Research Article

3 -氨基丁酸通过诱导TNFAIP3促进间充质干细胞的成骨分化

卷 20, 期 2, 2020

页: [152 - 161] 页: 10

弟呕挨: 10.2174/1566523220999200727122502

价格: $65

conference banner
摘要

背景:骨质疏松症是最常见的代谢性骨骼疾病。对于像骨质疏松症治疗一样有益的新型治疗药物的需求仍然没有得到满足。有报道称,神经递质-氨基丁酸(GABA)可能与人骨形成有关。然而,确切的机制仍不清楚。 目的:探讨GABA对骨代谢的影响,并探讨TNFAIP3在这一过程中的可能作用。 方法:细胞计数kit-8 (CCK-8)实验表明,GABA对人间充质干细胞(hMSCs)和RAW 264.7细胞增殖的影响不大。实验结果表明,GABA增强了成骨诱导过程中hMSCs的ALP染色强度、ALP活性和Ca2+矿化结节的积累。 结果:qRT-PCR结果显示GABA处理显著提高了hMSCs成骨基因的mRNA表达。在RAW 264.7细胞中,TRAP染色显示GABA没有改变破骨细胞的数量和大小,也没有改变破骨细胞基因的表达,显示GABA不影响破骨细胞分化。机制上,GABA治疗显著诱导TNFAIP3的持续表达。此外,通过敲除TNFAIP3,拮抗GABA的成骨作用,提示TNFAIP3介导GABA在hMSCs中的作用。 结论:我们的结果显示GABA通过上调TNFAIP3正向调节成骨分化,而对破骨细胞分化无明显影响。因此,我们的研究结果为骨质疏松症和低骨密度的治疗提供了一种潜在的基因疗法。

关键词: GABA,骨质疏松,成骨细胞,破骨细胞,MSCs

图形摘要

[1]
Seeman E, Martin TJ. Antiresorptive and anabolic agents in the prevention and reversal of bone fragility. Nat Rev Rheumatol 2019; 15(4): 225-36.
[http://dx.doi.org/10.1038/s41584-019-0172-3] [PMID: 30755735]
[2]
Yang Y-S, Xie J, Wang D, et al. Bone-targeting AAV-mediated silencing of Schnurri-3 prevents bone loss in osteoporosis. Nat Commun 2019; 10(1): 2958.
[http://dx.doi.org/10.1038/s41467-019-10809-6] [PMID: 31273195]
[3]
Harada S, Rodan GA. Control of osteoblast function and regulation of bone mass. Nature 2003; 423(6937): 349-55.
[http://dx.doi.org/10.1038/nature01660] [PMID: 12748654]
[4]
Borumandi F, Aghaloo T, Cascarini L, Gaggl A, Fasanmade K. Anti-resorptive drugs and their impact on maxillofacial bone among cancer patients. Anticancer Agents Med Chem 2015; 15(6): 736-43.
[http://dx.doi.org/10.2174/1871520615666150325232857] [PMID: 25807940]
[5]
Kraenzlin ME, Meier C. Parathyroid hormone analogues in the treatment of osteoporosis. Nat Rev Endocrinol 2011; 7(11): 647-56.
[http://dx.doi.org/10.1038/nrendo.2011.108] [PMID: 21750510]
[6]
Esbrit P, Alcaraz MJ. Current perspectives on parathyroid hormone (PTH) and PTH-related protein (PTHrP) as bone anabolic therapies. Biochem Pharmacol 2013; 85(10): 1417-23.
[http://dx.doi.org/10.1016/j.bcp.2013.03.002] [PMID: 23500550]
[7]
Auger ML, Meccia J, Phillips AG, Floresco SB. Amelioration of cognitive impairments induced by GABA hypofunction in the male rat prefrontal cortex by direct and indirect dopamine D1 agonists SKF-81297 and d-Govadine. Neuropharmacology 2020; 16, 2107844
[http://dx.doi.org/10.1016/j.neuropharm.2019.107844] [PMID: 31704272]
[8]
Song Y, Shenwu M, Dhossche DM, Liu YM. A capillary liquid chromatographic/tandem mass spectrometric method for the quantification of γ-aminobutyric acid in human plasma and cerebrospinal fluid. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 814(2): 295-302.
[http://dx.doi.org/10.1016/j.jchromb.2004.10.046] [PMID: 15639451]
[9]
Jiménez-Jiménez FJ, Molina JA, Gómez P, et al. Neurotransmitter amino acids in cerebrospinal fluid of patients with Alzheimer’s disease. J Neural Transm (Vienna) 1998; 105(2-3): 269-77.
[http://dx.doi.org/10.1007/s007020050056] [PMID: 9660105]
[10]
Jembrek MJ, Vlainic J. GABA Receptors: Pharmacological Potential and Pitfalls. Curr Pharm Des 2015; 21(34): 4943-59.
[http://dx.doi.org/10.2174/1381612821666150914121624] [PMID: 26365137]
[11]
Meldrum B. Epilepsy and gamma-aminobutyric acid-induced inhibition. Int Rev Neurobiol 1975; 17.
[12]
Nutt D. GABAA receptors: subtypes, regional distribution, and function. J Clin Sleep Med 2006; 2(2): S7-S11.
[http://dx.doi.org/10.5664/jcsm.26525] [PMID: 17557501]
[13]
Khuhawar MY, Rajper AD. Liquid chromatographic determination of γ-aminobutyric acid in cerebrospinal fluid using 2-hydroxynaphthaldehyde as derivatizing reagent. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 788(2): 413-8.
[http://dx.doi.org/10.1016/S1570-0232(03)00062-X] [PMID: 12705983]
[14]
Dhossche D, et al. Elevated plasma gama-aminobutyric acid (GABA) levels in autistic youngsters: Stimulus for GABA hypothesis of autism. Medical Science Monitor, 8, PR1-PR6. Med Sci Monit 2002; 8: PR1-6.
[PMID: 12165753]
[15]
Hwang I, et al. GABA-stimulated adipose-derived stem cells suppress subcutaneous adipose inflammation in obesity. PPNAS 2019; 116(24): 11936-45.
[http://dx.doi.org/10.1073/pnas.1822067116]
[16]
Bhat R, Axtell R, Mitra A, et al. Inhibitory role for GABA in autoimmune inflammation. Proc Natl Acad Sci USA 2010; 107(6): 2580-5.
[http://dx.doi.org/10.1073/pnas.0915139107] [PMID: 20133656]
[17]
Kenmogne LC, Maltais R, Poirier D. Synthesis of a dansyl-labeled inhibitor of 17β-hydroxysteroid dehydrogenase type 3 for optical imaging. Bioorg Med Chem Lett 2018; 26: 2179-83.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.069] [PMID: 27025340]
[18]
Walsh JS, Eastell R. Osteoporosis in men. Nat Rev Endocrinol 2013; 9(11): 637-45.
[http://dx.doi.org/10.1038/nrendo.2013.171] [PMID: 24019112]
[19]
Wang Z, Bian L, Mo C, et al. Quantification of aminobutyric acids and their clinical applications as biomarkers for osteoporosis. Commun Biol 2020; 3(1): 39.
[http://dx.doi.org/10.1038/s42003-020-0766-y] [PMID: 31969651]
[20]
Djigoue G-B, Simard M, Kenmogne L-C, Poirier D. Two androsterone derivatives as inhibitors of androgen biosynthesis. Acta Crystallogr 2013; C68: 231-4.
[http://dx.doi.org/10.1107/S0108270112021099] [PMID: 22669194]
[21]
Fujimori S, Hinoi E, Yoneda Y. Development of 3-substituted-androsterone derivatives as potent inhibitors of 17β-hydroxysteroid dehydrogenase type 3. Bioorg Med Chem 2002; 19: 4652-68.
[http://dx.doi.org/10.1016/S0006-291X(02)00405-9]
[22]
Takahata Y, Takarada T, Hinoi E, Nakamura Y, Fujita H, Yoneda Y. Osteoblastic γ-aminobutyric acid, type B receptors negatively regulate osteoblastogenesis toward disturbance of osteoclastogenesis mediated by receptor activator of nuclear factor κB ligand in mouse bone. J Biol Chem 2011; 286(38): 32906-17.
[http://dx.doi.org/10.1074/jbc.M111.253526] [PMID: 21828041]
[23]
Dixit VM, Green S, Sarma V, et al. Tumor necrosis factor-alpha induction of novel gene products in human endothelial cells including a macrophage-specific chemotaxin. J Biol Chem 1990; 265(5): 2973-8.
[PMID: 2406243]
[24]
Chang J, Liu F, Lee M, et al. NF-κB inhibits osteogenic differentiation of mesenchymal stem cells by promoting β-catenin degradation. Proc Natl Acad Sci USA 2013; 110(23): 9469-74.
[http://dx.doi.org/10.1073/pnas.1300532110] [PMID: 23690607]
[25]
Catrysse L, Vereecke L, Beyaert R, van Loo G. A20 in inflammation and autoimmunity. Trends Immunol 2014; 35(1): 22-31.
[http://dx.doi.org/10.1016/j.it.2013.10.005] [PMID: 24246475]
[26]
Martens A, van Loo G. A20 at the Crossroads of Cell Death, Inflammation, and Autoimmunity. Cold Spring Harb Perspect Biol 2020; 12(1) 036418
[http://dx.doi.org/10.1101/cshperspect.a036418] [PMID: 31427375]
[27]
Savino S, Ferrandi EE, Forneris F, et al. Structural and biochemical insights into 7beta-hydroxysteroid dehydrogenase stereoselectivity. Proteins 2010; 84: 859-65.
[28]
Matmati M, Jacques P, Maelfait J, et al. A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis. Nat Genet 2011; 43(9): 908-12.
[http://dx.doi.org/10.1038/ng.874] [PMID: 21841782]
[29]
Voet S, Mc Guire C, Hagemeyer N, et al. A20 critically controls microglia activation and inhibits inflammasome-dependent neuroinflammation. Nat Commun 2018; 9(1): 2036.
[http://dx.doi.org/10.1038/s41467-018-04376-5] [PMID: 29789522]
[30]
Hammer GE, Turer EE, Taylor KE, et al. Expression of A20 by dendritic cells preserves immune homeostasis and prevents colitis and spondyloarthritis. Nat Immunol 2011; 12(12): 1184-93.
[http://dx.doi.org/10.1038/ni.2135] [PMID: 22019834]
[31]
Aeschlimann FA, et al. A method to identify protein sequences that fold into a known three-dimensional structure. Science 2018; 253: 164-70.
[http://dx.doi.org/10.1126/science.1853201 ] [PMID: 1853201]
[32]
Razani B, Whang MI, Kim FS, et al. Non-catalytic ubiquitin binding by A20 prevents psoriatic arthritis-like disease and inflammation. Nat Immunol 2020; 21(4): 422-33.
[http://dx.doi.org/10.1038/s41590-020-0634-4] [PMID: 32205880]
[33]
Polykratis A, Martens A, Eren RO, et al. A20 prevents inflammasome-dependent arthritis by inhibiting macrophage necroptosis through its ZnF7 ubiquitin-binding domain. Nat Cell Biol 2019; 21(6): 731-42.
[http://dx.doi.org/10.1038/s41556-019-0324-3] [PMID: 31086261]
[34]
Garg AV, Ahmed M, Vallejo AN, Ma A, Gaffen SL. The deubiquitinase A20 mediates feedback inhibition of interleukin-17 receptor signaling. Sci Signal 2013; 6(278): ra44-.
[http://dx.doi.org/10.1126/scisignal.2003699] [PMID: 23737552]
[35]
Afonina IS, Zhong Z, Karin M, Beyaert R. Limiting inflammation-the negative regulation of NF-κB and the NLRP3 inflammasome. Nat Immunol 2017; 18(8): 861-9.
[http://dx.doi.org/10.1038/ni.3772] [PMID: 28722711]
[36]
Kiessling CY, Lanza K, Feinberg E, Bishop C. Dopamine receptor cooperativity synergistically drives dyskinesia, motor behavior, and striatal GABA neurotransmission in hemiparkinsonian rats. Neuropharmacology 2020; 17, 4108138
[http://dx.doi.org/10.1016/j.neuropharm.2020.108138] [PMID: 32492451]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy