Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

Metal-Oxide Based Ammonia Gas Sensors: A Review

Author(s): Priya Gupta*, Savita Maurya, Narendra K. Pandey and Vernica Verma

Volume 11, Issue 3, 2021

Published on: 17 July, 2020

Page: [270 - 289] Pages: 20

DOI: 10.2174/2210681210999200718005402

Price: $65

Abstract

This review paper encompasses a study of metal-oxide and their composite based gas sensors used for the detection of ammonia (NH3) gas. Metal-oxide has come into view as an encouraging choice in the gas sensor industry. This review paper focuses on the ammonia sensing principle of the metal oxides. It also includes various approaches adopted for increasing the gas sensitivity of metal-oxide sensors. Increasing the sensitivity of the ammonia gas sensor includes size effects and doping by metal or other metal oxides, which will change the microstructure and morphology of the metal oxides. Different parameters that affect the performances like sensitivity, stability and selectivity of gas sensors are discussed in this paper. Performances of the most operated metal oxides with strengths and limitations in ammonia gas sensing applications are reviewed. The challenges for the development of high sensitive and selective ammonia gas sensors are also discussed.

Keywords: Ammonia, gas sensor, metal-oxide, sensitivity, response time, recovery time.

Graphical Abstract

[1]
Potje-Kamloth, K. Chemical gas sensors based on organic semiconductor polypyrrole. Crit. Rev. Anal. Chem., 2002, 32(2), 121-140.
[http://dx.doi.org/10.1080/10408340290765489]
[2]
Chen, T-Y. Ammonia sensing characteristics of a Pt/AlGaN/GaN Schottky diode. Sens. Actuators B Chem., 2011, 155(1), 347-350.
[http://dx.doi.org/10.1016/j.snb.2010.11.022]
[3]
Zan, H-W.; Tsai, W-W.; Lo, Y-R.; Wu, Y-M.; Yang, Y-S. Pentacene-based organic thin film transistors for ammonia sensing. IEEE Sens. J., 2012, 12(3), 594-601.
[http://dx.doi.org/10.1109/JSEN.2011.2121901]
[4]
Pandeeswari, R.; Jeyaprakash, B.G. High sensing response of β-Ga2O3 thin film towards ammonia vapors: Influencing factors at room temperature. Sens. Actuators B Chem., 2014, 195, 206-214.
[http://dx.doi.org/10.1016/j.snb.2014.01.025]
[5]
Timmer, B.; Olthuis, W.; Berg, A.V.D. Ammonia sensors and their application – A review. Sens. Actuators B Chem., 2005, 107, 666-677.
[http://dx.doi.org/10.1016/j.snb.2004.11.054]
[6]
Sun, Y-F.; Liu, S-B.; Meng, F-L.; Liu, J-Y.; Jin, Z.; Kong, L-T.; Liu, J-H. Metal oxide nanostructures and their gas sensing properties: A review. Sensors (Basel), 2012, 12(3), 2610-2631.
[http://dx.doi.org/10.3390/s120302610] [PMID: 22736968]
[7]
Tomchenko, A.A.; Harmer, G.P.; Marquis, B.T.; Allen, J.W. Semiconducting metal oxide sensor array for the selective detection of combustion gases. Sens. Actuators B Chem., 2003, 93, 126-134.
[http://dx.doi.org/10.1016/S0925-4005(03)00240-5]
[8]
Sofian, M. Kanan, Oussama M. El-Kadri, Imad A. Abu- Yousef and Marsha C. Kanan, Semiconducting metal oxide based sensors for selective gas pollutant detection. Sensors (Basel), 2009, 9, 8158-8196.
[http://dx.doi.org/10.3390/s91008158]
[9]
Williams, D. Semiconducting oxides as gas-sensitive resistors. Sens. Actuators B Chem., 1999, 57, 116.
[http://dx.doi.org/10.1016/S0925-4005(99)00133-1]
[10]
Miskovic, G. Grain size and porosity dependence of titanium dioxide nano–paste on sintering temperature for detection. ISSE, 2015, 2015, 25024958.
[11]
Pawar, S.G. Room-temperature ammonia gas sensor based on polyaniline-TiO2 nanocomposite. IEEE Sens. J., 2011, 11(12), 3417-3423.
[http://dx.doi.org/10.1109/JSEN.2011.2160392]
[12]
Lee, S-K.; Chang, D.; Kim, S.W. Gas sensors based on carbon nanoflake/tin oxide composites for ammonia detection. J. Hazard. Mater., 2014, 268, 110-114.
[http://dx.doi.org/10.1016/j.jhazmat.2013.12.049] [PMID: 24473403]
[13]
Talwar, V.; Singh, O.; Singh, R.C. ZnO assisted polyaniline nanofibers and its application as ammonia gas sensor. Sens. Actuators B Chem., 2014, 191, 276-282.
[http://dx.doi.org/10.1016/j.snb.2013.09.106]
[14]
Wang, G.; Ji, Y.; Huang, X.; Yang, X.; Gouma, P-I.; Dudley, M. Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing. J. Phys. Chem. B, 2006, 110(47), 23777-23782.
[http://dx.doi.org/10.1021/jp0635819] [PMID: 17125339]
[15]
Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal oxide gas sensors: Senitivity and influencing factors; Sensor, 2010, pp. 2088-2106.
[16]
Huang, J.; Wan, Q. Gas sensors based on semiconducting metal oxide one-dimensional nanostructures. Sensors (Basel), 2009, 9(12), 9903-9924.
[http://dx.doi.org/10.3390/s91209903] [PMID: 22303154]
[17]
Kanazawa, E.; Sakai, G.; Shimanoe, K.; Kanmura, Y.; Teraoka, Y.; Miura, N.; Yamazoe, N. Metal Oxide semiconductor N2O sensor for medical use. Sens. Actuators B Chem., 2001, 77, 72-77.
[http://dx.doi.org/10.1016/S0925-4005(01)00675-X]
[18]
Korotcenkov, G. Metal Oxides for solid-state gas sensors: What determines our choice. Mater. Sci. Eng. B, 2007, 139, 1-23.
[http://dx.doi.org/10.1016/j.mseb.2007.01.044]
[19]
Henrich, V.E.; Cox, P.A. The Surface Science of Metal Oxides; Cambridge University Press: Cambridge, UK, 1994.
[20]
Mirzaei, A.; Leonardi, S.G.; Neri, G. Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review. Ceram. Int., 2016, 42, 15119-15141.
[http://dx.doi.org/10.1016/j.ceramint.2016.06.145]
[21]
Donarelli, M.; Ferroni, M.; Ponzoni, A. Single metal oxide nanowire devices for ammonia and other gases detection in humid atmosphere. Procedia Eng., 2016, 168, 1052-1055.
[http://dx.doi.org/10.1016/j.proeng.2016.11.338]
[22]
Kulandaisamy, A.J.; Elavalagan, V.; Shankar, P.; Mani, G.K.; Babu, K.J.; John, B.B.R. Nanostructured Cerium-doped ZnO thin film – A breath sensor. Ceram. Int., 2016, 42, 18289-18295.
[http://dx.doi.org/10.1016/j.ceramint.2016.08.156]
[23]
Chou, P-C. On the Ammonia gas sensing performance of a RF sputtered NiO thin film sensor. IEEE Sens. J., 2015, 15(7), 3711-3715.
[http://dx.doi.org/10.1109/JSEN.2015.2391286]
[24]
Rout, C.S.; Hegde, M.; Govindaraj, A.; Rao, C.N.R. Ammonia sensors based on metal oxide nanostructures. Nanotechnology, 2007, 18, 9.
[25]
Yunusa, Z.; Hamidon, M.N.; Kaiser, A.; Awang, Z. Gas sensor: A review. Sensor Transducer, 2014, 168(4), 61-75.
[26]
Li, Z.; Li, H.; Wu, Z.; Wang, M.; Luo, J.; Torun, H.; Hu, P.A.; Yang, C.; Grundmann, M.; Liu, X.; Fu, Y.Q. Advances in designs and mechanisms of semiconduction metal oxide nanostructures for high precision gas senors operated at room temperature. Mater. Horiz., 2019, 6, 470.
[http://dx.doi.org/10.1039/C8MH01365A]
[27]
Wei, A.; Wang, Z.; Pan, L.H.; Li, W.W.; Xiong, L.; Dong, X.C.; Huang, W. Room temperature NH3 gas sensor based on hydrothermally grown ZnO nanorods. Chin. Phys. Lett., 2011, 28, 080702.
[http://dx.doi.org/10.1088/0256-307X/28/8/080702]
[28]
Enigochitra, A.S.; Perumal, P.; Sanjeeviraja, C.; Deivamani, D.; Boomashri, M. Influence of substrate temperature on structural and optical properties of ZnO thin films prepared by cost-effective chemical spray pyrolysis technique. Superlattices Microstruct., 2016, 90, 313-320.
[http://dx.doi.org/10.1016/j.spmi.2015.10.026]
[29]
Qiu, Y.; Tan, G.; Xu, P.; Luo, Q.; Lin, X.; Huang, W.; Li, J. Preparation of Cu(OH)2 and ZnO nanoarrays on surface of metal substrates by a simple method and application as ammonia sensors. Appl. Surface Sci., 2015, 347, 548-552.
[30]
Rai, P. Microwave assisted hydrothermal synthesis of single crystalline ZnO nanorods for gas sensor application. Mater. Lett., 2012, 68, 90.
[http://dx.doi.org/10.1016/j.matlet.2011.10.029]
[31]
Bal, A.K.; Singh, A.; Bedi, R.K. Characterization and ammonia sensing properties of pure and modified ZnO films. Appl. Phys., A Mater. Sci. Process., 2011, 103, 497-503.
[http://dx.doi.org/10.1007/s00339-010-6021-5]
[32]
Du, N.; Zhang, H.; Chen, B.D.; Ma, X.Y.; Liu, Z.H.; Wu, J.B.; Yang, D.R. Porous Indium Oxide nanotubes: Layer‐by‐layer assembly on carbon‐nanotube templates and application for room‐temperature NH3 gas sensors. Adv. Mater., 2007, 19, 1641-1645.
[http://dx.doi.org/10.1002/adma.200602128]
[33]
El Bouari, A.; Gaddari, A.; Amjoud, M.; Berger, F.; Sanchez, J.B.; Lahcini, M.; Rhouta, B.; Mezzane, D.; Mavon, C.; El Ouatib, R.; Hannache, H.; Krimi, S.; Lamire, M.; Mansouri, I.; Moussa, R.; Aboulayt, A. SnO2 thin films used as ammonia sensing layers at room temperature MATEC Web Conf., 2013, 5, 04010.
[34]
Zampetti, E.; Macagnano, A.; Bearzotti, A. Gas sensor based on photoconductive electrospun titania nanofibres operating at room temperature. J. Nanopart. Res., 2013, 15, 1566.
[http://dx.doi.org/10.1007/s11051-013-1566-9]
[35]
Xiong, Y.; Zhu, Z.; Guo, T.; Li, H.; Xue, Q. Synthesis of nanowire bundle-like WO3-W18O49 heterostructures for highly sensitive NH3 sensor application. J. Hazard. Mater., 2018, 353, 290-299.
[http://dx.doi.org/10.1016/j.jhazmat.2018.04.020] [PMID: 29677531]
[36]
Mao, S.; Cui, S.; Lu, G.; Yu, K.; Wen, Z.; Chen, J. Tuning gas-sensing properties of reduced graphene oxide using tin oxide nanocrystals. J. Mater. Chem., 2012, 2012, 22.
[http://dx.doi.org/10.1039/c2jm30378g]
[37]
Mani, G.K.; Rayappan, J.B.B. A highly selective room temperature ammonia sensor using spray deposited zinc oxide thin film. Sens. Actuators B Chem., 2013, 183, 459-466.
[http://dx.doi.org/10.1016/j.snb.2013.03.132]
[38]
Mariappan, R.; Ponnuswamy, V.; Ragavendar, M. Influence of molar concentration on the physical properties of nebulizer-sprayed ZnO thin films for ammonia gas sensor. Mater. Sci. Semicond. Process., 2013, 16, 1328-1335.
[http://dx.doi.org/10.1016/j.mssp.2012.10.012]
[39]
Sakthivel, B.; Manjakkal, L.; Nammalvar, G. High performance CuO nanorectangles-based room temperature flexible NH3 sensor. IEEE Sens. J., 2017, 17, 6529-6536.
[http://dx.doi.org/10.1109/JSEN.2017.2749334]
[40]
Li, Z.; Lin, Z.; Wang, N.; Wang, J.; Liu, W.; Sun, K.; Fu, Y.Q.; Wang, Z. High precision NH3 sensing using network nano-sheet Co3O4 arrays based sensor at room temperature. Sens. Actuators B Chem., 2016, 235, 222-231.
[http://dx.doi.org/10.1016/j.snb.2016.05.063]
[41]
Wang, J.; Wei, X.; Wangyang, P. Gas-sensing devices based on Zn-doped NiO two-dimensional grainy films with fast response and recovery for Ammonia molecule detection. Nanoscale Res. Lett., 2015, 10(1), 461.
[http://dx.doi.org/10.1186/s11671-015-1170-2] [PMID: 26625885]
[42]
Kumar, R.; Kumar, R.; Kushwaha, N.; Mittal, J. Ammonia gas sensing using thin film of mno2 nanofibers. IEEE Sens. J., 2016, 16, 4691-4695.
[http://dx.doi.org/10.1109/JSEN.2016.2550079]
[43]
Pawar, A.; Pandey, N.K.; Misra, S. Investigations of Undoped zinc oxide nanomaterials as humidity and gas sensor. IJESRT, 2017, 6, 10.
[44]
Nguyen, T.; Park, S.; Kim, J.B.; Kim, T.K.; Seong, G.H.; Choo, J.; Kim, Y.S.; Beom, J.; Kyu, T.; Hun, G.; Shin, Y. Polycrystalline tungsten oxide nanofibers for gas sensing applications. Sensor Actuator B, 2011, 160, 549.
[http://dx.doi.org/10.1016/j.snb.2011.08.028]
[45]
Rout, C.S.; Hegde, M.; Govindaraj, A.; Rao, C.N.R. Ammonia sensor based on metal oxide nanostructures. Nanotechnology, 2007, 182, 05504.
[http://dx.doi.org/10.1088/0957-4484/18/20/205504]
[46]
Bochenkov, V.E.; Sergeev, G.B. Metal oxide nanostructures and their applications. Metal Oxide Nanoparticles and Their Applications;; Umar, A.; Hahn, Y.B., Eds.; American Scientific Publication: USA, 2010, pp. 31-52.
[47]
Patil, J.; Patil, A.V.; Dighavkar, V.G.; Thakare, K.S.; Borase, R.Y.; Nandre, S.J.; Deshpande, N.G.; Ahire, R.R. Semiconductor metal oxide compounds based gas sensors: A literature review. Front. Mater. Sci., 2015, 9, 14-37.
[http://dx.doi.org/10.1007/s11706-015-0279-7]
[48]
Korotcenkov, G. The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater. Sci. Eng. Rep., 2008, 61, 1-39.
[http://dx.doi.org/10.1016/j.mser.2008.02.001]
[49]
Korotcenkov, G.; Brinzari, V.; Ivanov, M.; Cerneavschi, A.; Rodriguez, J.; Cirera, A.; Cornet, A.; Morante, J. structural stability of indium oxide films deposited by spray pyrolysis during thermal annealing. Thin Solid Films, 2005, 479, 38-51.
[http://dx.doi.org/10.1016/j.tsf.2004.11.107]
[50]
Yoon, D.H.; Yu, J.H.; Choi, G.M. CO gas sensing properties of ZnO-CuO Composite. Sensor Actuator B, 1998, 46, 15-23.
[http://dx.doi.org/10.1016/S0925-4005(97)00317-1]
[51]
Kolmakov, A.; Klenov, D.O.; Lilach, Y.; Stemmer, S.; Moskovits, M. Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett., 2005, 5(4), 667-673.
[http://dx.doi.org/10.1021/nl050082v] [PMID: 15826106]
[52]
Singh, A.; Chaudhary, A.; Sonukusare, A.G.; Paul, A.K.; Tyagi, S. Effect of particle size on ammonia sensing response of zinc oxide. J. Basic Appl. Eng. Res., 2015, 2(15), 1281-1284.
[53]
Kulandaisamy, A.J.; Reddy, J.R.; Srinivasan, P.; Babu, K.J.; Mani, G.K.; Shankar, P.; Rayappan, J.B.B. Room temperature ammonia sensing properties of ZnO thin films grown by spray pyrolysis: Effect of Mg doping. J. Alloys Compd., 2016, 688, 422-429.
[http://dx.doi.org/10.1016/j.jallcom.2016.07.050]
[54]
Das, M. One-pot synthesis of zinc oxide-polyaniline nanocomposite for fabrication of efficient room temperature ammonia gas sensor. Ceram. Int., 2017, 43, 11123-11131.
[http://dx.doi.org/10.1016/j.ceramint.2017.05.159]
[55]
Sankar Ganesh, R.; Naveneethan, M.; Patil, V.L.; Ponnusamy, S.; Muthamizhchelvan, C.; Kawasaki, S.; Patel, P.S.; Hayakawava, Y. Sensitivity enhancement of ammonia gas sensor based on Ag/ZnO flower and nano ellipsoids at low temperature. Sensors and Actuator B, 2018, 255(1), 672-683.
[56]
Patil, D.R.; Patil, L.A.; Patil, P.P. Cr2O3-activated ZnO thickfilm resistors for ammonia gas sensing operable at room temperature. Sens. Actuators B Chem., 2007, 126, 368-374.
[http://dx.doi.org/10.1016/j.snb.2007.03.028]
[57]
Pawar, S.G. Room temperature ammonia gas sensor based on polyaniline-TiO2 nanocomposite. IEEE Sens. J., 2011, 11(12), 3417-3423.
[http://dx.doi.org/10.1109/JSEN.2011.2160392]
[58]
Bahu, T.B.M.; Kumar, K.; Bahu, T. CuO-ZnO semiconductor gas sensor for ammonia at room temperature. J. Electron Devices, 2012, 14, 1137-1141.
[59]
Yewale, A.K.; Raghuwanshi, F.C.; Belsare, N.G.; Waghmare, R.V.; Joat, R.V. Gas sensitivity of TiO2 based thick film sensor to NH3 gas at room temperature. Int. J. Adv. Eng. Technol., 2011, 2, 226-230.
[60]
Li, R.; Jiang, K.; Chen, S.; Lou, Z.; Huang, T.; Shen, G. SnO2/SnS2 nanotubes for flexible room-temperature NH3 gas sensors. RSC Adv., 2017, 2017, 83.
[61]
Qiu, Y.; Tan, G.; Xu, P.; Luo, Q.; Lin, X.; Huang, W.; Li, J. Preparation of Cu(OH)2 and ZnO nanoarrays on surface of metal substrates by a simple method and application as ammonia sensors. Appl. Surf. Sci., 2015, 347(30), 548-552.
[62]
Liang, Q.; Di Li, S.G.; Jiang, D.; Zhao, J.; Qin, J.; Hou, J. Room-temperature NH3 sensors with high sensitivity and short response/recovery times. Chinese Sci. Bull., 2017, 59(4), 83.
[http://dx.doi.org/10.1007/s11434-013-0018-3]
[63]
Luo, S.; Shen, Y.; Wu, Z.; Cao, M.; Gu, F.; Wang, L. Enhanced ethanol sensing performance of mesoporous Sn-doped ZnO. Mater. Sci. Semicond. Process., 2016, 2016, 535-543.
[http://dx.doi.org/10.1016/j.mssp.2015.10.001]
[64]
Singh, N.; Umar, A.; Singh, N.; Fouad, H.; Alothman, O.Y.; Haque, F.Z. Highly Sensitive Ammonia Gas Sensor Based On Sn Doped V2O5 nanoparticles. Mater. Res. Bull., 2018, 108, 266-274.
[65]
Navale, S.C.; Mukka, I.S. Photoluminescence and gas sensing study of nanostructured pure and Sn doped ZnO. Mater. Sci. Eng. C, 2009, 29, 1317-1320.
[http://dx.doi.org/10.1016/j.msec.2008.09.050]
[66]
Zhang, N.; Yu, K.; Li, L.; Zhu, Z. Synthesis of tin-doped zinc oxide microrods for gas sensor application. Mater. Lett., 2013, 108, 139-141.
[http://dx.doi.org/10.1016/j.matlet.2013.06.082]
[67]
Tarwal, N.L.; Patil, A.R.; Harale, N.S. Gas sensing performance of the spray deposited Cd-ZnO thin films. J. Alloys Compd., 2014, 598, 282-288.
[http://dx.doi.org/10.1016/j.jallcom.2014.01.200]
[68]
Rambu, A.P.; Ursu, L.; Iftimie, N.; Nica, V.; Dobromir, M.; Iacomi, F. Study on Ni-doped ZnO films as gas sensors. Appl. Surf. Sci., 2013, 280, 598-604.
[http://dx.doi.org/10.1016/j.apsusc.2013.05.033]
[69]
Kumar, M.; Singh, B.; Yadav, P. Effect of structural defects, surface roughness on sensing properties of Al doped ZnO thin films deposited by chemical spray pyrolysis technique. Ceram. Int., 2017, 43(4), 3562-3568.
[http://dx.doi.org/10.1016/j.ceramint.2016.11.191]
[70]
Wang, J.; Wei, L.; Zhang, L.; Zhang, J.; Wei, H.; Jiang, C.; Zhang, Y. Zinc-doped nickel oxide dendritic crystals with fast response and self-recovery for ammonia detection at room temperature. J. Mater. Chem., 2012, 22, 20038-20047.
[http://dx.doi.org/10.1039/c2jm34192a]
[71]
Mani, G.K.; Rayappan, J.B.B. A highly selective and wide range ammonia sensor- nanostructured ZnO: Co thin film. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 2015, 191, 41-50.
[72]
Mariappan, R.; Ponnusamay, V.; Suresh, R.; Chandra Bose, A.; Ragavendar, M. Role of substrate temperature on the properties of Na-doped ZnO thin film nanorods and performance of ammonia gas sensors using nebulizer spray pyrolysis technique. J. Alloys Compd., 2014, 582, 387-391.
[http://dx.doi.org/10.1016/j.jallcom.2013.08.048]
[73]
Madler, L.; Roessler, A.; Pratsinis, S.F.; Sahm, T.; Gurlo, A.; Barsan, N.; Weimar, U. Direct formation of highly porous gas- sensing films by in situ thermophoretic deposition of flame-made Pt/SnO2 nanoparticles. Sens. Actuators, 2006, 283, 38.
[http://dx.doi.org/10.1016/j.snb.2005.05.014]
[74]
Choi, U.S.; Sakai, G.; Shimanoe, K.; Yamazoe, N. Sensing properties of Au-loaded SnO2-Co3O4 composites to CO and H2. Sens. Actuators B Chem., 2006, 107, 397.
[http://dx.doi.org/10.1016/j.snb.2004.10.033]
[75]
Wurzinger, O.; Reinhardt, G. CO-sensing properties of doped SnO2 sensors in H2 rich gases. Sens. Actuators B Chem., 2006, 103, 104.
[http://dx.doi.org/10.1016/j.snb.2004.04.041]
[76]
Kennedy, M.K.; Kruis, E.E.; Eissan, H.; Mentha, B.R.; Stappert, S.; Dumpich, G. Tailored nanoparticle films from monosized tin oxide nanocrystals: Particle synthesis, film formation, and size-dependent gas-sensing properties. J. Appl. Phys., 2003, 93, 551.
[http://dx.doi.org/10.1063/1.1525855]
[77]
Joshi, R.K.; Kruis, F.E.; Dmitrieva, O. Gas sensing behavior of SnO1.8:Ag films composed of size selected nanoparticles. J. Nanopart. Res., 2006, 8, 797.
[http://dx.doi.org/10.1007/s11051-005-9045-6]
[78]
Gong, J.; Chen, Q.; Lian, M.R.; Liu, N.C.; Stevenson, R.G.; Adami, F. Micromachined nanocrystalline silver doped SnO2 H2S sensor. Sens. Actuators B Chem., 2006, 114, 32-39.
[http://dx.doi.org/10.1016/j.snb.2005.04.035]
[79]
Fryberger, T.B.; Semancik, S. Conductance response of Pd/SnO2 (110) model gas sensors to H2 and O2. Sens. Actuators B Chem., 1990, 2, 305-309.
[http://dx.doi.org/10.1016/0925-4005(90)80158-V]
[80]
Semancik, S.; Fryberger, T.B. Model studies of SnO2-based gas sensors: Vacancy defects and Pd additive effects. Sens. Actuators B Chem., 1990, 1, 97-102.
[http://dx.doi.org/10.1016/0925-4005(90)80180-8]
[81]
Patil, S.B.; Patil, P.P.; More, M.A. Acetone vapour sensing characteristics of cobalt-doped SnO2 thin films. Sens. Actuators B Chem., 2007, 125, 126-130.
[http://dx.doi.org/10.1016/j.snb.2007.01.047]
[82]
Han, C.H.; Hong, D.U.; Gwak, J.; Han, S.D. A planar catalytic combustion sensor using nano-crystalline F-doped SnO2 as a supporting material for hydrogen detection. Korean J. Chem. Eng., 2007, 24, 927-931.
[http://dx.doi.org/10.1007/s11814-007-0099-2]
[83]
Galdikas, A.; Mironas, A.; Setkus, A. Copper-doping level effect on sensitivity and selectivity of tin oxide thin-film gas sensor. Sens. Actuators B Chem., 1995, 26, 29-32.
[http://dx.doi.org/10.1016/0925-4005(94)01550-2]
[84]
Yi, Z.; Zheng, L.; Lili, W.; Zou, B.; Tong, Z.; Weitao, Z. Enhanced ammonia sensing performances of Pd-sensitized flowerlike ZnO nanostructure. Sens. Actuat. B. Chem., 2011, 156, 395-400.
[85]
Hyodo, T.; Baba, Y.; Wada, K.; Shimizu, Y.; Egashira, M. Hydrogen sensing properties of SnO2 varistors loaded with SiO2 by surface chemical modification with Diethoxydimethylsilane. Sensor Actuator B, 2000, 64, 175-181.
[http://dx.doi.org/10.1016/S0925-4005(99)00503-1]
[86]
Grobowska, E. Nobel metal modified TiO2 microspheres: Surface properties of photo catalytic activity under UV-vis and visible light. J. Mol. Catal. A Chem., 2016, 423, 191-206.
[87]
Wu, H.; Huang, H.; Zhou, J.; Hong, D.; Ikram, M.; Rehman, A.U.; Li, L.; Shi, K. One-step synthesis of ordered Pd@TiO2 nanofibers array film as outstanding NH3 gas sensor at room temperature. Sci. Rep., 2017, 7(1), 14688.
[http://dx.doi.org/10.1038/s41598-017-15319-3] [PMID: 29116163]
[88]
Qi, Q.; Zhang, T.; Zheng, X.; Fan, H.; Liu, L.; Wang, R.; Zeng, Y. electrical response of Sm2O3-doped SnO2 to C2H2 and effect of humidity interference. Sensor Actuator B, 2008, 134, 36-42.
[http://dx.doi.org/10.1016/j.snb.2008.04.011]
[89]
Gong, J.; Chen, Q.; Lian, M.; Liu, N.; Stevenson, R.G.; Adamic, F. Micromachined nanocrystalline silver doped SnO2 H2S sensor. Sensor Actuator B, 2006, 114, 32-39.
[http://dx.doi.org/10.1016/j.snb.2005.04.035]
[90]
Egashira, M.; Kawasumi, S.; Kagawa, S.; Seiyama, T. temperature programmed desorption study of water absorbed on metal oxides. I. Anatase and Rutile. Bull. Chem. Soc. Jpn., 1978, 51, 3144-3149.
[http://dx.doi.org/10.1246/bcsj.51.3144]
[91]
Wang, J.; Yang, P.; Wei, X. The high-performance, room temperature and no impact ammonia sensor based on heterogeneous NiO and ZnO nano crystals. ACS Appl. Mater. Interfaces, 2015, 7(6), 3816-3824.
[92]
Kumar, A.; Sanger, A.; Kumar, A.; Chandra, R. Fast response ammonia sensors based on TiO2 and NiO nanostructured bilayer thin films. RSC Adv., 2016, 2016, 81.
[93]
Jing, Z.; Zhan, J. Fabrication and gas-sensing properties of porous ZnO nanoplates. Adv. Mater., 2008, 20, 4547-4551.
[http://dx.doi.org/10.1002/adma.200800243]
[94]
Malyshev, V.V.; Pislyakov, A.V. Investigation of gas-sensitivity of sensor structures to hydrogen in a wide range of temperature, concentration and humidity of gas medium. Sensor Actuator B, 2008, 134, 913-921.
[http://dx.doi.org/10.1016/j.snb.2008.06.046]
[95]
Kim, I.D.; Rothschild, A.; Lee, B.H.; Kim, D.Y.; Jo, S.M.; Tuller, H.L. Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers. Nano Lett., 2006, 6(9), 2009-2013.
[http://dx.doi.org/10.1021/nl061197h] [PMID: 16968017]
[96]
Cao, M.; Wang, Y.; Chen, T.; Antonietti, M.; Niederberger, M.A. Highly sensitive and fast-responding ethanol sensor based on CdIn2O4 nanocrystals synthesized by a nonaqueous sol-gel route. Chem. Mater., 2008, 20, 5781-5786.
[http://dx.doi.org/10.1021/cm800794y]
[97]
Duy, N.V.; Hieu, N.V.; Huy, P.H.; Chien, N.D.; Thamilselvan, M.; Yi, J. Mixed SnO2/TiO2 included with carbon nanotubes for gas-sensing application. Physica E, 2008, 41, 258-263.
[http://dx.doi.org/10.1016/j.physe.2008.07.007]
[98]
Balamurugan, C.; Song, S-j.; Kim, H.S. Enhancing gas response characteristics of mixed metal oxide gas sensors. J. Korean Ceramic Society, 2018, 55(1), 20.
[http://dx.doi.org/10.4191/kcers.2018.55.1.10]
[99]
Wang, Q.; Dong, X.; Pang, Z. Ammonia sensing behabiours of TiO2-PANI/PA6 composite nano fibers. Sensors, 2012, 12(2), 17046-57.
[100]
Ganesh, S.R.; Durgadevi, E.; Navaneethan, M.; Patil, V.L.; Ponnusamy, S.; Muthamizhchelvan, C.; Kawasaki, S.; Patil, P.S.; Hayakaw, Y. Low temperature ammonia gas sensor based on Mn- doped ZnO nanoparticle decorated microspheres. J. Alloys Compd., 2017, 721, 182-190.
[http://dx.doi.org/10.1016/j.jallcom.2017.05.315]
[101]
Rambu, A.P.; Sirbu, D.; Iftimie, N.; Rusu, G.I. Polycrystalline ZnO-In2O3 thin films as gas sensors. Thin Solid Films, 2011, 520, 1303-1307.
[http://dx.doi.org/10.1016/j.tsf.2011.04.158]
[102]
Liu, J.; Guo, Z.; Meng, F.; Luo, T.; Li, M.; Liu, J. Novel porous single-crystalline ZnO nanosheets fabricated by annealing ZnS(en)0.5 (en = ethylenediamine) precursor. Application in a gas sensor for indoor air contaminant detection. Nanotechnology, 2009, 20(12), 125501.
[http://dx.doi.org/10.1088/0957-4484/20/12/125501] [PMID: 19420467]
[103]
Bhattacharyya, P.; Basu, P.K.; Saha, H.; Basu, S. Fast response methane sensor based on Pd(Ag)/ZnO/Zn MIM structure. Sens. Lett., 2006, 4, 371.
[http://dx.doi.org/10.1166/sl.2006.050]
[104]
Wisitsorn, A.; Tunntranont, A.; Thanachayanont, C.; Patthanasettakul, V.; Singjai, P. Electron beam evaporated carbon nanotube dispersed SnO2 thin film gas sensor. J. Electroceram., 2006, 17, 45.
[http://dx.doi.org/10.1007/s10832-006-9934-9]
[105]
McCue, T.; Ying, Y. SnO2−In2O3 Nanocomposites as semiconductor gas sensors for CO and NOx detection. Chem. Mater., 2007, 19, 1009.
[http://dx.doi.org/10.1021/cm0617283]
[106]
Mani, G.K.; Rayappan, J.B.B. Selective detection of ammonia using spray pyrolysis deposited pure and nickel doped ZnO thin films. Appl. Surf. Sci., 2014, 311, 405-412.
[http://dx.doi.org/10.1016/j.apsusc.2014.05.075]
[107]
Jain, S.; Patrike, A.; Badadhe, S.S.; Bhardwaj, M.; Ogale, S. Room-temperature ammonia gas sensing using mixed-valent CuCo2O4 nanoplatelets: Performance enhancement through stoichiometry control. ACS Omega, 2018, 3(2), 1977-1982.
[http://dx.doi.org/10.1021/acsomega.7b01958] [PMID: 31458506]
[108]
Ganesh, S.R.; Durgadevi, E.; Navaneethan, M.; Patil, V.L.; Ponnusamy, S.; Muthamizhchelvan, C.; Kawasaki, S.; Patil, P.S.; Hayakawa, Y. Tuning the selectivity of NH3 gas sensing response using Cu-doped ZnO nanostructures. Sensors Actuators A, 2018, 269, 331-341.
[109]
Gurlo, A.; Ivanovskaya, M.; Barsan, N.; Schweizer-Berberich, M.; Weimar, U.; Göpel, W.; Dieguez, A. Grain size control in nanocrystalline In2O3 semiconductor gas sensors. Sens. Actuat. B, 1997, 44, 327.
[http://dx.doi.org/10.1016/S0925-4005(97)00199-8]
[110]
Yun, D.H. Highly sensitive and selective Ammonia gas sensor International Conference on Solid State Sensors and Actuators, 19-19 June;1997 , Chicago, IL, USA.
[111]
Chen, H-I. Ammonia sensing characteristic of a Pt nanoparticle/aluminum-doped zinc oxide sensor. Sens. Actuators B Chem., 2018, 267, 145-154.
[http://dx.doi.org/10.1016/j.snb.2018.04.019]
[112]
Bannov, A.G. Bone, periodontal and dental pulp regeneration in dentistry: A systematic scoping review. Proc. Eng., 2016, 168, 231-234.
[113]
Anisimov, O.V.; Maksimova, N.K.; Chernikov, E.V.; Sevastyanov, E.Y.; Sergeychenko, N.V. Sensitivity to NH3 of SnO2 thin films prepared by magnetron sputtering. Siberian Conference on Control and Communications SIBCON–2009,
[114]
Deshmukh, K.; Pasha, S.K. Room temperature ammonia sensing based on graphene oxide integrated flexible polyvinylidenefluoride/cerium oxide nanocomposite films. Polymer-Plastics Technol. Mater., 2020, 2020, 1429-1446.
[115]
Prasad, M.R.; Haris, M.; Sridharan, M. Structural, optical and ammonia sensing properties of nanostructured ZnO thin films deposited by spray pyrolysis technique. J. Mater. Sci. Mater. Electron., 2017, 28(15), 11367-11373.
[http://dx.doi.org/10.1007/s10854-017-6930-6]
[116]
Jimenez-Cadena, G.; Riu, J.; Rius, F.X. Gas sensors based on nanostructured materials. Analyst (Lond.), 2007, 132, 1083-1099.
[http://dx.doi.org/10.1039/b704562j]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy