Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

A Computational Framework to Identify Cross Association Between Complex Disorders by Protein-protein Interaction Network Analysis

Author(s): Nikhila T. Suresh*, Vimina E. Ravindran and Ullattil Krishnakumar

Volume 16, Issue 3, 2021

Published on: 24 July, 2020

Page: [433 - 445] Pages: 13

DOI: 10.2174/1574893615999200724145434

Price: $65

Abstract

Objective: It is a known fact that numerous complex disorders do not happen in isolation indicating the plausible set of shared causes common to several different sicknesses. Hence, analysis of comorbidity can be utilized to explore the association between several disorders. In this study, we have proposed a network-based computational approach, in which genes are organized based on the topological characteristics of the constructed Protein-Protein Interaction Network (PPIN) followed by a network prioritization scheme, to identify distinctive key genes and biological pathways shared among diseases.

Methods: The proposed approach is initiated from constructed PPIN of any randomly chosen disease genes in order to infer its associations with other diseases in terms of shared pathways, coexpression, co-occurrence etc. For this, initially, proteins associated to any disease based on random choice were identified. Secondly, PPIN is organized through topological analysis to define hub genes. Finally, using a prioritization algorithm a ranked list of newly predicted multimorbidity-associated proteins is generated. Using Gene Ontology (GO), cellular pathways involved in multimorbidity-associated proteins are mined.

Result and Conclusion: The proposed methodology is tested using three disorders, namely Diabetes, Obesity and blood pressure at an atomic level and the results suggest the comorbidity of other complex diseases that have associations with the proteins included in the disease of present study through shared proteins and pathways. For diabetes, we have obtained key genes like GAPDH, TNF, IL6, AKT1, ALB, TP53, IL10, MAPK3, TLR4 and EGF with key pathways like P53 pathway, VEGF signaling pathway, Ras Pathway, Interleukin signaling pathway, Endothelin signaling pathway, Huntington disease etc. Studies on other disorders such as obesity and blood pressure also revealed promising results.

Keywords: Disease comorbidity, topology, protein-protein interaction network, key genes, pathway analysis, gene ontology.

Graphical Abstract

[1]
THOMAS CE, BRUNAK S. NETWORK BIOLOGY CONCEPTS IN COMPLEX DISEASE COMORBIDITIES. Nat Rev Genet 2016; 17: 615-29.
[http://dx.doi.org/10.1038/nrg.2016.87]
[2]
Ulitsky I, Shamir R. Identification of functional modules using network topology and high-throughput data. BMC Syst Biol 2007; •••: 1.
[http://dx.doi.org/10.1186/1752-0509-1-8]
[3]
Sun K, Gonçalves P, Larminie C, et al. Predicting disease associations via biological network analysis. BMC Bioinformatics 2014; 151: 304.
[http://dx.doi.org/10.1186/1471-2105-15-304]
[4]
Liu Y, Liang Y, Wishart D. PolySearch2: a significantly improved text-mining system for discovering associations between human diseases, genes, drugs, metabolites, toxins and more. Nucleic Acids Res 2015; 43(W1)W535-42
[5]
Shameer K, Dow G, Glicksberg BS, et al. A network-biology informed computational drug repositioning strategy to target disease risk trajectories and comorbidities of peripheral artery disease. AMIA Jt Summits Transl Sci Proc 2018; 2017: 108-17.
[PMID: 29888052]
[6]
Aguilar D, Lemonnier N, Koppelman GH, et al. Understanding allergic multimorbidity within the non-eosinophilic interactome. PLoS One 2019; 14(11)
[http://dx.doi.org/10.1371/journal.pone.0224448]
[7]
Rubio-Perez C, Guney E, Aguilar D, et al. Genetic and functional characterization of disease associations explains comorbidity. Sci Rep 2017; 7(1): 6207.
[http://dx.doi.org/10.1038/s41598-017-04939-4] [PMID: 28740175]
[8]
Grosdidier S, Ferrer A, Faner R, et al. Network medicine analysis of COPD multimorbidities. Respir Res 2014; 151: 111.
[http://dx.doi.org/10.1186/s12931-014-0111-4]
[9]
Aguilar D, Pinart M, Koppelman GH, et al. Computational analysis of multimorbidity between asthma, eczema and rhinitis. PLoS One 2017; 12(6)e0179125
[http://dx.doi.org/10.1371/journal.pone.0179125]
[10]
Szklarczyk D, Franceschini A, Kuhn M, et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 2010; •••: D561-8.
[11]
Divya M, Roger PW, Julie AD. DiffSLC: a graph centrality method to detect essential proteins of a protein-protein interaction network. PLoS One 2017; 12(11)e0187091
[http://dx.doi.org/10.1371/journal.pone.0187091]
[12]
Ashburner M, Ball CA, Blake JA, et al. The gene ontology consortium. Gene ontology: tool for the unification of biology. Nat Genet 2000; 25(1): 25-9.
[http://dx.doi.org/10.1038/75556] [PMID: 10802651]
[13]
The gene ontology consortium. the gene ontology resource: 20 years and still going strong. Nucleic Acids Res 2019; 47(D1): D330-8.
[http://dx.doi.org/10.1093/nar/gky1055] [PMID: 30395331]
[14]
Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res 2019; 47(D1): D419-26.
[http://dx.doi.org/10.1093/nar/gky1038] [PMID: 30407594]
[15]
UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 2019; 47(D1): D506-15.
[http://dx.doi.org/10.1093/nar/gkv383] [PMID: 25925572]
[16]
Theodosiou T, Efstathiou G, Papanikolaou N, et al. NAP: the network analysis profiler, a web tool for easier topological analysis and comparison of medium-scale biological networks. BMC Res Notes 2017; 101: 278.
[http://dx.doi.org/10.1186/s13104-017-2607-8]
[17]
Köhler S, Bauer S, Horn D, Robinson PN. Walking the interactome for prioritization of candidate disease genes. Am J Hum Genet 2008; 82(4): 949-58.
[http://dx.doi.org/10.1016/j.ajhg.2008.02.013] [PMID: 18371930]
[18]
Lewin A, Grieve IC. Grouping gene ontology terms to improve the assessment of gene set enrichment in microarray data. BMC Bioinformatics 2006; 7: 426.
[http://dx.doi.org/10.1186/1471-2105-7-426] [PMID: 17018143]
[19]
Cheng D, Knox C, Young N, et al. PolySearch: a web-based text mining system for extracting relationships between human diseases, genes, mutations, drugs and metabolites. Nucleic Acids Res 2008; 36W399-405
[http://dx.doi.org/10.1093/nar/gkn296]
[20]
Chang JR, Ghafouri M, Mukerjee R, Bagashev A, Chabrashvili T, Sawaya BE. Role of p53 in neurodegenerative diseases. Neurodegener Dis 2012; 9(2): 68-80.
[http://dx.doi.org/10.1159/000329999] [PMID: 22042001]
[21]
Issaeva N. p53 signaling in cancers. Cancers (Basel) 2019; 11(3): 332.
[http://dx.doi.org/10.3390/cancers11030332]
[22]
Shim JW, Madsen JR. VEGF signaling in neurological disorders. Int J Mol Sci 2018; 191: 275.
[http://dx.doi.org/10.3390/ijms19010275]
[23]
Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell 2019; 176(6): 1248-64.
[http://dx.doi.org/10.1016/j.cell.2019.01.021] [PMID: 30849371]
[24]
Kieran MW, Kalluri R, Cho Y. The VEGF pathway in cancer and disease: responses, resistance, and the path forward. Cold Spring Harb Perspect Med 2012; 212a006593
[http://dx.doi.org/10.1101/cshperspect.a006593]
[25]
Stacker SA, Achen MG. The VEGF signaling pathway in cancer: the road ahead. Chin J Cancer 2013; 326: 297-302.
[26]
Simanshu DK, Nissley DV, McCormick F. RAS proteins and their regulators in human disease. Cell 2017; 170(1): 17-33.
[http://dx.doi.org/10.1016/j.cell.2017.06.009] [PMID: 28666118]
[27]
Fernández-Medarde A, Santos E. Ras in cancer and developmental diseases. Genes Cancer 2011; 2(3): 344-58.
[http://dx.doi.org/10.1177/1947601911411084] [PMID: 21779504]
[28]
Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol 2014; 5: 461.
[http://dx.doi.org/10.3389/fimmu.2014.00461] [PMID: 25309543]
[29]
Favaloro B, Allocati N, Graziano IV, Di Ilio C. De Laurenzi1 V. Role of apoptosis in disease. Aging (Albany NY) 2012; 45: 330-49.
[http://dx.doi.org/10.18632/aging.100459]
[30]
Mattson MP. Neuronal life-and-death signaling, apoptosis, and neurodegenerative disorders. Antioxid Redox Signal 2006; 8(11-12): 1997-2006.
[http://dx.doi.org/10.1089/ars.2006.8.1997]
[31]
Roerink ME, van der Schaaf ME, Dinarello CA, et al. Interleukin-1 as a mediator of fatigue in disease: a narrative review. J Neuroinflammation 2017; 14(1): 16.
[http://dx.doi.org/10.1186/s12974-017-0796-7]
[32]
Su H, Lei C-T, Zhang C. Interleukin-6 signaling pathway and its role in kidney disease: an update. Front Immunol 2017; 8: 405.
[http://dx.doi.org/10.3389/fimmu.2017.00405] [PMID: 28484449]
[33]
Sandoval YH, Atef ME, Levesque LO, Li Y, Anand-Srivastava MB. Endothelin-1 signaling in vascular physiology and pathophysiology. Curr Vasc Pharmacol 2014; 12(2): 202-14.
[http://dx.doi.org/10.2174/1570161112666140226122054] [PMID: 24568156]
[34]
Freeman BD, Machado FS, Tanowitz HB, Desruisseaux MS. Endothelin-1 and its role in the pathogenesis of infectious diseases. Life Sci 2014; 118(2): 110-9.
[http://dx.doi.org/10.1016/j.lfs.2014.04.021] [PMID: 24780317]
[35]
Rosanò L, Bagnato A. β-arrestin1 at the cross-road of endothelin-1 signaling in cancer. J Exp Clin Cancer Res 2016; 35(1): 121.
[http://dx.doi.org/10.1186/s13046-016-0401-4]
[36]
Seshacharyulu P, Ponnusamy MP, Haridas D, et al. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets 2012; 16: 15-31.
[http://dx.doi.org/10.1517/14728222.2011.648617]
[37]
Vallath S, Hynds RE, Succony L, Janes SM, Giangreco A. Targeting EGFR signalling in chronic lung disease: therapeutic challenges and opportunities. Eur Respir J 2014; •••: 513-22.
[http://dx.doi.org/10.1183/09031936.00146413]
[38]
Barbera Betancourt A, Lyu Q, Broere F, Sijts A, Rutten VPMG, van Eden W. T cell-mediated chronic inflammatory diseases are candidates for therapeutic tolerance induction with heat shock proteins. Front Immunol 2017; 8: 1408.
[http://dx.doi.org/10.3389/fimmu.2017.01408] [PMID: 29123529]
[39]
Ji S, Jin C, Höxtermann S, et al. Prevalence and influencing factors of thyroid dysfunction in HIV-infected patients. BioMed Res Int 2016; 20163874257
[http://dx.doi.org/10.1155/2016/3874257] [PMID: 27200374]
[40]
Lo DC, Hughes RE. Neurobiology of huntington’s disease: applications to drug discovery Frontiers in Neuroscience. CRC Press 2011.
[http://dx.doi.org/10.1201/EBK0849390005]
[41]
Voelkel NF, Douglas IS, Nicolls M. Angiogenesis in chronic lung disease. Chest 2007; 131(3): 874-9.
[http://dx.doi.org/10.1378/chest.06-2453] [PMID: 17356107]
[42]
Khurana R, Simons M, Martin JF, Zachary IC. Role of angiogenesis in cardiovascular disease: a critical appraisal. Circulation 2005; 112(12): 1813-24.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.535294] [PMID: 16172288]
[43]
Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995; 1: 27-31.
[http://dx.doi.org/10.1038/nm0195-27]
[44]
Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000; 407: 249-57.
[http://dx.doi.org/10.1038/35025220]
[45]
Rodríguez-Caso L, Reyes-Palomares A, Sánchez-Jiménez F, Quesada AR, Medina MÁ. What is known on angiogenesis-related rare diseases? A systematic review of literature. J Cell Mol Med 2012; 16(12): 2872-93.
[http://dx.doi.org/10.1111/j.1582-4934.2012.01616.x] [PMID: 22882737]
[46]
Watson J, Francavilla C. Regulation of FGF10 signaling in development and disease. Front Genet 2018; 9: 500.
[http://dx.doi.org/10.3389/fgene.2018.00500] [PMID: 30405705]
[47]
Danopoulos S, Shiosaki J, Al Alam D. FGF signaling in lung development and disease: human vs mouse. Front Genet 2019; 10: 170.
[http://dx.doi.org/10.3389/fgene.2019.00170] [PMID: 30930931]
[48]
Gründker C, Emons G. The role of gonadotropin-releasing hormone in cancer cell proliferation and metastasis. Front Endocrinol (Lausanne) 2017; 8: 187.
[http://dx.doi.org/10.3389/fendo.2017.00187] [PMID: 28824547]
[49]
Wang L, Chadwick W, Park S-S, et al. Gonadotropin-releasing hormone receptor system: modulatory role in aging and neurodegeneration. CNS Neurol Disord Drug Targets 2010; 9(5): 651-60.
[http://dx.doi.org/10.2174/187152710793361559]
[50]
Yu SL, Kuan WP, Wong CK, Li EK, Tam LS. Immunopathological roles of cytokines, chemokines, signaling molecules, and pattern-recognition receptors in systemic lupus erythematosus. Clin Dev Immunol 2012; 2012715190
[http://dx.doi.org/10.1155/2012/715190] [PMID: 22312407]
[51]
Zinkin NT, Peppercorn MA. Abdominal epilepsy. Best Pract Res Clin Gastroenterol 2005; 19(2): 263-74.
[http://dx.doi.org/10.1016/j.bpg.2004.10.001] [PMID: 15833692]
[52]
Tripathi S, Flobak A, Chawla K, et al. The gastrin and cholecystokinin receptors mediated signaling network: a scaffold for data analysis and new hypotheses on regulatory mechanisms. BMC Syst Biol 2015; 9(1): 1-5.
[http://dx.doi.org/10.1186/s12918-015-0181-z]
[53]
Turu G, Balla A, Hunyady L, et al. The role of β-arrestin proteins in organization of signaling and regulation of the AT1 angiotensin receptor. Front Endocrinol 2019; 10: 519.
[http://dx.doi.org/10.3389/fendo.2019.00519]
[54]
Maroni PD, Koul S, Meacham RB, Koul HK. Mitogen activated protein kinase signal transduction pathways in the prostate. Cell Commun Signal 2004; 2(1): 5.
[55]
Bhat MY, Solanki HS, Advani J, et al. Comprehensive network map of interferon gamma signaling. J Cell Commun Signal 2018; 12(4): 745-51.
[http://dx.doi.org/10.1007/s12079-018-0486-y]
[56]
Fröjdö S, Vidal H, Pirola L. Alterations of insulin signaling in type 2 diabetes: a review of the current evidence from humans. Biochim Biophys Acta 2009; 1792(2): 83-92.
[http://dx.doi.org/10.1016/j.bbadis.2008.10.019] [PMID: 19041393]
[57]
Gabbouj S, Ryhänen S, Marttinen M, et al. Altered insulin signaling in Alzheimer’s disease brain–special emphasis on PI3K-Akt pathway. Front Neurosci 2019; 13: 629.
[http://dx.doi.org/10.3389/fnins.2019.00629] [PMID: 31275108]
[58]
Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K pathway in human disease. Cell 2017; 170(4): 605-35.
[http://dx.doi.org/10.1016/j.cell.2017.07.029] [PMID: 28802037]
[59]
Ghigo A, Laffargue M, Li M, Hirsch E. PI3K and calcium signaling in cardiovascular disease. Circ Res 2017; 121(3): 282-92.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.310183] [PMID: 28729453]
[60]
Zhang J, Wang L, Wang H, Su Z, Pang X. Neuroinflammation and central PI3K/Akt/mTOR signal pathway contribute to bone cancer pain. Mol Pain 2019; 151744806919830240
[http://dx.doi.org/10.1177/1744806919830240] [PMID: 30717619]
[61]
De Strooper B, Vassar R, Golde T. The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol 2010; 6(2): 99-107.
[http://dx.doi.org/10.1038/nrneurol.2009.218] [PMID: 20139999]
[62]
Marchi N, Granata T, Janigro D. Inflammatory pathways of seizure disorders. Trends Neurosci 2014; 37(2): 55-65.
[http://dx.doi.org/10.1016/j.tins.2013.11.002] [PMID: 24355813]
[63]
Hofmann K, Clauder AK, Manz RA. Targeting B cells and plasma cells in autoimmune diseases. Front Immunol 2018; 9: 835.
[http://dx.doi.org/10.3389/fimmu.2018.00835] [PMID: 29740441]
[64]
Harburger DS, Calderwood DA. Integrin signalling at a glance. J Cell Sci 2009; 122(Pt 2): 159-63.
[http://dx.doi.org/10.1242/jcs.018093] [PMID: 19118207]
[65]
Akhurst RJ, Hata A. Targeting the TGFβ signalling pathway in disease. Nat Rev Drug Discov 2012; 11(10): 790-811.
[http://dx.doi.org/10.1038/nrd3810]
[66]
Kashima R, Hata A. The role of TGF-β superfamily signaling in neurological disorders. Acta Biochim Biophys Sin (Shanghai) 2018; 50(1): 106-20.
[http://dx.doi.org/10.1093/abbs/gmx124] [PMID: 29190314]
[67]
Pardali E, Dijke PT. TGFβ signaling and cardiovascular diseases. Int J Biol Sci 2012; 8(2): 195.
[68]
González-Maeso J, Meana JJ. Heterotrimeric g proteins: insights into the neurobiology of mood disorders. Curr Neuropharmacol 2006; 4(2): 127-38.
[http://dx.doi.org/10.2174/157015906776359586] [PMID: 18615130]
[69]
Heldin CH. Targeting the PDGF signaling pathway in the treatment of non-malignant diseases. J Neuroimmune Pharmacol 2014; 9(2): 69-79.
[http://dx.doi.org/10.1007/s11481-013-9484-2] [PMID: 23793451]
[70]
Heldin CH. Targeting the PDGF signaling pathway in tumor treatment 2013.
[71]
Yu W, Yang L, Li T, Zhang Y. Cadherin signaling in cancer: its functions and role as a therapeutic target. Front Oncol 2019; 9: 989.
[http://dx.doi.org/10.3389/fonc.2019.00989] [PMID: 31637214]
[72]
Boucher J, Kleinridders A, Kahn CR, et al. Insulin receptor signaling in normal and insulin-resistant states 2014.https://www.ncbi.nlm.nih.gov/search/all/?term=Insulin+receptor+signaling+in+normal+and+insulin-resistant+states.+Cold+Spring+Harbor+perspectives+in+biology+2014

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy