Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Letter Article

Virtual Compound Screening and Molecular Dynamics to Identify New Inhibitors for Human Glutathione Reductase

Author(s): Mohsen Sargolzaei*

Volume 17, Issue 12, 2020

Page: [1465 - 1474] Pages: 10

DOI: 10.2174/1570180817999200724174003

Price: $65

Abstract

Background: Oxidative stress is a defense mechanism against malarial intracellular parasite infection. On the other hand, the Human glutathione reductase enzyme reduces oxidative stress in the cells, making the inhibitors of this enzyme a promising candidate for malaria treatment.

Objective: Rational drug design was used in this work to plan new human glutathione reductase inhibitors.

Methods: Virtual screening was performed using the ZINC database and molecular docking was used to detect appropriate human glutathione reductase inhibitors. Based on the docking scores obtained, the top three highest-ranked ligands were selected for the molecular dynamics simulation study. The MD simulation was performed for each complex in a length of 100 ns.

Results: RMSD, RMSF and hydrogen bond analyzes were performed on the derived trajectories. Molecular mechanics generalized born surface area (MM-GBSA) and pairwise per-residue free energy decomposition analyzes were performed for the determination of binding free energy and the determination of dominant residues involved in the binding process, respectively. The binding free energy analysis showed that the molecule of 3-((7-(furan-2-ylmethyl)-5,6-diphenyl-7H-pyrrolo[2,3- d] pyrimidin-4-yl) amino) propan-1-ol is the most potent inhibitor among the molecules considered against human glutathione reductase enzyme.

Conclusion: This molecule can be considered a novel candidate for antimalarial treatments.

Keywords: Malaria, binding affinity, MD, reduced glutathione, oxidative stress, MM-GBSA.

Graphical Abstract

[1]
Perricone, C.; De Carolis, C.; Perricone, R. Glutathione: A key player in autoimmunity. Autoimmun. Rev., 2009, 8(8), 697-701.
[http://dx.doi.org/10.1016/j.autrev.2009.02.020] [PMID: 19393193]
[2]
World Health Organization (WHO) World Malaria Report; World Health Organization Press: Geneva, Switzerland, 2011.
[3]
Müller, S. Role and regulation of glutathione metabolism in Plasmodium falciparum. Molecules, 2015, 20(6), 10511-10534.
[http://dx.doi.org/10.3390/molecules200610511] [PMID: 26060916]
[4]
World Health Organization (WHO) World Malaria Report; WHO Global Malaria Programme: Geneva, Switzerland, 2014.
[5]
Om, A.; Ab, O.; Og, A. effect of antimalarial drugs and malaria infection on oxidative stress in pregnant women. Afr. J. Reprod. Health, 2010, 14(3), 209-212.
[6]
Tiyong Ifoue, S.H.; Teugwa Mofor, C.; Gouado, I.; Teto, G.; Asonganyi, T.; Amvam Zollo, P.H. Evaluation of oxidative stress and antioxidant status of pregnant women suffering from malaria in Cameroon. Indian J. Clin. Biochem., 2009, 24(3), 288-293.
[http://dx.doi.org/10.1007/s12291-009-0054-6] [PMID: 23105851]
[7]
Pincemail, J.; Lecomte, J.; Collart, E.; Castiaux, J.P.; Defraigne, J.O. Stress oxydant, antioxydants et exercice physique. Med. Interne, 2003, 8, 56-59.
[8]
Pizzorno, J. Glutathione! Integr. Med. (Encinitas), 2014, 13(1), 8-12.
[PMID: 26770075]
[9]
Biswas, S.K.; Rahman, I. Environmental toxicity, redox signaling and lung inflammation: The role of glutathione. Mol. Aspects Med., 2009, 30(1-2), 60-76.
[http://dx.doi.org/10.1016/j.mam.2008.07.001] [PMID: 18760298]
[10]
Sarma, G.N.; Savvides, S.N.; Becker, K.; Schirmer, M.; Schirmer, R.H.; Karplus, P.A. Glutathione reductase of the malarial parasite Plasmodium falciparum: Crystal structure and inhibitor development. J. Mol. Biol., 2003, 328(4), 893-907.
[http://dx.doi.org/10.1016/S0022-2836(03)00347-4] [PMID: 12729762]
[11]
Dubois, V.L.; Platel, D.F.N.; Pauly, G.; Tribouley-Duret, J. Plasmodium berghei: implication of intracellular glutathione and its related enzyme in chloroquine resistance in vivo. Exp. Parasitol., 1995, 81(1), 117-124.
[http://dx.doi.org/10.1006/expr.1995.1099] [PMID: 7628559]
[12]
Famin, O.; Krugliak, M.; Ginsburg, H. Kinetics of inhibition of glutathione-mediated degradation of ferriprotoporphyrin IX by antimalarial drugs. Biochem. Pharmacol., 1999, 58(1), 59-68.
[http://dx.doi.org/10.1016/S0006-2952(99)00059-3] [PMID: 10403519]
[13]
Platel, D.F.; Mangou, F.; Tribouley-Duret, J. Role of glutathione in the detoxification of ferriprotoporphyrin IX in chloroquine resistant Plasmodium berghei. Mol. Biochem. Parasitol., 1999, 98(2), 215-223.
[http://dx.doi.org/10.1016/S0166-6851(98)00170-4] [PMID: 10080390]
[14]
Karplus, P.A.; Schulz, G.E. Substrate binding and catalysis by glutathione reductase as derived from refined enzyme: Substrate crystal structures at 2 A resolution. J. Mol. Biol., 1989, 210(1), 163-180.
[http://dx.doi.org/10.1016/0022-2836(89)90298-2] [PMID: 2585516]
[15]
Schirmer, R.H.; Müller, J.G.; Krauth-Siegel, R.L. Disulfide-reductase inhibitors as chemotherapeutic agents: The design of drugs for trypanosomiasis and malaria. Angew. Chem. Int. Ed. Engl., 1995, 34(2), 141-154.
[http://dx.doi.org/10.1002/anie.199501411]
[16]
Krauth-Siegel, R.L.; Bauer, H.; Schirmer, R.H. Dithiol proteins as guardians of the intracellular redox milieu in parasites: Old and new drug targets in trypanosomes and malaria-causing plasmodia. Angew. Chem. Int. Ed. Engl., 2005, 44(5), 690-715.
[http://dx.doi.org/10.1002/anie.200300639] [PMID: 15657967]
[17]
Vennerstrom, J.L.; Eaton, J.W. Oxidants, oxidant drugs, and malaria. J. Med. Chem., 1988, 31(7), 1269-1277.
[http://dx.doi.org/10.1021/jm00402a001] [PMID: 3290484]
[18]
Lüönd, R.M.; McKie, J.H.; Douglas, K.T.; Dascombe, M.J.; Vale, J. Inhibitors of glutathione reductase as potential antimalarial drugs. Kinetic cooperativity and effect of dimethyl sulphoxide on inhibition kinetics. J. Enzyme Inhib., 1998, 13(5), 327-345.
[http://dx.doi.org/10.3109/14756369809021479] [PMID: 9793837]
[19]
Pastore, A.; Federici, G.; Bertini, E.; Piemonte, F. Analysis of glutathione: Implication in redox and detoxification. Clin. Chim. Acta, 2003, 333(1), 19-39.
[http://dx.doi.org/10.1016/S0009-8981(03)00200-6] [PMID: 12809732]
[20]
Biot, C.; Bauer, H.; Schirmer, R.H.; Davioud-Charvet, E. 5-substituted tetrazoles as bioisosteres of carboxylic acids. Bioisosterism and mechanistic studies on glutathione reductase inhibitors as antimalarials. J. Med. Chem., 2004, 47(24), 5972-5983.
[http://dx.doi.org/10.1021/jm0497545] [PMID: 15537352]
[21]
Kocaoğlu, E.; Talaz, O.; Çavdar, H.; Şentürk, M.; Supuran, C.T.; Ekinci, D. Determination of the inhibitory effects of N-methylpyrrole derivatives on glutathione reductase enzyme. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 51-54.
[http://dx.doi.org/10.1080/14756366.2018.1520228] [PMID: 30362388]
[22]
Savvides, S.N.; Karplus, P.A. Kinetics and crystallographic analysis of human glutathione reductase in complex with a xanthene inhibitor. J. Biol. Chem., 1996, 271(14), 8101-8107.
[http://dx.doi.org/10.1074/jbc.271.14.8101] [PMID: 8626496]
[23]
Thomsen, R.; Christensen, M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321.
[http://dx.doi.org/10.1021/jm051197e] [PMID: 16722650]
[24]
Case, A. AMBER 2016; University of California: San Francisco, , 2016.
[25]
Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput., 2015, 11(8), 3696-3713.
[http://dx.doi.org/10.1021/acs.jctc.5b00255] [PMID: 26574453]
[26]
Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem., 2004, 25(9), 1157-1174.
[http://dx.doi.org/10.1002/jcc.20035] [PMID: 15116359]
[27]
Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98(7), 5648-5652.
[http://dx.doi.org/10.1063/1.464913]
[28]
Bayly, C.I.; Cieplak, P.; Cornell, W.; Ollman, P.A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. J. Phys. Chem., 1993, 97, 10269-10280.
[http://dx.doi.org/10.1021/j100142a004]
[29]
Frisch, ; J. M. Gaussian, 03, Revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.
[30]
Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model., 2006, 25(2), 247-260.
[http://dx.doi.org/10.1016/j.jmgm.2005.12.005] [PMID: 16458552]
[31]
Parisi, Ga. W.; Yong-shi. Perturbation theory without gauge fixing. Sci. Sin., 1981, 4, 483.
[32]
Roe, D.R.; Cheatham, T.E. III PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput., 2013, 9(7), 3084-3095.
[http://dx.doi.org/10.1021/ct400341p] [PMID: 26583988]
[33]
Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D.A.; Cheatham, T.E., III Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res., 2000, 33(12), 889-897.
[http://dx.doi.org/10.1021/ar000033j] [PMID: 11123888]
[34]
Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov., 2015, 10(5), 449-461.
[http://dx.doi.org/10.1517/17460441.2015.1032936] [PMID: 25835573]
[35]
Miller, B.R., III; McGee, T.D., Jr; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. mmpbsa.py: An efficient program for end-state free energy calculations. J. Chem. Theory Comput., 2012, 8(9), 3314-3321.
[http://dx.doi.org/10.1021/ct300418h] [PMID: 26605738]
[36]
Hevener, K.E.; Zhao, W.; Ball, D.M.; Babaoglu, K.; Qi, J.; White, S.W.; Lee, R.E. Validation of molecular docking programs for virtual screening against dihydropteroate synthase. J. Chem. Inf. Model., 2009, 49(2), 444-460.
[http://dx.doi.org/10.1021/ci800293n] [PMID: 19434845]
[37]
Lionta, E.; Spyrou, G.; Vassilatis, D.K.; Cournia, Z. Structure-based virtual screening for drug discovery: Principles, applications and recent advances. Curr. Top. Med. Chem., 2014, 14(16), 1923-1938.
[http://dx.doi.org/10.2174/1568026614666140929124445] [PMID: 25262799]
[38]
Tyagi, C.; Bathke, J.; Goyal, S.; Fischer, M.; Dahse, H-M.; Chacko, S.; Becker, K.; Grover, A. Targeting the intersubunit cavity of Plasmodium falciparum glutathione reductase by a novel natural inhibitor: Computational and experimental evidence. Int. J. Biochem. Cell Biol., 2015, 61, 72-80.
[http://dx.doi.org/10.1016/j.biocel.2015.01.014] [PMID: 25660424]
[39]
Dalmizrak, O.; Teralı, K.; Abdullah, R.K.; Ozer, N. Mechanistic and structural insights into the in vitro inhibitory action of hypericin on glutathione reductase purified from baker’s yeast. J. Biochem. Mol. Toxicol., 2018, 32(5)e22051
[http://dx.doi.org/10.1002/jbt.22051] [PMID: 29660796]
[40]
Gholampour-Faroji, N.; Farazmand, R.; Hemmat, J.; Haddad-Mashadrizeh, A. Modeling, stability and the activity assessment of glutathione reductase from Streptococcus Thermophilus; Insights from the in-silico simulation study. Comput. Biol. Chem., 2019, •••8310712
[http://dx.doi.org/10.1016/j.compbiolchem.2019.107121] [PMID: 31546211]
[41]
Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 2011, 51(10), 2778-2786.
[http://dx.doi.org/10.1021/ci200227u] [PMID: 21919503]
[42]
Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng., 1995, 8(2), 127-134.
[http://dx.doi.org/10.1093/protein/8.2.127] [PMID: 7630882]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy