014 IEEE 64th Electronic Components and Technology Conference (ECTC). Orlando, FL, USA, May, 2014.
[87]
Braun T, Brundel M, Becker KF, Kahle R, Lang K-D. Through mold via technology for multi-sensor stacking. 2012 IEEE 14th Electronics Packaging Technology Conference (EPTC). Singapore, Singapore, December, 2012
[88]
Park SH, Park JY, Kim YH. Effect of permanganate treatment on through mold vias for an embedded wafer level package. Electron Mater Lett 2013; 9(4): 459-62.
[http://dx.doi.org/10.1007/s13391-013-0011-7]
[89]
Wasniewski JR, Altman DH, Hodson SL, Fisher TS, Bulusu A, Graham S, et al. Characterization of metallically bonded carbon nanotube-based thermal interface materials using a high accuracy 1d steady-state technique. J Electron Packag 2012; 134(2)020901
[http://dx.doi.org/10.1115/1.4005909]
[90]
Kwon Y-K, Kim P. High Thermal Conductivity in Carbon Nanotubes . High Thermal Conductivity Materials. Springer New York New York 2006.
[http://dx.doi.org/10.1007/0-387-25100-6_8]
[91]
Yi W, Lu L, Dianlin Z, Pan ZW, Xie SS. Linear specific heat of carbon nanotubes. Phys Rev B 1999; 59(14): R9015-8.
[http://dx.doi.org/10.1103/PhysRevB.59.R9015]
[92]
Samani MK, Khosravian N, Chen GCK, Shakerzadeh M, Baillargeat D, Tay BK. Thermal conductivity of individual multiwalled carbon nanotubes. Int J Therm Sci 2012; 62(7): 40-3.
[http://dx.doi.org/10.1016/j.ijthermalsci.2012.03.003]
[93]
Sparavigna A. Lattice specific heat of carbon nanotubes. J Therm Anal Calorim 2008; 93(3): 983-6.
[http://dx.doi.org/10.1007/s10973-007-8549-y]
[94]
Li Q, Liu C, Fan S. Thermal boundary resistances of carbon nanotubes in contact with metals and polymers. Nano Lett 2009; 9(11): 3805-9.
[http://dx.doi.org/10.1021/nl901988t] [PMID: 19817446]
[95]
Zhu L, Sun Y, Hess DW, Wong CP. Well-aligned open-ended carbon nanotube architectures: An approach for device assembly. Nano Lett 2006; 6(2): 243.
[http://dx.doi.org/10.1021/nl052183z] [PMID: 16464043]
[96]
Jiang H, Zhu L, Moon KS, Yi L, Wong CP. Low temperature carbon nanotube film transfer via conductive adhesives. 2007 Proceedings 57th Electronic Components and Technology Conference. Reno, NV, USA, May 2007.
[97]
Wei L, Yonghao X, Hongjin J, Rongwei Z, Owen H, Kyoung-Sik M, et al. Self-assembled monolayer-assisted chemical transfer of in situ functionalized carbon nanotubes. J Am Chem Soc 2008; 130(30): 9636-7.
[http://dx.doi.org/10.1021/ja802142g] [PMID: 18593168]
[98]
Haitao F, Chenguang L, Chang L, Feng L, Huiming C. Purification of single-wall carbon nanotubes by electrochemical oxidation. Chem Mater 2004; 16(26): 5744-50.
[http://dx.doi.org/10.1021/cm035263h]
[99]
Colomer JF, Piedigrosso P, Fonseca A, Nagy JB. Different purification methods of carbon nanotubes produced by catalytic synthesis. Synth Met 1999; 103(1-3): 2482-3.
[http://dx.doi.org/10.1016/S0379-6779(98)01066-2]
[100]
Qiu L, Scheider K, Radwan SA, Larkin LAS, Saltonstall CB, Yanhui F, et al. Thermal transport barrier in carbon nanotube array nano-thermal interface materials. Carbon 2017; 120C: 128-36.
[http://dx.doi.org/10.1016/j.carbon.2017.05.037]
[101]
Suh D, Moon CM, Kim D, Baik S. Ultrahigh thermal conductivity of interface materials by silver-functionalized carbon nanotube phonon conduits. Adv Mater 2016; 28(33): 7220-7.
[http://dx.doi.org/10.1002/adma.201600642] [PMID: 27273764]
[102]
Bin Z, Youxuan L, Chuan J, Jianqiang L, Junhe Y. Effects of growth temperature on carbon nanotube forests synthesized by water-assisted chemical vapor deposition. Nanosci Nanotech Lett 2014; 6(6): 488-92.
[103]
Ramirez A, Royo C, Latorre N, Mallada R, Tiggelaar RM, Monzon A. Unraveling the growth of vertically aligned multi-walled carbon nanotubes by chemical vapor deposition. Mater Res Express 2014; 1(4)045604
[http://dx.doi.org/10.1088/2053-1591/1/4/045604]
[104]
Wentian Gu. Increase the packing density of vertically aligned carbon nanotube array for the application of thermal interface materials. A Thesis, Georgia Institute of Technology, Georgia, March, 2011.
[105]
Xiaoshuang Y, Lixiang Y, Peterson VK, Minett AI, Ming Z, Kirby N, et al. Pretreatment control of carbon nanotube array growth for gas separation: Alignment and growth studied using microscopyand small-angle X-ray scattering. ACS Appl Mater Interfaces 2013; 5(8): 3063-70.
[http://dx.doi.org/10.1021/am3032579] [PMID: 23517303]
[106]
Meshot ER, Plata DL, Sameh T, Yongyi Z, Verploegen EA, Hart AJ. Engineering vertically aligned carbon nanotube growth by decoupled thermal treatment of precursor and catalyst. ACS Nano 2009; 3(9): 2477-86.
[http://dx.doi.org/10.1021/nn900446a] [PMID: 19691287]
[107]
Nessim GD, Hart AJ, Kim JS, Acquaviva D, Oh J, Morgan CD, et al. Tuning of vertically-aligned carbon nanotube diameter and areal density through catalyst pre-treatment. Nano Lett 2008; 8(11): 3587-93.
[http://dx.doi.org/10.1021/nl801437c] [PMID: 18837566]
[108]
Oliver CR, Polsen ES, Meshot ER, Tawfick S, Park SJ, Bedewy M, et al. Statistical analysis of variation in laboratory growth of carbon nanotube forests and recommendations for improved consistency. ACS Nano 2013; 7(4): 3565-80.
[http://dx.doi.org/10.1021/nn400507y] [PMID: 23464741]
[109]
Kai L, Yinghui S, Lei C, Chen F, Xiaofeng F, Kaili J, et al. Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett 2008; 8(2): 700-5.
[http://dx.doi.org/10.1021/nl0723073] [PMID: 18269255]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy