Research Article

伏格列布的防中风特征:通过体内分子对接和虚拟筛选进行体内动物研究

卷 20, 期 3, 2020

页: [223 - 235] 页: 13

弟呕挨: 10.2174/1566523220999200726225457

价格: $65

摘要

背景:餐后高血糖被认为是脑血管并发症的主要危险因素。 目的:本研究旨在阐明体外硅化的伏格列波糖对体内研究通过改善餐后血糖状态的有益作用,预防易中风的2型糖尿病。 材料与方法:借助iGEMDOCK + Pymol + docking软件和Protein Drug Bank数据库(PDB)在硅中进行分子对接和虚拟筛选。根据对接研究的结果,对可能的神经保护作用进行了体内研究。通过向新生儿单次注射链脲佐菌素(90mg / kg,静脉内注射)诱导T2DM。诱导后六周,伏格列波糖以10mg / kg p.o的剂量给药。两个星期。八周后,对糖尿病大鼠进行大脑中动脉闭塞,手术72小时后,确定了神经功能缺损。收集血液以测定血清葡萄糖,CK-MB,LDH和脂质水平。切除脑以确定脑梗塞体积,脑半球重量差异,Na + -K + ATPase活性,ROS参数,NO水平和醛糖还原酶活性。 结果:计算机对接研究显示,中风相关蛋白具有良好的对接结合得分,这可能是假设伏格列波糖对中风具有神经保护作用。在目前的体内研究中,伏格列波糖预处理显示血清葡萄糖和脂质水平显着降低(p <0.05)。伏格列波糖显示出神经学评分,脑梗塞体积和脑半球重量差异显着(p <0.05)降低。根据生化评估,伏格列波糖治疗可使血液中CK-MB,LDH和NO水平显着(p <0.05)降低,并且脑匀浆中Na + -K + ATPase,氧化应激和醛糖还原酶活性降低。 结论:MCAo诱发的中风的计算机分子对接和虚拟筛选研究以及体内研究,动物模型结果支持可能的神经保护疗法具有强大的抗中风特征。

关键词: 脑血管疾病,高血糖,局灶性缺血,血管损伤,伏格列波糖,中风。

« Previous
图形摘要

[1]
Alloubani A, Saleh A, Abdelhafiz I. Hypertension and diabetes mellitus as a predictive risk factors for stroke. Diabetes Metab Syndr 2018; 12(4): 577-84.
[http://dx.doi.org/10.1016/j.dsx.2018.03.009] [PMID: 29571978]
[2]
Benson RT, Sacco RL. Stroke prevention: hypertension, diabetes, tobacco, and lipids. Neurol Clin 2000; 18(2): 309-19.
[http://dx.doi.org/10.1016/S0733-8619(05)70194-8] [PMID: 10757828]
[3]
Phipps MS, Cronin CA. Management of acute ischemic stroke. BMJ 2020; 368: 16983.
[http://dx.doi.org/10.1136/bmj.l6983] [PMID: 32054610]
[4]
Nishikawa T, Edelstein D, Brownlee M. The missing link: a single unifying mechanism for diabetic complications. Kidney Int Suppl 2000; 77: S26-30.
[http://dx.doi.org/10.1046/j.1523-1755.2000.07705.x] [PMID: 10997687]
[5]
Woodruff TM, Thundyil J, Tang SC, Sobey CG, Taylor SM, Arumugam TV. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener 2011; 6(1): 11.
[http://dx.doi.org/10.1186/1750-1326-6-11] [PMID: 21266064]
[6]
Lau LH, Lew J, Borschmann K, Thijs V, Ekinci EI. Prevalence of diabetes and its effects on stroke outcomes: A meta-analysis and literature review. J Diabetes Investig 2019; 10(3): 780-92.
[http://dx.doi.org/10.1111/jdi.12932] [PMID: 30220102]
[7]
Ettehad D, Emdin CA, Kiran A, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 2016; 387(10022): 957-67.
[http://dx.doi.org/10.1016/S0140-6736(15)01225-8] [PMID: 26724178]
[8]
Drel VR, Pacher P, Ali TK, et al. Aldose reductase inhibitor fidarestat counteracts diabetes-associated cataract formation, retinal oxidative-nitrosative stress, glial activation, and apoptosis. Int J Mol Med 2008; 21(6): 667-76.
[http://dx.doi.org/10.3892/ijmm.21.6.667] [PMID: 18506358]
[9]
Lo AC, Cheung AK, Hung VK, et al. Deletion of aldose reductase leads to protection against cerebral ischemic injury. J Cereb Blood Flow Metab 2007; 27(8): 1496-509.
[http://dx.doi.org/10.1038/sj.jcbfm.9600452] [PMID: 17293845]
[10]
Williamson JR, Chang K, Frangos M, et al. Hyperglycemic pseudohypoxia and diabetic complications. Diabetes 1993; 42(6): 801-13.
[http://dx.doi.org/10.2337/diab.42.6.801] [PMID: 8495803]
[11]
Kaku K. Efficacy of voglibose in type 2 diabetes. Expert Opin Pharmacother 2014; 15(8): 1181-90.
[http://dx.doi.org/10.1517/14656566.2014.918956] [PMID: 24798092]
[12]
Chen X, Zheng Y, Shen Y. Voglibose (Basen, AO-128), one of the most important α-glucosidase inhibitors. Curr Med Chem 2006; 13(1): 109-16.
[http://dx.doi.org/10.2174/092986706789803035] [PMID: 16457643]
[13]
Pattanaik SR, Shah P, Baker A, Sinha N, Kumar N, Swami OC. Implications of postprandial hyperglycaemia and role of voglibose in type 2 diabetes mellitus. J Clin Diagn Res 2018; 12(4): 8-12.
[http://dx.doi.org/10.7860/JCDR/2018/32803.11399]
[14]
Hsu KC, Chen YF, Lin SR, Yang JM. iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics 2011; 12(Suppl. 1): S33.
[http://dx.doi.org/10.1186/1471-2105-12-S1-S33] [PMID: 21342564]
[15]
Jones RB, Vickers SP, Cheetham SC, Headland KR, Mark M, Klein T. Effect of linagliptin, alone and in combination with voglibose or exendin-4, on glucose control in male ZDF rats. Eur J Pharmacol 2014; 729: 59-66.
[http://dx.doi.org/10.1016/j.ejphar.2014.02.004] [PMID: 24530555]
[16]
Arulmozhi DK, Veeranjaneyulu A, Bodhankar SL. Neonatal streptozotocin-induced rat model of Type 2 diabetes mellitus: A glance. Indian J Pharmacol 2004; 36(4): 217.
[17]
Vakili A, Einali MR, Bandegi AR. Protective effect of crocin against cerebral ischemia in a dose-dependent manner in a rat model of ischemic stroke. J Stroke Cerebrovasc Dis 2014; 23(1): 106-13.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2012.10.008] [PMID: 23182363]
[18]
Ma S, Zhao H, Ji X, Luo Y. Peripheral to central: Organ interactions in stroke pathophysiology. Exp Neurol 2015; 272: 41-9.
[http://dx.doi.org/10.1016/j.expneurol.2015.05.014] [PMID: 26054885]
[19]
Dabhi AS, Bhatt NR, Shah MJ. Voglibose: an alpha glucosidase inhibitor. J Clin Diagn Res 2013; 7(12): 3023-7.
[PMID: 24551718]
[20]
Adlam VJ, Harrison JC, Porteous CM, et al. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J 2005; 19(9): 1088-95.
[http://dx.doi.org/10.1096/fj.05-3718com] [PMID: 15985532]
[21]
Veeranna TK, Kaji T, Boland B, et al. Calpain mediates calcium-induced activation of the erk1, 2 MAPK pathway and cytoskeletal phosphorylation in neurons: relevance to Alzheimer’s disease. Am J Pathol 2004; 165(3): 795-805.
[http://dx.doi.org/10.1016/S0002-9440(10)63342-1] [PMID: 15331404]
[22]
Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab 2016; 36(3): 513-38.
[http://dx.doi.org/10.1177/0271678X15617172] [PMID: 26661240]
[23]
Saedi E, Gheini MR, Faiz F, Arami MA. Diabetes mellitus and cognitive impairments. World J Diabetes 2016; 7(17): 412-22.
[http://dx.doi.org/10.4239/wjd.v7.i17.412] [PMID: 27660698]
[24]
Saxena M, Srivastava N, Banerjee M. Association of IL-6, TNF-α and IL-10 gene polymorphisms with type 2 diabetes mellitus. Mol Biol Rep 2013; 40(11): 6271-9.
[http://dx.doi.org/10.1007/s11033-013-2739-4] [PMID: 24057184]
[25]
Yamagishi S, Nakamura K, Imaizumi T. Advanced glycation end products (AGEs) and diabetic vascular complications. Curr Diabetes Rev 2005; 1(1): 93-106.
[http://dx.doi.org/10.2174/1573399052952631] [PMID: 18220586]
[26]
Hamed SA. Brain injury with diabetes mellitus: evidence, mechanisms and treatment implications. Expert Rev Clin Pharmacol 2017; 10(4): 409-28.
[http://dx.doi.org/10.1080/17512433.2017.1293521] [PMID: 28276776]
[27]
Li Y, Xiao D, Dasgupta C, et al. Perinatal nicotine exposure increases vulnerability of hypoxic-ischemic brain injury in neonatal rats: role of angiotensin II receptors. Stroke 2012; 43(9): 2483-90.
[http://dx.doi.org/10.1161/STROKEAHA.112.664698] [PMID: 22738920]
[28]
Zhan C, Yang J. Protective effects of isoliquiritigenin in transient middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Pharmacol Res 2006; 53(3): 303-9.
[http://dx.doi.org/10.1016/j.phrs.2005.12.008] [PMID: 16459097]
[29]
Deb P, Sharma S, Hassan KM. Pathophysiologic mechanisms of acute ischemic stroke: An overview with emphasis on therapeutic significance beyond thrombolysis. Pathophysiology 2010; 17(3): 197-218.
[http://dx.doi.org/10.1016/j.pathophys.2009.12.001] [PMID: 20074922]
[30]
Liang J, Qi Z, Liu W, et al. Normobaric hyperoxia slows blood-brain barrier damage and expands the therapeutic time window for tissue-type plasminogen activator treatment in cerebral ischemia. Stroke 2015; 46(5): 1344-51.
[http://dx.doi.org/10.1161/STROKEAHA.114.008599] [PMID: 25804925]
[31]
Lo AC, Chen AY, Hung VK, et al. Endothelin-1 overexpression leads to further water accumulation and brain edema after middle cerebral artery occlusion via aquaporin 4 expression in astrocytic end-feet. J Cereb Blood Flow Metab 2005; 25(8): 998-1011.
[http://dx.doi.org/10.1038/sj.jcbfm.9600108] [PMID: 15815585]
[32]
Liu Z, Zhu Z, Zhao J, et al. Malondialdehyde: A novel predictive biomarker for post-stroke depression. J Affect Disord 2017; 220: 95-101.
[http://dx.doi.org/10.1016/j.jad.2017.05.023] [PMID: 28600933]
[33]
Ishibashi N, Prokopenko O, Reuhl KR, Mirochnitchenko O. Inflammatory response and glutathione peroxidase in a model of stroke. J Immunol 2002; 168(4): 1926-33.
[http://dx.doi.org/10.4049/jimmunol.168.4.1926] [PMID: 11823528]
[34]
Rashid PA, Whitehurst A, Lawson N, Bath PM. Plasma nitric oxide (nitrate/nitrite) levels in acute stroke and their relationship with severity and outcome. J Stroke Cerebrovasc Dis 2003; 12(2): 82-7.
[http://dx.doi.org/10.1053/jscd.2003.9] [PMID: 17903909]
[35]
Chakraborti CK. Role of adiponectin and some other factors linking type 2 diabetes mellitus and obesity. World J Diabetes 2015; 6(15): 1296-308.
[http://dx.doi.org/10.4239/wjd.v6.i15.1296] [PMID: 26557957]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy