Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

New Hybrid Scaffolds Based on Carbazole-Chalcones as Potent Anticancer Agents

Author(s): Faisal Rashid, Sumera Zaib, Aliya Ibrar*, Syeda A. Ejaz, Aamer Saeed, Jamshed Iqbal* and Imtiaz Khan*

Volume 21, Issue 9, 2021

Published on: 21 July, 2020

Page: [1082 - 1091] Pages: 10

DOI: 10.2174/1871520620666200721110732

Price: $65

Abstract

Background and Objectives: Despite various technological advances for the treatment of cancer, the identification of new chemical entities with potent anticancer effects remain an indispensable requirement of the time due to multi-drug resistance exhibited by previously developed anticancer drugs. Particularly, the hybrid drugs incorporating two individual bioactive pharmacophores present medicinally important structural leads, thus improving the pharmacodynamic profile of the drug molecules. The antiproliferative and pro-apoptotic activity of the carbazole-chalcone hybrids on human breast and cervical cancer cells will be examined.

Materials and Methods: To overcome such complications, in the current study, we evaluated the cytotoxic effects of carbazole-chalcone hybrids on human breast adenocarcinoma (MCF-7), cervical adenocarcinoma (HeLa) cells and normal cells, i.e., Baby Hamster Kidney cells (BHK-21) using MTT (dimethyl-2-thiazolyl-2,5- diphenyl-2H-tetrazolium bromide) assay. The mechanistic studies were performed on potent compound 4g by fluorescent microscopic studies, release of Lactate Dehydrogenase (LDH) and mitochondrial membrane potential, activation of caspase-9 and -3 and flow cytometric analysis.

Results: As revealed by MTT assay, compound 4g was identified as the most potent derivative among the tested series with IC50 values of 5.64 and 29.15μM against HeLa and MCF-7 cells, respectively. The results were compared with cisplatin. Fluorescent microscopic studies using 4′,6-diamidino-2-phenylindole (DAPI) and Propidium Iodide (PI) staining confirmed the occurrence of apoptosis in HeLa cells treated with the most active compound 4g. Moreover, compound 4g also triggered the release of Lactate Dehydrogenase (LDH) in treated HeLa and MCF-7 cells while a fluorescence assay displayed a remarkable increase in the activity of caspase-9 and -3. Moreover, flow cytometric results revealed that compound 4g caused G0/G1 arrest in the treated HeLa cells.

Conclusion: Our results demonstrated that the compound 4g possesses chemotherapeutic properties against breast cancer and cervical adenocarcinoma cells, thus warranting further research to test the anticancer potential of this compound at preclinical and clinical level.

Keywords: Carbazole-chalcone hybrids, 4′, 6-diamidino-2-phenylindole (DAPI), caspase-3, caspase-9, flow cytometry, lactate dehydrogenase, HeLa cells, MCF-7.

Graphical Abstract

[1]
Abbot, V.; Sharma, P.; Dhiman, S.; Noolvi, M.N.; Patel, H.M.; Bhardwaj, V. Small hybrid heteroaromatics: Resourceful biological tools in cancer research. RSC Advances, 2017, 7, 28313-28349.
[http://dx.doi.org/10.1039/C6RA24662A]
[2]
Ali, I.; Lone, M.N.; Aboul-Enein, H.Y. Imidazoles as potential anticancer agents. MedChemComm, 2017, 8(9), 1742-1773.
[http://dx.doi.org/10.1039/C7MD00067G] [PMID: 30108886]
[3]
Shagufta, A.; Ahmad, I. An insight into the therapeutic potential of quinazoline derivatives as anticancer agents. MedChemComm, 2017, 8(5), 871-885.
[http://dx.doi.org/10.1039/C7MD00097A] [PMID: 30108803]
[4]
Wani, W.A.; Baig, U.; Shreaz, S.; Shiekh, R.A.; Iqbal, P.F.; Jameel, E.; Ahmad, A.; Mohd-Setapar, S.H.; Mushtaqueh, M.; Hun, L.T. Recent advances in iron complexes as potential anticancer agents. New J. Chem., 2016, 40, 1063-1090.
[http://dx.doi.org/10.1039/C5NJ01449B]
[5]
Gao, F.; Sun, Z.; Kong, F.; Xiao, J. Artemisinin-derived hybrids and their anticancer activity. Eur. J. Med. Chem., 2020, 188, 112044.
[http://dx.doi.org/10.1016/j.ejmech.2020.112044] [PMID: 31945642]
[6]
Xu, Z.; Zhao, S-J.; Liu, Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur. J. Med. Chem., 2019, 183, 111700.
[http://dx.doi.org/10.1016/j.ejmech.2019.111700] [PMID: 31546197]
[7]
Ding, Z.; Zhou, M.; Zeng, C. Recent advances in isatin hybrids as potential anticancer agents. Arch. Pharm. (Weinheim), 2020, 353(3), e1900367.
[http://dx.doi.org/10.1002/ardp.201900367] [PMID: 31960987]
[8]
Patel, K.; Karthikeyan, C.; Solomon, V.R.; Moorthy, N.S.H.N.; Lee, H.; Sahu, K.; Deora, G.S.; Trivedi, P. Synthesis of some coumarinyl chalcones and their antiproliferative activity against breast cancer cell lines. Lett. Drug Des. Discov., 2011, 8, 308-311.
[http://dx.doi.org/10.2174/157018011794839475]
[9]
Yee, E.M.H.; Pasquier, E.; Iskander, G.; Wood, K.; Black, D.S.; Kumar, N. Synthesis of novel isoflavene-propranolol hybrids as anti-tumor agents. Bioorg. Med. Chem., 2013, 21(7), 1652-1660.
[http://dx.doi.org/10.1016/j.bmc.2013.01.059] [PMID: 23462711]
[10]
Ali, I.; Wani, W.A.; Saleem, K. Cancer scenario in India with future perspectives. Cancer Ther., 2011, 8, 56-70.
[11]
Chen, Z.; Liang, X.; Zhang, H.; Xie, H.; Liu, J.; Xu, Y.; Zhu, W.; Wang, Y.; Wang, X.; Tan, S.; Kuang, D.; Qian, X. A new class of naphthalimide-based antitumor agents that inhibit topoisomerase II and induce lysosomal membrane permeabilization and apoptosis. J. Med. Chem., 2010, 53(6), 2589-2600.
[http://dx.doi.org/10.1021/jm100025u] [PMID: 20170164]
[12]
Rana, A.; Alex, J.M.; Chauhan, M.; Joshi, G.; Kumar, R. A review on pharmacophoric designs of antiproliferative agents. Med. Chem. Res., 2015, 24(3), 903-920.
[http://dx.doi.org/10.1007/s00044-014-1196-5]
[13]
Saleem, K.; Wani, W.A.; Haque, A.; Lone, M.N.; Hsieh, M-F.; Jairajpuri, M.A.; Ali, I. Synthesis, DNA binding, hemolysis assays and anticancer studies of copper(II), nickel(II) and iron(III) complexes of a pyrazoline-based ligand. Future Med. Chem., 2013, 5(2), 135-146.
[http://dx.doi.org/10.4155/fmc.12.201] [PMID: 23360139]
[14]
Morphy, R.; Kay, C.; Rankovic, Z. From magic bullets to designed multiple ligands. Drug Discov. Today, 2004, 9(15), 641-651.
[http://dx.doi.org/10.1016/S1359-6446(04)03163-0] [PMID: 15279847]
[15]
Walsh, J.J.; Bell, A. Hybrid drugs for malaria. Curr. Pharm. Des., 2009, 15(25), 2970-2985.
[http://dx.doi.org/10.2174/138161209789058183] [PMID: 19754373]
[16]
Nepali, K.; Sharma, S.; Sharma, M.; Bedi, P.M.S.; Dhar, K.L. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur. J. Med. Chem., 2014, 77, 422-487.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.018] [PMID: 24685980]
[17]
Yin, B-T.; Yan, C-Y.; Peng, X-M.; Zhang, S-L.; Rasheed, S.; Geng, R-X.; Zhou, C-H. Synthesis and biological evaluation of α-triazolyl chalcones as a new type of potential antimicrobial agents and their interaction with calf thymus DNA and human serum albumin. Eur. J. Med. Chem., 2014, 71, 148-159.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.003] [PMID: 24291568]
[18]
Batovska, D.; Parushev, S.; Stamboliyska, B.; Tsvetkova, I.; Ninova, M.; Najdenski, H. Examination of growth inhibitory properties of synthetic chalcones for which antibacterial activity was predicted. Eur. J. Med. Chem., 2009, 44(5), 2211-2218.
[http://dx.doi.org/10.1016/j.ejmech.2008.05.010] [PMID: 18584918]
[19]
Cai, J.L.; Li, S.; Zhou, C.H.; Gan, L.L.; Wu, J. Advance in research of imidazoles as anti-tumor agents. Zhongguo Xin Yao Zazhi, 2009, 18, 598-608.
[20]
Surineni, G.; Yogeeswari, P.; Sriram, D.; Kantevari, S. Design and synthesis of novel carbazole tethered pyrrole derivatives as potent inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2015, 25(3), 485-491.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.040] [PMID: 25559743]
[21]
Ashok, D.; Ravi, S.; Ganesh, A.; Lakshmi, B.V.; Adam, S.; Murthy, S.D.S. Microwave-assisted synthesis and biological evaluation of carbazole-based chalcones, aurones and flavones. Med. Chem. Res., 2016, 25, 909-922.
[http://dx.doi.org/10.1007/s00044-016-1537-7]
[22]
Wang, H-M.; Zhang, L.; Liu, J.; Yang, Z-L.; Zhao, H-Y.; Yang, Y.; Shen, D.; Lu, K.; Fan, Z-C.; Yao, Q.W.; Zhang, Y.M.; Teng, Y.O.; Peng, Y. Synthesis and anti-cancer activity evaluation of novel prenylated and geranylated chalcone natural products and their analogs. Eur. J. Med. Chem., 2015, 92, 439-448.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.007] [PMID: 25590864]
[23]
Bahekar, S.P.; Hande, S.V.; Agrawal, N.R.; Chandak, H.S.; Bhoj, P.S.; Goswami, K.; Reddy, M.V.R. Sulfonamide chalcones: Synthesis and in vitro exploration for therapeutic potential against Brugia malayi. Eur. J. Med. Chem., 2016, 124, 262-269.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.042] [PMID: 27592395]
[24]
Mahapatra, D.K.; Bharti, S.K.; Asati, V. Anti-cancer chalcones: Structural and molecular target perspectives. Eur. J. Med. Chem., 2015, 98, 69-114.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.004] [PMID: 26005917]
[25]
Rizvi, S.U.F.; Siddiqui, H.L.; Johns, M.; Detorio, M.; Schinazi, R.F. Anti-HIV-1 and cytotoxicity studies of piperidyl-thienylchalcones and their 2-pyrazoline derivatives. Med. Chem. Res., 2012, 21, 3741-3749.
[http://dx.doi.org/10.1007/s00044-011-9912-x]
[26]
El-Meligie, S.; Taher, A.T.; Kamal, A.M.; Youssef, A. Design, synthesis and cytotoxic activity of certain novel chalcone analogous compounds. Eur. J. Med. Chem., 2017, 126, 52-60.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.099] [PMID: 27744186]
[27]
Du, G.; Han, J.M.; Kong, W.S.; Zhao, W.; Yang, H-Y.; Yang, G-Y.; Gao, X-M.; Hu, Q-F. Chalcones from the flowers of Rosa Rugosa and their Anti-tobacco Mosaic virus activities. Bull. Korean Chem. Soc., 2013, 34, 1263-1265.
[http://dx.doi.org/10.5012/bkcs.2013.34.4.1263]
[28]
Bashir, M.; Bano, A.; Ijaz, A.S.; Chaudhary, B.A. Recent developments and biological activities of N-substituted carbazole derivatives: A review. Molecules, 2015, 20(8), 13496-13517.
[http://dx.doi.org/10.3390/molecules200813496] [PMID: 26213906]
[29]
Tajuddeen, N.; Isah, M.B.; Suleiman, M.A.; van Heerden, F.R.; Ibrahim, M.A. The chemotherapeutic potential of chalcones against leishmaniases: A review. Int. J. Antimicrob. Agents, 2018, 51(3), 311-318.
[http://dx.doi.org/10.1016/j.ijantimicag.2017.06.010] [PMID: 28668673]
[30]
Kazmi, M.; Khan, I.; Khan, A.; Halim, S.A.; Saeed, A.; Mehsud, S.; Al-Harrasi, A.; Ibrar, A. Developing new hybrid scaffold for urease inhibition based on carbazole-chalcone conjugates: Synthesis, assessment of therapeutic potential and computational docking analysis. Bioorg. Med. Chem., 2019, 27(22), 115123.
[http://dx.doi.org/10.1016/j.bmc.2019.115123] [PMID: 31623971]
[31]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[32]
Niks, M.; Otto, M. Towards an optimized MTT assay. J. Immunol. Methods, 1990, 130(1), 149-151.
[http://dx.doi.org/10.1016/0022-1759(90)90309-J] [PMID: 2358686]
[33]
Scifo, C.; Cardile, V.; Russo, A.; Consoli, R.; Vancheri, C.; Capasso, F.; Vanella, A.; Renis, M. Resveratrol and propolis as necrosis or apoptosis inducers in human prostate carcinoma cells. Oncol. Res., 2004, 14(9), 415-426.
[http://dx.doi.org/10.3727/0965040041791437] [PMID: 15490973]
[34]
Saito, Y.; Uchida, N.; Tanaka, S.; Suzuki, N.; Tomizawa-Murasawa, M.; Sone, A.; Najima, Y.; Takagi, S.; Aoki, Y.; Wake, A.; Taniguchi, S.; Shultz, L.D.; Ishikawa, F. Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML. Nat. Biotechnol., 2010, 28(3), 275-280.
[http://dx.doi.org/10.1038/nbt.1607] [PMID: 20160717]
[35]
Iqbal, J.; Ejaz, S.A.; Saeed, A.; Al-Rashida, M. Detailed investigation of anticancer activity of sulfamoyl benz(sulfon)amides and 1H-pyrazol-4-yl benzamides: An experimental and computational study. Eur. J. Pharmacol., 2018, 832, 11-24.
[http://dx.doi.org/10.1016/j.ejphar.2018.05.011] [PMID: 29763580]
[36]
Lin, G.J.; Jiang, G.B.; Xie, Y.Y.; Huang, H.L.; Liang, Z.H.; Liu, Y.J. Cytotoxicity, apoptosis, cell cycle arrest, reactive oxygen species, mitochondrial membrane potential, and Western blotting analysis of ruthenium(II) complexes. J. Biol. Inorg. Chem., 2013, 18(8), 873-882.
[http://dx.doi.org/10.1007/s00775-013-1032-2] [PMID: 23989405]
[37]
Al-Anbaky, Q.; Al-Karakooly, Z.; Kilaparty, S.P.; Agrawal, M.; Albkuri, Y.M. RanguMagar, A.B.; Ghosh, A.; Ali, N.; RanguMagar, A.B.; Ghosh, A.; Ali, N. Cytotoxicity of manganese (III) complex in human breast adenocarcinoma cell line is mediated by the generation of reactive oxygen species followed by mitochondrial damage. Int. J. Toxicol., 2016, 35(6), 672-682.
[http://dx.doi.org/10.1177/1091581816659661] [PMID: 27461214]
[38]
Lin, S.F.; Lin, J.D.; Hsueh, C.; Chou, T.C.; Wong, R.J. Activity of roniciclib in medullary thyroid cancer. Oncotarget, 2018, 9(46), 28030-28041.
[http://dx.doi.org/10.18632/oncotarget.25555] [PMID: 29963260]
[39]
Pan, J.; Xu, G.; Yeung, S.C.J. Cytochrome c release is upstream to activation of caspase-9, caspase-8, and caspase-3 in the enhanced apoptosis of anaplastic thyroid cancer cells induced by manumycin and paclitaxel. J. Clin. Endocrinol. Metab., 2001, 86(10), 4731-4740.
[http://dx.doi.org/10.1210/jcem.86.10.7860] [PMID: 11600533]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy