Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Optimization, Purification and Antitumor Activity of Kodamaea ohmeri ANOMY L-Asparaginase Isolated from Banana Peel

Author(s): Ahmed M.I. Shabana, Yousseria M. Shetaia, Nayera A.M. Abdelwahed, Mona A. Esawy* and Omar R. Alfarouk

Volume 22, Issue 5, 2021

Published on: 23 July, 2020

Page: [654 - 671] Pages: 18

DOI: 10.2174/1389201021666200723122300

Price: $65

Abstract

Objective: L-Asparaginase is an important enzyme that converts L-asparagine to L-aspartate and ammonia. Microbial L-asparaginase has important applications as anticancer and food processing agents.

Methods: This study reported the isolation, screening of a local yeast isolate from banana peel for L-asparaginase production using submerged fermentation, optimization of the production, purification, and anticancer assay of L-asparaginase. The yeast isolate was identified as Kodamaea ohmeri ANOMY based on the analysis of nuclear large subunit (26S) rDNA partial sequences. It was a promising L-asparaginase producer with a specific activity of 3059±193 U/mg in a non-optimized medium. The classical one-variable-at-a-time method was used to optimize the production medium components, and it was found that the elimination of K2HPO4 from the medium increased L-asparaginase specific activity (3100.90±180 U/mg).

Results: Statistical optimization of L-asparaginase production was done using Plackett-Burman and Box-Behnken designs. The production medium for the maximum L-asparaginase specific activity (8500±578U/mg) was as follows (g/L): L-asparagine (7.50), NaNO3 (0.50), MgSO4.7H2O (0.80), KCl (0.80) associated with an incubation period of 5 days, inoculum size of 5.60 %, and pH (7.0). The optimization process increased L-asparaginase production by 2.78-fold compared to the non-optimized medium. L-Asparaginase was purified using ammonium sulphate precipitation followed by gel filtration on a Sephadex G-100 column. Its molecular weight was 66 KDa by SDS-PAGE analysis.

Conclusion: The cell morphology technique was used to evaluate the anticancer activity of L-asparaginase against three different cell lines. L-Asparaginase inhibited the growth of HepG-2, MCF-7, and HCT-116 cells at a concentration of 20, 50, and 60 μL, respectively.

Keywords: L-Asparaginase, yeast, banana peel, statistical optimization, purification, anticancer activity.

Graphical Abstract

[1]
Brumano, L.P.; da Silva, F.V.S.; Costa-Silva, T.A.; Apolinário, A.C.; Santos, J.H.P.M.; Kleingesinds, E.K.; Monteiro, G.; Rangel-Yagui, C.O.; Benyahia, B.; Junior, A.P. Development of L-Asparaginase biobetters: Current research status and review of the desirable quality profiles. Front. Bioeng. Biotechnol., 2019, 6, 212.
[http://dx.doi.org/10.3389/fbioe.2018.00212] [PMID: 30687702]
[2]
Cachumba, J.J.M.; Antunes, F.A.F.; Peres, G.F.D.; Brumano, L.P.; Santos, J.C.; Da Silva, S.S. Current applications and different approaches for microbial l-asparaginase production. Braz. J. Microbiol., 2016, 47(Suppl. 1), 77-85.
[http://dx.doi.org/10.1016/j.bjm.2016.10.004] [PMID: 27866936]
[3]
Lopes, A.M.; Oliveira-Nascimento, L.; Ribeiro, A.; Tairum, C.A., Jr; Breyer, C.A.; Oliveira, M.A.; Monteiro, G.; Souza-Motta, C.M.; Magalhães, P.O.; Avendaño, J.G.; Cavaco-Paulo, A.M.; Mazzola, P.G.; Rangel-Yagui, C.O.; Sette, L.D.; Converti, A.; Pessoa, A. Therapeutic l-asparaginase: upstream, downstream and beyond. Crit. Rev. Biotechnol., 2017, 37(1), 82-99.
[http://dx.doi.org/10.3109/07388551.2015.1120705] [PMID: 26694875]
[4]
Shrivastava, A.; Khan, A.A.; Shrivastav, A.; Jain, S.K.; Singhal, P.K. Kinetic studies of L-asparaginase from Penicillium digitatum. Prep. Biochem. Biotechnol., 2012, 42(6), 574-581.
[http://dx.doi.org/10.1080/10826068.2012.672943] [PMID: 23030468]
[5]
Souza, P.M.; de Freitas, M.M.; Cardoso, S.L.; Pessoa, A.; Guerra, E.N.S.; Magalhães, P.O. Optimization and purification of l-asparaginase from fungi: A systematic review. Crit. Rev. Oncol. Hematol., 2017, 120, 194-202.
[http://dx.doi.org/10.1016/j.critrevonc.2017.11.006] [PMID: 29198332]
[6]
Nagarethinam, S.; Naik, A.N.; Udupa, N.; Rao, V.J.; Vanathi, M.B. Microbial L-Asparaginase and its future prospects. Asi. J. Med. Res., 2012, 1(4), 159-168.
[7]
Sarquis, M.I.; Oliveira, E.M.; Santos, A.S.; Costa, G.L. Production of L-asparaginase by filamentous fungi. Mem. Inst. Oswaldo Cruz, 2004, 99(5), 489-492.
[http://dx.doi.org/10.1590/S0074-02762004000500005] [PMID: 15543411]
[8]
Elshafei, A.M.; Hassan, M.M.; Abouzeid, M.A.E.; Mahmoud, D.A.; Elghonemy, D.H. Purification, characterization and antitumor activity of L-asparaginase from Penicillium brevicompactum NRC 829; Microbio; Res. J. Inter, 2012, pp. 158-174.
[9]
Dange, V.; Peshwe, S. Purification and biochemical characterization of L-asparaginase from Aspergillus niger and evaluation of its antineoplastic activity. Int. J. Sci. Res. (Ahmedabad), 2015, 4(2), 564-569.
[10]
Gholamian, S.; Gholamian, S.; Nazemi, A.; Nargesi, M. Isolation and Characterization of a Novel Bacillus sp. Strain that Produces L-asparaginase, an Antileukemic Drug. Asi. J. Biolog. Sci., 2013, 6, 106-115.
[http://dx.doi.org/10.3923/ajbs.2013.106.115]
[11]
Vishwanatha, K.S.; Rao, A.G.; Singh, S.A. Acid protease production by solid-state fermentation using Aspergillus oryzae MTCC 5341: optimization of process parameters. J. Ind. Microbiol. Biotechnol., 2010, 37(2), 129-138.
[http://dx.doi.org/10.1007/s10295-009-0654-4] [PMID: 19937364]
[12]
Balusu, R.; Paduru, R.; Kuravi, S.K.; Seenayya, G.; Reddy, G. Optimization of critical medium components using response surface methodology for ethanol production from cellulosic biomass by Clostridium thermocellum SS19. Process Biochem., 2005, 40, 3025-3030.
[http://dx.doi.org/10.1016/j.procbio.2005.02.003]
[13]
Liu, X.; Mu, T.; Sun, H.; Zhang, M.; Chen, J. Optimisation of aqueous two-phase extraction of anthocyanins from purple sweet potatoes by response surface methodology. Food Chem., 2013, 141(3), 3034-3041.
[http://dx.doi.org/10.1016/j.foodchem.2013.05.119] [PMID: 23871056]
[14]
Freshney, R.I. Culture of Animal CellsA Manual of Basic Techniques, 3rd; Wiley-Liss: New York, 1993.
[15]
Lee, E.C. Cytogenetic Analysis of Continuous Cell Lines; Raven Press: New York, 1991.
[16]
Kurtzman, C.P.; Fell, J.W.; Boekhout, T.; Robert, V. Methods for isolation, phenotypic characterization and maintenance of yeasts. Elsevier Science, 5th Ed.: London, , 2011.
[17]
Nasir, A.; Rahman, S.S.; Hossain, M.M.; Choudhury, N. Isolation of Saccharomyces cerevisiae from pineapple and orange and study of metal’s effectiveness on ethanol production. Eur. J. Microbiol. Immunol. (Bp.), 2017, 7(1), 76-91.
[http://dx.doi.org/10.1556/1886.2016.00035] [PMID: 28386473]
[18]
Gulati, R.; Saxena, R.K.; Gupta, R. A rapid plate assay for screening L-asparaginase producing micro-organisms. Lett. Appl. Microbiol., 1997, 24(1), 23-26.
[http://dx.doi.org/10.1046/j.1472-765X.1997.00331.x] [PMID: 9024001]
[19]
Chow, Y.; Ting, A.S.Y. Endophytic l-asparaginase-producing fungi from plants associated with anticancer properties. J. Adv. Res., 2015, 6(6), 869-876.
[http://dx.doi.org/10.1016/j.jare.2014.07.005] [PMID: 26644924]
[20]
Imada. A.; Igarasi, S.; Nakahama, K.; Isono, M. Asparaginase and glutaminase activities of micro-organisms. Microbiol., 1973, 76(1), 85-99.
[21]
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[PMID: 14907713]
[22]
Möller, E.M.; Bahnweg, G.; Sandermann, H.; Geiger, H.H. A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res., 1992, 20(22), 6115-6116.
[http://dx.doi.org/10.1093/nar/20.22.6115] [PMID: 1461751]
[23]
Bosco-Borgeat, M.E.; Taverna, C.G.; Cordoba, S.; Isla, M.G.; Murisengo, O.A.; Szusz, W.; Vivot, W.; Davel, G. Prevalence of Candida dubliniensis fungemia in Argentina: identification by a novel multiplex PCR and comparison of different phenotypic methods. Mycopathologia, 2011, 172(5), 407-414.
[http://dx.doi.org/10.1007/s11046-011-9450-6] [PMID: 21750939]
[24]
White, T. J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics In: PCR Protocols: A Guide to Methods and Applications, 1990, 18(1), 315-322.
[http://dx.doi.org/10.1016/B978-0-12-372180-8.50042-1]
[25]
Singh, V.; Haque, S.; Niwas, R.; Srivastava, A.; Pasupuleti, M.; Tripathi, C.K. Strategies for fermentation medium optimization: an in-depth review. Front. Microbiol., 2017, 7, 2087.
[http://dx.doi.org/10.3389/fmicb.2016.02087] [PMID: 28111566]
[26]
Plackett, R.L.; Burman, J.P. The design of optimum multifactorial experiments. Biomet., 1946, 33(4), 305-325.
[http://dx.doi.org/10.1093/biomet/33.4.305]
[27]
Box, G.E.; Behnken, D.W. Some new three level designs for the study of quantitative variables. Technom., 1960, 2(4), 455-475.
[http://dx.doi.org/10.1080/00401706.1960.10489912]
[28]
Distasio, J.A.; Niederman, R.A.; Kafkewitz, D.; Goodman, D. Purification and characterization of L-asparaginase with anti-lymphoma activity from Vibrio succinogenes. J. Biol. Chem., 1976, 251(22), 6929-6933.
[PMID: 11211]
[29]
Distasio, J.A.; Salazar, A.M.; Nadji, M.; Durden, D.L. Glutaminase-free asparaginase from vibrio succinogenes: an antilymphoma enzyme lacking hepatotoxicity. Int. J. Cancer, 1982, 30(3), 343-347.
[http://dx.doi.org/10.1002/ijc.2910300314] [PMID: 6752048]
[30]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685.
[http://dx.doi.org/10.1038/227680a0] [PMID: 5432063]
[31]
Aquino, R.; De Simone, F.; Pizza, C.; Conti, C.; Stein, M.L. Plant metabolites. Structure and in vitro antiviral activity of quinovic acid glycosides from Uncaria tomentosa and Guettarda platypoda. J. Nat. Prod., 1989, 52(4), 679-685.
[http://dx.doi.org/10.1021/np50064a002] [PMID: 2553871]
[32]
Chand, S.; Mahajan, R.V.; Prasad, J.P.; Sahoo, D.K.; Mihooliya, K.N.; Dhar, M.S.; Sharma, G. A comprehensive review on microbial l-asparaginase: Bioprocessing, characterization, and industrial applications. Biotechnol. Appl. Biochem., 2020, 67(4), 619-647.
[http://dx.doi.org/10.1002/bab.1888] [http://dx.doi.org/10.1002/bab.1888] [PMID: 31954377]
[33]
da Cunha, M.C.; Silva, L.C.; Sato, H.H.; de Castro, R.J.S. Using response surface methodology to improve the L-asparaginase production by Aspergillus niger under solid-state fermentation. Biocatal. Agric. Biotechnol., 2018, 16, 31-36.
[http://dx.doi.org/10.1016/j.bcab.2018.07.018]
[34]
Hymavathi, M.; Sathish, T.; Subba Rao, R.C.; Prakasham, R.S. Enhancement of L-asparaginase production by isolated Bacillus circulans (MTCC 8574) using response surface methodology. Appl. Biochem. Biotechnol., 2009, 159(1), 191-198.
[http://dx.doi.org/10.1007/s12010-008-8438-2] [PMID: 19052920]
[35]
Uppuluri, K.B.; Dasari, R.K.V.; Sajja, V.; Jacob, A.S.; Reddy, D.S.R. Optimization of L-asparaginase production by isolated Aspergillus niger C4 from sesame (black) oil cake under SSF using Box–Behnken design in column bioreactor. Int. J. Chem. React. Eng., 2013, 11(1), 103-109.
[http://dx.doi.org/10.1515/ijcre-2012-0064]
[36]
Singh, Y.; Gundampati, R.K.; Jagannadham, M.V.; Srivastava, S.K. Extracellular L-asparaginase from a protease-deficient Bacillus aryabhattai ITBHU02: purification, biochemical characterization, and evaluation of antineoplastic activity in vitro. Appl. Biochem. Biotechnol., 2013, 171(7), 1759-1774.
[http://dx.doi.org/10.1007/s12010-013-0455-0] [PMID: 23996139]
[37]
Sudhir, A.P.; Agarwaal, V.V.; Dave, B.R.; Patel, D.H.; Subramanian, R.B. Enhanced catalysis of L-asparaginase from Bacillus licheniformis by a rational redesign. Enzyme Microb. Technol., 2016, 86, 1-6.
[http://dx.doi.org/10.1016/j.enzmictec.2015.11.010] [PMID: 26992786]
[38]
Kumar, S.; Pakshirajan, K.; Venkata Dasu, V. Development of medium for enhanced production of glutaminase-free L-asparaginase from Pectobacterium carotovorum MTCC 1428. Appl. Microbiol. Biotechnol., 2009, 84(3), 477-486.
[http://dx.doi.org/10.1007/s00253-009-1973-0] [PMID: 19352649]
[39]
El-Bessoumy, A.A.; Sarhan, M.; Mansour, J. Production, isolation, and purification of L-asparaginase from Pseudomonas aeruginosa 50071 using solid-state fermentation. J. Biochem. Mol. Biol., 2004, 37(4), 387-393.
[PMID: 15469724]
[40]
Darvishi, F.; Faraji, N.; Shamsi, F. Production and structural modeling of a novel asparaginase in Yarrowia lipolytica. Int. J. Biol. Macromol., 2019, 125, 955-961.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.162] [PMID: 30576739]
[41]
Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 1997, 25(17), 3389-3402.
[http://dx.doi.org/10.1093/nar/25.17.3389] [PMID: 9254694]
[42]
Tamura, K.; Dudley, J.; Nei, M.; Kumar, S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol., 2007, 24(8), 1596-1599.
[http://dx.doi.org/10.1093/molbev/msm092] [PMID: 17488738]
[43]
Saitou, N.; Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 1987, 4(4), 406-425.
[PMID: 3447015]
[44]
Farag, A.M.; Hassan, S.W.; Beltagy, E.A.; El-Shenawy, M.A. Optimization of production of anti-tumor l-asparaginase by free and immobilized marine Aspergillus terreus. Egyp. J. Aqu. Res., 2015, 41(4), 295-302.
[http://dx.doi.org/10.1016/j.ejar.2015.10.002]
[45]
El-Hadi, A.; El-Refai, H.; Shafei, M.; Zaki, R.; Mostafa, H. Statistical optimization of L-asparaginase production by using Fusarium solani. Egyp. Pharma. J., 2017, 16(1), 16-23.
[http://dx.doi.org/10.4103/1687-4315.205825]
[46]
Abdelrazek, N.A.; Elkhatib, W.F.; Raafat, M.M.; Aboulwafa, M.M. Experimental and bioinformatics study for production of L-asparaginase from Bacillus licheniformis: a promising enzyme for medical application. AMB Express, 2019, 9(1), 39.
[http://dx.doi.org/10.1186/s13568-019-0751-3] [PMID: 30900037]
[47]
El-Refai, H. A.; El-Shafei, M. S.; Mostafa, H.; El-Refai, H.; El-Beih, F. M.; Awad, G.; Easa, S. M.; Gomaa, S. K. Statistical optimization of anti-leukemic enzyme l-asparaginase production by Penicillium cyclopium. Curr. Trends Biotechnol. Pharm, 2014, 8, 130-142.
[48]
Prakasham, R.S.; Rao, ChS.; Rao, R.S.; Lakshmi, G.S.; Sarma, P.N. L-asparaginase production by isolated Staphylococcus sp. - 6A: design of experiment considering interaction effect for process parameter optimization. J. Appl. Microbiol., 2007, 102(5), 1382-1391.
[http://dx.doi.org/10.1111/j.1365-2672.2006.03173.x] [PMID: 17448173]
[49]
El-Naggar, N.E-A.; Moawad, H.; Abdelwahed, N.A. Optimization of fermentation conditions for enhancing extracellular production of L-asparaginase, an anti-leukemic agent, by newly isolated Streptomyces brollosae NEAE-115 using solid state fermentation. Ann. Microbiol., 2017, 67(1), 1-15.
[http://dx.doi.org/10.1007/s13213-016-1231-5]
[50]
Ali, D.; Ouf, S.; Eweis, M.; Solieman, D. Optimization of L-asparaginase Production from Some Filamentous Fungi with Potential Pharmaceutical Properties. Egypt. J. Bot., 2018, 58(3), 355-369.
[http://dx.doi.org/10.21608/ejbo.2018.2945.1152]
[51]
Thenmozhi, C.; Sankar, R.; Karuppiah, V.; Sampathkumar, P. L-asparaginase production by mangrove derived Bacillus cereus MAB5: Optimization by response surface methodology. Asian Pac. J. Trop. Med., 2011, 4(6), 486-491.
[http://dx.doi.org/10.1016/S1995-7645(11)60132-6] [PMID: 21771705]
[52]
Managamuri, U.; Vijayalakshmi, M.; Ganduri, V.R.K.; Babu, R.S.; Poda, S. Optimization of culture conditions by Response Surface Methodology and Unstructured kinetic modeling for L-Asparaginase production by Pseudonocardia endophytica VUK-10. J. Appl. Pharm. Sci., 2017, 1, 42-50.
[http://dx.doi.org/10.7324/JAPS.2017.70106]
[53]
Monica, T.; Lincoln, L.; Niyonzima, F.; Sunil, S. Isolation, Purification and Characterization of Fungal Extracellular L-Asparaginase from Mucor Hiemalis. J. Biocatal. Biotransform., 2013, 9, 12-14.
[54]
Mohan Kumar, N.S.; Manonmani, H.K. Purification, characterization and kinetic properties of extracellular L-asparaginase produced by Cladosporium sp. World J. Microbiol. Biotechnol., 2013, 29(4), 577-587.
[http://dx.doi.org/10.1007/s11274-012-1213-0] [PMID: 23180548]
[55]
Goodsell, D.S. The molecular perspective: l-asparaginase. Stem Cells, 2005, 23(5), 710-711.
[http://dx.doi.org/10.1634/stemcells.FCM3] [PMID: 15849179]
[56]
Patro, K.R.; Gupta, N. Extraction, purification and characterization of L-asparaginase from Penicillium sp. by submerged fermentation. Int. J. Biotechnol. Mol. Biol. Res., 2012, 3(3), 30-34.
[http://dx.doi.org/10.5897/IJBMBR11.066]
[57]
Akilandeswari, K.; Kavitha, K.; Vijayalakshmi, M. Production of bioactive enzyme L-asparaginase from fungal isolates of water sample through submerged fermentation. Int. J. Pharm. Pharm. Sci., 2012, 4, 363-366.
[58]
Raha, S.K.; Roy, S.K.; Dey, S.K.; Chakrabarty, S.L. Purification and properties of an L-asparaginase from Cylindrocarpon obtusisporum MB-10. Biochem. Int., 1990, 21(6), 987-1000.
[PMID: 2080924]
[59]
Alrumman, S.A.; Mostafa, Y.S.; Al-Izran, K.A.; Alfaifi, M.Y.; Taha, T.H.; Elbehairi, S.E. Production and anticancer activity of an l-asparaginase from Bacillus licheniformis isolated from the Red Sea, Saudi Arabia. Sci. Rep., 2019, 9(1), 3756.
[http://dx.doi.org/10.1038/s41598-019-40512-x] [PMID: 30842557]
[60]
Maysa, E.; Amira, M.; Gamal, E.; Sanaa, T.; Sayed, E. Production, immobilization and anti-tumor activity of L-asparaginase of Bacillus sp R36. J. Americ. Sci., 2010, 6(8), 157-165.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy