Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Research Article

Surface Modification of Electrospun Polyethylenimine/Polyvinyl Alcohol Nanofibers Immobilized with Silver Nanoparticles for Potential Antibacterial Applications

Author(s): Yunchao Xiao, Hui Ma, Xu Fang, Yunpeng Huang, Pengchao Liu* and Xiangyang Shi*

Volume 17, Issue 2, 2021

Published on: 28 July, 2020

Page: [279 - 286] Pages: 8

DOI: 10.2174/1573413716999200728154652

Abstract

Objective: In order to investigate the potential biomedical applications of silver nanoparticle (Ag NP)-immobilized electrospun nanofibers with different surface functionalities.

Methods: Silver nanoparticles were immobilized within water-stable electrospun polyethylenimine (PEI)/polyvinyl alcohol (PVA) nanofibers by an in-situ reduction method after complexing Ag+

Results: In vitro antibacterial activity tests show that Ag NP-containing nanofibrous mats have high antibacterial activity and are capable of inhibiting the growth of both S. aureus and E. coli bacteria. Cell viability assay data show that the Ag NP-containing nanofibers are cytocompatible, and those treated by hydroxylation and acetylation display better cytocompatibility than those treated by carboxylation and the pristine non-modified fibers to promote cell adhesion and proliferation.

Conclusion: Therefore, the hydroxylated or acetylated Ag NP-containing PEI/PVA nanofibers have a great potential for wound dressing, biological protection and tissue engineering applications.

Keywords: Ag nanoparticles, electrospun PEI/PVA nanofibers, different surface functionalities, cytocompatibility, biomedical applications, antibacterial activity.

Graphical Abstract

[1]
Dhand, C.; Venkatesh, M.; Barathi, V.A.; Harini, S.; Bairagi, S.; Goh Tze Leng, E.; Muruganandham, N.; Low, K.Z.W.; Fazil, M.H.U.T.; Loh, X.J.; Srinivasan, D.K.; Liu, S.P.; Beuerman, R.W.; Verma, N.K.; Ramakrishna, S.; Lakshminarayanan, R. Bio-inspired crosslinking and matrix-drug interactions for advanced wound dressings with long-term antimicrobial activity. Biomaterials, 2017, 138, 153-168.
[http://dx.doi.org/10.1016/j.biomaterials.2017.05.043] [PMID: 28578293]
[2]
Zhao, X.; Wu, H.; Guo, B.; Dong, R.; Qiu, Y.; Ma, P.X. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials, 2017, 122, 34-47.
[http://dx.doi.org/10.1016/j.biomaterials.2017.01.011] [PMID: 28107663]
[3]
Castleberry, S.A.; Almquist, B.D.; Li, W.; Reis, T.; Chow, J.; Mayner, S.; Hammond, P.T. Self-assembled wound dressings silence MMP-9 and improve diabetic wound healing in vivo. Adv. Mater., 2016, 28(9), 1809-1817.
[http://dx.doi.org/10.1002/adma.201503565] [PMID: 26695434]
[4]
Dang, Q.; Liu, K.; Liu, C.; Xu, T.; Yan, J.; Yan, F.; Cha, D.; Zhang, Q.; Cao, Y. Preparation, characterization, and evaluation of 3,6-O-N-acetylethylenediamine modified chitosan as potential antimicrobial wound dressing material. Carbohydr. Polym., 2018, 180, 1-12.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.019] [PMID: 29103484]
[5]
Ahn, S.; Chantre, C.O.; Gannon, A.R.; Lind, J.U.; Campbell, P.H.; Grevesse, T.; O’Connor, B.B.; Parker, K.K. Soy protein/cellulose nanofiber scaffolds mimicking skin extracellular matrix for enhanced wound healing. Adv. Healthc. Mater., 2018, 7(9), e1701175.
[http://dx.doi.org/10.1002/adhm.201701175] [PMID: 29359866]
[6]
Saghazadeh, S.; Rinoldi, C.; Schot, M.; Kashaf, S.S.; Sharifi, F.; Jalilian, E.; Nuutila, K.; Giatsidis, G.; Mostafalu, P.; Derakhshandeh, H.; Yue, K.; Swieszkowski, W.; Memic, A.; Tamayol, A.; Khademhosseini, A. Drug delivery systems and materials for wound healing applications. Adv. Drug Deliv. Rev., 2018, 127, 138-166.
[http://dx.doi.org/10.1016/j.addr.2018.04.008] [PMID: 29626550]
[7]
Albright, V.; Xu, M.; Palanisamy, A.; Cheng, J.; Stack, M.; Zhang, B.; Jayaraman, A.; Sukhishvili, S.A.; Wang, H. Micelle-coated, hierarchically structured nanofibers with dual-release capability for accelerated wound healing and infection control. Adv. Healthc. Mater., 2018, 7(11), e1800132.
[http://dx.doi.org/10.1002/adhm.201800132] [PMID: 29683273]
[8]
Chantre, C.O.; Campbell, P.H.; Golecki, H.M.; Buganza, A.T.; Capulli, A.K.; Deravi, L.F.; Dauth, S.; Sheehy, S.P.; Paten, J.A.; Gledhill, K.; Doucet, Y.S.; Abaci, H.E.; Ahn, S.; Pope, B.D.; Ruberti, J.W.; Hoerstrup, S.P.; Christiano, A.M.; Parker, K.K. Production-scale fibronectin nanofibers promote wound closure and tissue repair in a dermal mouse model. Biomaterials, 2018, 166, 96-108.
[http://dx.doi.org/10.1016/j.biomaterials.2018.03.006] [PMID: 29549768]
[9]
Waghmare, V.S.; Wadke, P.R.; Dyawanapelly, S.; Deshpande, A.; Jain, R.; Dandekar, P. Starch based nanofibrous scaffolds for wound healing applications. Bioact. Mater., 2017, 3(3), 255-266.
[http://dx.doi.org/10.1016/j.bioactmat.2017.11.006] [PMID: 29744465]
[10]
Vakilian, S.; Norouzi, M.; Soufi-Zomorrod, M.; Shabani, I.; Hosseinzadeh, S.; Soleimani, M.L. inermis-loaded nanofibrous scaffolds for wound dressing applications. Tissue Cell, 2018, 51, 32-38.
[http://dx.doi.org/10.1016/j.tice.2018.02.004] [PMID: 29622085]
[11]
Tang, Y.; Lan, X.; Liang, C.; Zhong, Z.; Xie, R.; Zhou, Y.; Miao, X.; Wang, H.; Wang, W. Honey loaded alginate/PVA nanofibrous membrane as potential bioactive wound dressing. Carbohydr. Polym., 2019, 219, 113-120.
[http://dx.doi.org/10.1016/j.carbpol.2019.05.004] [PMID: 31151507]
[12]
Suryamathi, M.; Ruba, C.; Viswanathamurthi, P.; Balasubramanian, V.; Perumal, P. Tridax procumbens extract loaded electrospun PCL nanofibers: A novel wound dressing material. Macromol. Res., 2019, 27(1), 55-60.
[http://dx.doi.org/10.1007/s13233-019-7022-7]
[13]
Houshyar, S.; Kumar, G.S.; Rifai, A.; Tran, N.; Nayak, R.; Shanks, R.A.; Padhye, R.; Fox, K.; Bhattacharyya, A. Nanodiamond/poly-ε-caprolactone nanofibrous scaffold for wound management. Mater. Sci. Eng. C, 2019, 100, 378-387.
[http://dx.doi.org/10.1016/j.msec.2019.02.110] [PMID: 30948073]
[14]
Ji, X.; Li, X.; Dong, Y.; Sammons, R.; Tian, L.; Yu, H.; Zhang, W.; Dong, H. Synthesis and in-vitro antibacterial properties of a functionally graded Ag impregnated composite surface. Mater. Sci. Eng. C, 2019, 99, 150-158.
[http://dx.doi.org/10.1016/j.msec.2019.01.087] [PMID: 30889685]
[15]
Benetti, G.; Cavaliere, E.; Brescia, R.; Salassi, S.; Ferrando, R.; Vantomme, A.; Pallecchi, L.; Pollini, S.; Boncompagni, S.; Fortuni, B.; Van Bael, M.J.; Banfi, F.; Gavioli, L. Tailored Ag-Cu-Mg multielemental nanoparticles for wide-spectrum antibacterial coating. Nanoscale, 2019, 11(4), 1626-1635.
[http://dx.doi.org/10.1039/C8NR08375D] [PMID: 30644952]
[16]
Song, S.; Zhao, T.; Qiu, F.; Zhu, W.; Wu, Y.; Ju, Y.; Dong, L. Silver nanoparticle decorated halloysite nanotube for efficient antibacterial application. Chem. Phys., 2019, 521, 51-54.
[http://dx.doi.org/10.1016/j.chemphys.2019.01.020]
[17]
Agarwal, A.; Weis, T.L.; Schurr, M.J.; Faith, N.G.; Czuprynski, C.J.; McAnulty, J.F.; Murphy, C.J.; Abbott, N.L. Surfaces modified with nanometer-thick silver-impregnated polymeric films that kill bacteria but support growth of mammalian cells. Biomaterials, 2010, 31(4), 680-690.
[http://dx.doi.org/10.1016/j.biomaterials.2009.09.092] [PMID: 19864019]
[18]
Rath, G.; Hussain, T.; Chauhan, G.; Garg, T.; Goyal, A.K. Collagen nanofiber containing silver nanoparticles for improved wound-healing applications. J. Drug Target., 2016, 24(6), 520-529.
[http://dx.doi.org/10.3109/1061186X.2015.1095922] [PMID: 26487102]
[19]
Ibrahim, H.; Zairy, E. Carboxymethylchitosan nanofibers containing silver nanoparticles: preparation, characterization and antibacterial activity. J. Appl. Pharm. Sci., 2016, 6(7), 43-48.
[http://dx.doi.org/10.7324/JAPS.2016.60706]
[20]
Yalcinkaya, F.; Yalcinkaya, B.; Maryska, J. Preparation and characterization of polyvinyl butyral nanofibers containing silver nanoparticles. J. Mater. Sci. Chem. Eng., 2016, 04(1), 8-12.
[http://dx.doi.org/10.4236/msce.2016.41002]
[21]
Rehan, M.; Barhoum, A.; Van Assche, G.; Dufresne, A.; Gätjen, L.; Wilken, R. Towards multifunctional cellulosic fabric: UV photo-reduction and in-situ synthesis of silver nanoparticles into cellulose fabrics. Int. J. Biol. Macromol., 2017, 98, 877-886.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.02.058] [PMID: 28215565]
[22]
Rehan, M.; Mowafi, S.; Aly, S.A.; Elshemy, N.S.; Haggag, K. Microwave-heating for in-situ Ag NPs Preparation into viscose fibers. Eur. Polym. J., 2017, 86, 68-84.
[http://dx.doi.org/10.1016/j.eurpolymj.2016.11.022]
[23]
Hu, D.; Xiao, Y.; Liu, H.; Wang, H.; Li, J.; Zhou, B.; Liu, P.; Shen, M.; Shi, X. Loading of Au/Ag bimetallic nanoparticles within electrospun PVA/PEI nanofibers for catalytic applications. Colloids Surf. A Physicochem. Eng. Asp., 2018, 552, 9-15.
[http://dx.doi.org/10.1016/j.colsurfa.2018.05.013]
[24]
Shi, Q.; Vitchuli, N.; Nowak, J.; Noar, J.; Caldwell, J.M.; Breidt, F.; Bourham, M.; McCord, M.; Zhang, X. One-step synthesis of silver nanoparticle-filled nylon 6 nanofibers and their antibacterial properties. J. Mater. Chem., 2011, 21(28), 10330-10335.
[http://dx.doi.org/10.1039/c1jm11492a]
[25]
Qiao, Z.; Shen, M.; Xiao, Y.; Zhu, M.; Mignani, S.; Majoral, J.P.; Shi, X. Organic/inorganic nanohybrids formed using electrospun polymer nanofibers as nanoreactors. Coord. Chem. Rev., 2018, 372, 31-51.
[http://dx.doi.org/10.1016/j.ccr.2018.06.001]
[26]
Xiao, S.; Shen, M.; Guo, R.; Wang, S.; Shi, X. Immobilization of zerovalent iron nanoparticles into electrospun polymer nanofibers: synthesis, characterization, and potential environmental applications. J. Phys. Chem. C, 2009, 113(42), 18062-18068.
[http://dx.doi.org/10.1021/jp905542g]
[27]
Ma, H.; Huang, Y.; Shen, M.; Guo, R.; Cao, X.; Shi, X. Enhanced dechlorination of trichloroethylene using electrospun polymer nanofibrous mats immobilized with iron/palladium bimetallic nanoparticles. J. Hazard. Mater., 2012, 211-212, 349-356.
[http://dx.doi.org/10.1016/j.jhazmat.2011.11.038] [PMID: 22138171]
[28]
Ma, H.; Huang, Y.; Shen, M.; Hu, D.; Yang, H.; Zhu, M.; Yang, S.; Shi, X. Enhanced decoloration efficacy of electrospun polymer nanofibers immobilized with Fe/Ni bimetallic nanoparticles. RSC Adv, 2013, 3(18), 6455-6465.
[http://dx.doi.org/10.1039/c3ra20843e]
[29]
Fang, X.; Ma, H.; Xiao, S.; Shen, M.; Guo, R.; Cao, X.; Shi, X. Facile immobilization of gold nanoparticles into electrospun polyethyleneimine/polyvinyl alcohol nanofibers for catalytic applications. J. Mater. Chem., 2011, 21(12), 4493-4501.
[http://dx.doi.org/10.1039/c0jm03987j]
[30]
Xiao, S.; Shen, M.; Ma, H.; Fang, X.; Huang, Q.; Weber, W.J., Jr; Shi, X. Manipulation of the loading and size of zero-valent iron nanoparticles immobilized in electrospun polymer nanofibers. J. Nanosci. Nanotechnol., 2011, 11(6), 5089-5097.
[http://dx.doi.org/10.1166/jnn.2011.4162] [PMID: 21770148]
[31]
Huang, Y.; Ma, H.; Wang, S.; Shen, M.; Guo, R.; Cao, X.; Zhu, M.; Shi, X. Efficient catalytic reduction of hexavalent chromium using palladium nanoparticle-immobilized electrospun polymer nanofibers. ACS Appl. Mater. Interfaces, 2012, 4(6), 3054-3061.
[http://dx.doi.org/10.1021/am300417s] [PMID: 22591166]
[32]
Liu, X.; Gao, S.; Yang, P.; Wang, B.; Ou, J.Z.; Liu, Z.; Wang, Y. Synergetic coupling of Pd nanoparticles and amorphous MoS toward highly efficient electrocatalytic hydrogen evolution reactions. Appl. Mater. Today, 2018, 13, 158-165.
[http://dx.doi.org/10.1016/j.apmt.2018.09.001]
[33]
Yi, X.; He, J.; Wang, X.; Zhang, Y.; Tan, G.; Zhou, Z.; Chen, J.; Chen, D.; Wang, R.; Tian, W.; Yu, P.; Zhou, L.; Ning, C. Tunable mechanical, antibacterial, and cytocompatible hydrogels based on a functionalized dual network of metal coordination bonds and covalent crosslinking. ACS Appl. Mater. Interfaces, 2018, 10(7), 6190-6198.
[http://dx.doi.org/10.1021/acsami.7b18821] [PMID: 29381319]
[34]
Silvan, J.M.; Zorraquin-Peña, I.; Gonzalez de Llano, D.; Moreno-Arribas, M.V.; Martinez-Rodriguez, A.J. Antibacterial Activity of glutathione-stabilized silver nanoparticles against Campylobacter multidrug-resistant strains. Front. Microbiol., 2018, 9, 458.
[http://dx.doi.org/10.3389/fmicb.2018.00458] [PMID: 29615993]
[35]
Qi, R.; Guo, R.; Shen, M.; Cao, X.; Zhang, L.; Xu, J.; Yu, J.; Shi, X. Electrospun poly (lactic-co-glycolic acid)/halloysite nanotube composite nanofibers for drug encapsulation and sustained release. J. Mater. Chem., 2010, 20(47), 10622-10629.
[http://dx.doi.org/10.1039/c0jm01328e]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy