Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Ionic Liquid: A Promising Material for Petroleum Production and Processing

Author(s): Yansong Zhao*, Zhonghua Chen, Fei Yang* and Yingpeng Zhen

Volume 24, Issue 15, 2020

Page: [1763 - 1774] Pages: 12

DOI: 10.2174/1385272824999200716151819

Price: $65

Abstract

Ionic liquids can be utilized in petroleum science. However, significant attention has been paid to the utilization of ionic liquids in petroleum science by researchers. In this work, the recent development of the utilization of ionic liquids in petroleum science is introduced. First of all, ionic liquids can be utilized as an additive in the oil & gas industry, such as a surfactant, corrosion inhibitor, demulsifier, and dispersant. In addition, ionic liquids can be utilized in the separation process of oil & gas processing. For example, ionic liquids can be utilized to remove naphthenic acids from oils, extract toluene from alkanes, dissolution of asphaltene in oils, extract phenol from model oil, and separate oil mixtures in a combination of membranes. Ionic liquids can also be utilized in novel technology development for enhanced oil recovery, and oil field scale control process. Moreover, utilization of ionic liquids in gasoline desulfurization process is important and crucial, which is greener, lower cost, and safer compared with the traditional processing technology. Furthermore, ionic liquids can be utilized as novel solvents to form micro-emulsion. Some ionic liquids have task-specific functional groups, which can reduce the cost and improve the separation efficiency. The utilization of ionic liquids in the catalysis process of the oil & gas industry is also introduced in this work. In the end, the utilization of ionic liquids in the oil sand treatment process and asphaltene precipitation inhibition process is discussed. This work will benefit the novel environmentally friendly technology development using ionic liquids for oil & gas production and processing.

Keywords: Ionic liquids, oil & gas, petroleum, additive, inhibitors, clean process, separation and extraction.

Graphical Abstract

[1]
Bates, E.D.; Mayton, R.D.; Ntai, I.; Davis, J.H. CO2 capture by a task specific ionic liquid. J. Am. Chem. Soc., 2002, 124(6), 926-927.
[http://dx.doi.org/10.1021/ja017593d] [PMID: 11829599]
[2]
Camper, D.; Bara, J.E.; Gin, D.L.; Noble, R.D. Room-temperature ionic liquid-amine solutions: tunable solvents for efficient and reversible capture of CO2. Ind. Eng. Chem. Res., 2008, 47(21), 8496-8498.
[http://dx.doi.org/10.1021/ie801002m]
[3]
Chen, Y.; Hu, Z.; Gupta, K.M.; Jiang, J. Ionic liquid/metal-organic framework composite for CO2 capture: a computational investigation. J. Phys. Chem. C, 2011, 115(44), 21736-21742.
[http://dx.doi.org/10.1021/jp208361p]
[4]
Gupta, K.M.; Chen, Y.; Jiang, J. Ionic liquid membranes supported by hydrophobic and hydrophilic metal-organic frameworks for CO2 capture. J. Phys. Chem. C, 2013, 117(11), 5792-5799.
[http://dx.doi.org/10.1021/jp312404k]
[5]
Gupta, K.M.; Chen, Y.; Hu, Z.; Jiang, J. Metal-organic framework supported ionic liquid membranes for CO2 capture: anion effects. Phys. Chem. Chem. Phys., 2012, 14(16), 5785-5794.
[http://dx.doi.org/10.1039/c2cp23972h] [PMID: 22433933]
[6]
Zhang, X.; Zhang, X.; Dong, H.; Zhao, Z.; Zhang, S.; Huang, Y. Carbon capture with ionic liquids: overview and progress. Energy Environ. Sci., 2012, 5(5), 6668-6681.
[http://dx.doi.org/10.1039/c2ee21152a]
[7]
Sun, J.; Zhang, S.; Cheng, W.; Ren, J. Hydroxyl-functionalized ionic liquid: a novel efficient catalyst for chemical fixation of CO2 to cyclic carbonate. Tetrahedron Lett., 2008, 49(22), 3588-3591.
[http://dx.doi.org/10.1016/j.tetlet.2008.04.022]
[8]
Allen, C.; Sambasivarao, S.V.; Acevedo, O. An ionic liquid dependent mechanism for base catalyzed β-elimination reactions from QM/MM simulations. J. Am. Chem. Soc., 2013, 135(3), 1065-1072.
[http://dx.doi.org/10.1021/ja3098614] [PMID: 23273322]
[9]
Lin, Y.; Zhao, A.; Tao, Y.; Ren, J.; Qu, X. Ionic liquid as an efficient modulator on artificial enzyme system: toward the realization of high-temperature catalytic reactions. J. Am. Chem. Soc., 2013, 135(11), 4207-4210.
[http://dx.doi.org/10.1021/ja400280f] [PMID: 23469900]
[10]
Sheldon, R. Catalytic reactions in ionic liquids. Chem. Commun. (Camb.), 2001, 2001(23), 2399-2407.
[http://dx.doi.org/10.1039/b107270f] [PMID: 12239988]
[11]
Foldes, R.S.; Takacs, E.; Horvath, J.; Tuba, Z.; Kollar, L. Palladium catalysed aminocarbonylation of steroidal 17-iodo-androst-16-ene derivatives in N,N[prime or minute]-dialkyl-imidazolium-type ionic liquids. Green Chem., 2003, 5(5), 643-645.
[http://dx.doi.org/10.1039/B306085C]
[12]
Wei, Z.; Liu, Y.; Thushara, D.; Ren, Q. Entrainer-intensified vacuum reactive distillation process for the separation of 5-hydroxylmethylfurfural from the dehydration of carbohydrates catalyzed by a metal salt-ionic liquid. Green Chem., 2012, 14(4), 1220-1226.
[http://dx.doi.org/10.1039/c2gc16671b]
[13]
Zhao, D.; Wu, M.; Kou, Y.; Min, E. Ionic liquids: applications in catalysis. Catal. Today, 2002, 74(1–2), 157-189.
[http://dx.doi.org/10.1016/S0920-5861(01)00541-7]
[14]
Ichikawa, T.; Yoshio, M.; Hamasaki, A.; Mukai, T.; Ohno, H.; Kato, T. Self-organization of room-temperature ionic liquids exhibiting liquid-crystalline bicontinuous cubic phases: formation of nano-ion channel networks. J. Am. Chem. Soc., 2007, 129(35), 10662-10663.
[http://dx.doi.org/10.1021/ja0740418] [PMID: 17696434]
[15]
Sood, R.; Iojoiu, C.; Espuche, E.; Gouanvé, F.; Gebel, G.; Mendil-Jakani, H.; Lyonnard, S.; Jestin, J. Proton conducting ionic liquid doped nafion membranes: nano-structuration, transport properties and water sorption. J. Phys. Chem. C, 2012, 116(46), 24413-24423.
[http://dx.doi.org/10.1021/jp306626y]
[16]
Iacob, C.; Sangoro, J.R.; Kipnusu, W.K.; Valiullin, R.; Karger, J.; Kremer, F. Enhanced charge transport in nano-confined ionic liquids. Soft Matter, 2012, 8(2), 289-293.
[http://dx.doi.org/10.1039/C1SM06581E]
[17]
Taguchi, S.; Ichikawa, T.; Kato, T.; Ohno, H. Nano-biphasic ionic liquid systems composed of hydrophobic phosphonium salts and a hydrophilic ammonium salt. Chem. Commun. (Camb.), 2012, 48(43), 5271-5273.
[http://dx.doi.org/10.1039/c2cc31074k] [PMID: 22510870]
[18]
Chen, Y.; Chen, M.; Shi, J.; Yang, J.; Zhang, D. Fabrication of “clean” nano structured metal materials on ionic liquid/water interface. Mater. Lett., 2014, 132, 153-156.
[http://dx.doi.org/10.1016/j.matlet.2014.06.052]
[19]
Mahmoud, M.E. Surface loaded 1-methyl-3-ethylimidazolium bis(trifluoro methylsulfonyl)imide [EMIM+Tf2N-] hydrophobic ionic liquid on nano-silica sorbents for removal of lead from water samples. Desalination, 2011, 266(1–3), 119-127.
[http://dx.doi.org/10.1016/j.desal.2010.08.011]
[20]
Shi, F.; Ma, Y.; Ma, J.; Wang, P.; Sun, W. Preparation and characterization of PVDF/TiO2 hybrid membranes with ionic liquid modified nano-TiO2 particles. J. Membr. Sci., 2013, 427, 259-269.
[http://dx.doi.org/10.1016/j.memsci.2012.10.007]
[21]
Malhotra, S. Ionic liquid applications: pharmaceuticals, therapeutics, and biotechnology. J. Am. Chem. Soc., 2010, 132(50), 17975-17975.
[http://dx.doi.org/10.1021/ja1098947 ]
[22]
Swatloski, R.P.; Spear, S.K.; Holbrey, J.D.; Rogers, R.D. Dissolution of cellose with ionic liquids. J. Am. Chem. Soc., 2002, 124(18), 4974-4975.
[http://dx.doi.org/10.1021/ja025790m] [PMID: 11982358]
[23]
Eastoe, J.; Gold, S.; Rogers, S.E.; Paul, A.; Welton, T.; Heenan, R.K.; Grillo, I. Ionic liquid-in-oil microemulsions. J. Am. Chem. Soc., 2005, 127(20), 7302-7303.
[http://dx.doi.org/10.1021/ja051155f] [PMID: 15898765]
[24]
Gayet, F.; El Kalamouni, C.; Lavedan, P.; Marty, J-D.; Brûlet, A.; Lauth-de Viguerie, N. Ionic liquid/oil microemulsions as chemical nanoreactors. Langmuir, 2009, 25(17), 9741-9750.
[http://dx.doi.org/10.1021/la901175e] [PMID: 19621940]
[25]
Kuzmić, A.E.; Radošević, M.; Bogdanić, G.; Srića, V.; Vuković, R. Studies on the influence of long chain acrylic esters polymers with polar monomers as crude oil flow improver additives. Fuel, 2008, 87(13-14), 2943-2950.
[http://dx.doi.org/10.1016/j.fuel.2008.04.006]
[26]
Al-Sabagh, A.M.; El-Hamouly, S.H.; Khidr, T.T.; El-Ghazawy, R.A.; Higazy, S.A. Synthesis of phthalimide and succinimide copolymers and their evaluation as flow improvers for an Egyptian waxy crude oil. Egypt. J. Pet., 2013, 22(3), 381-393.
[http://dx.doi.org/10.1016/j.ejpe.2013.10.008]
[27]
Al-Sabagh, A.M.; Noor El-Din, M.R.; Morsi, R.E.; Elsabee, M.Z. Styrene-maleic anhydride copolymer esters as flow improvers of waxy crude oil. J. Petrol. Sci. Eng., 2009, 65(3-4), 139-146.
[http://dx.doi.org/10.1016/j.petrol.2008.12.022]
[28]
Chanda, D.; Sarmah, A.; Borthakur, A.; Rao, K.V.; Subrahmanyam, B.; Das, H.C. Combined effect of asphaltenes and flow improvers on the rheological behaviour of Indian waxy crude oil. Fuel, 1998, 77(11), 1163-1167.
[http://dx.doi.org/10.1016/S0016-2361(98)00029-5]
[29]
Qian, J.W.; Qi, G.R.; Ding, X.Z.; Yang, S.L. Assessment of polymer flow improvers for crude oil by viscometry. Fuel, 1996, 75(3), 307-312.
[http://dx.doi.org/10.1016/0016-2361(95)00263-4]
[30]
Qian, J.W.; Qi, G.R.; Han, D.L.; Yang, S.L. Influence of incipient chain dimension of EVA flow improver on the rheological behaviour of crude oil. Fuel, 1996, 75(2), 161-163.
[http://dx.doi.org/10.1016/0016-2361(95)00224-3]
[31]
Hoffmann, R.; Amundsen, L. Influence of wax inhibitor on fluid and deposit properties. J. Petrol. Sci. Eng., 2013, 107(0), 12-17.
[http://dx.doi.org/10.1016/j.petrol.2013.04.009]
[32]
Machado, A.L.C.; Lucas, E.F.; González, G. Poly(ethylene-co-vinyl acetate) (EVA) as wax inhibitor of a Brazilian crude oil: oil viscosity, pour point and phase behavior of organic solutions. J. Petrol. Sci. Eng., 2001, 32(2-4), 159-165.
[http://dx.doi.org/10.1016/S0920-4105(01)00158-9]
[33]
Taraneh, J.B.; Rahmatollah, G.; Hassan, A.; Alireza, D. Effect of wax inhibitors on pour point and rheological properties of Iranian waxy crude oil. Fuel Process. Technol., 2008, 89(10), 973-977.
[http://dx.doi.org/10.1016/j.fuproc.2008.03.013]
[34]
Cendejas, G.; Arreguín, F.; Castro, L.V.; Flores, E.A.; Vazquez, F. Demulsifying super-heavy crude oil with bifunctionalized block copolymers. Fuel, 2013, 103, 356-363.
[http://dx.doi.org/10.1016/j.fuel.2012.08.029]
[35]
Palou, R.M.; Camacho, R.C.; Chávez, B.; Vallejo, A.A.; Negrete, D.V.; Castellanos, J.; Karamath, J.; Reyes, J.; Aburto, J. Demulsification of heavy crude oil-in-water emulsions: a comparative study between microwave and thermal heating. Fuel, 2013, 113, 407-414.
[http://dx.doi.org/10.1016/j.fuel.2013.05.094]
[36]
Al-Yaari, M.; Al-Sarkhi, A.; Hussein, I.A.; Chang, F.; Abbad, M. Flow characteristics of surfactant stabilized water-in-oil emulsions. Chem. Eng. Res. Des., 2014, 92(3), 405-412.
[http://dx.doi.org/10.1016/j.cherd.2013.09.001]
[37]
Lu, J.; Liyanage, P.J.; Solairaj, S.; Adkins, S.; Arachchilage, G.P.; Kim, D.H.; Britton, C.; Weerasooriya, U.; Pope, G.A. New surfactant developments for chemical enhanced oil recovery. J. Pet. Sci. Eng., 2014, 120, 94-101.
[http://dx.doi.org/10.1016/j.petrol.2014.05.021]
[38]
ShamsiJazeyi. H.; Verduzco, R.; Hirasaki, G.J. Reducing adsorption of anionic surfactant for enhanced oil recovery: part I. Competitive adsorption mechanism. Colloids Surf. A Physicochem. Eng. Asp., 2014, 453, 162-167.
[http://dx.doi.org/10.1016/j.colsurfa.2013.10.042]
[39]
ShamsiJazeyi H.. Verduzco, R.; Hirasaki, G.J. Reducing adsorption of anionic surfactant for enhanced oil recovery: part II. Applied aspects. Colloids Surf. A Physicochem. Eng. Asp., 2014, 453, 168-175.
[http://dx.doi.org/ 10.1016/j.colsurfa.2014.02.021]
[40]
Hezave, A.Z.; Dorostkar, S.; Ayatollahi, S.; Nabipour, M.; Hemmateenejad, B. Investigating the effect of ionic liquid (1-dodecyl-3-methylimidazolium chloride ([C12mim] [Cl])) on the water/oil interfacial tension as a novel surfactant. Colloids Surf. A Physicochem. Eng. Asp., 2013, 421, 63-71.
[http://dx.doi.org/10.1016/j.colsurfa.2012.12.008]
[41]
Zeinolabedini Hezave, A.; Dorostkar, S.; Ayatollahi, S.; Nabipour, M.; Hemmateenejad, B. Effect of different families (imidazolium and pyridinium) of ionic liquids-based surfactants on interfacial tension of water/crude oil system. Fluid Phase Equilib., 2013, 360, 139-145.
[http://dx.doi.org/10.1016/j.fluid.2013.09.025]
[42]
Hezave, A.Z.; Dorostkar, S.; Ayatollahi, S.; Nabipour, M.; Hemmateenejad, B. Dynamic interfacial tension behavior between heavy crude oil and ionic liquid solution (1-dodecyl-3-methylimidazolium chloride ([C12mim][Cl]+ distilled or saline water/heavy crude oil)) as a new surfactant. J. Mol. Liq., 2013, 187, 83-89.
[http://dx.doi.org/10.1016/j.molliq.2013.05.007]
[43]
Kowsari, E.; Payami, M.; Amini, R.; Ramezanzadeh, B.; Javanbakht, M. Task-specific ionic liquid as a new green inhibitor of mild steel corrosion. Appl. Surf. Sci., 2014, 289, 478-486.
[http://dx.doi.org/10.1016/j.apsusc.2013.11.017]
[44]
Lucero, D.G.; Flores, P.; Rojo, T.; Palou, R.M. Ionic liquids as demulsifiers of water-in-crude oil emulsions: study of the microwave effect. Energy Fuels, 2010, 24, 3610-3615.
[http://dx.doi.org/10.1021/ef100232f]
[45]
Silva, E.B.; Santos, D.; Alves, D.R.M.; Barbosa, M.S.; Guimaraes, R.C.L.; Ferreira, B.M.S.; Guarnieri, R.A.; Franceschi, E.; Dariva, C.; Santos, A.F.; Fortuny, M. Demulsification of heavy crude oil emulsions using ionic liquids. Energy Fuels, 2013, 27(10), 6311-6315.
[http://dx.doi.org/10.1021/ef302008d]
[46]
Lemos, R.C.B.; da Silva, E.B.; dos Santos, A.; Guimaraes, R.C.L.; Ferreira, B.M.S.; Guarnieri, R.A.; Dariva, C.; Franceschi, E.; Santos, A.F.; Fortuny, M. Demulsification of water-in-crude oil emulsions using ionic liquids and microwave irradiation. Energy Fuels, 2010, 24, 4439-4444.
[http://dx.doi.org/10.1021/ef100425v]
[47]
Boukherissa, M.; Mutelet, F.; Modarressi, A.; Dicko, A.; Dafri, D.; Rogalski, M. Ionic liquids as dispersants of petroleum asphaltenes. Energy Fuels, 2009, 23, 2557-2564.
[http://dx.doi.org/10.1021/ef800629k]
[48]
Abedini, A.; Ashoori, S.; Torabi, F.; Saki, Y.; Dinarvand, N. Mechanism of the reversibility of asphaltene precipitation in crude oil. J. Petrol. Sci. Eng., 2011, 78(2), 316-320.
[http://dx.doi.org/10.1016/j.petrol.2011.07.010]
[49]
Arciniegas, L.M.; Babadagli, T. Asphaltene precipitation, flocculation and deposition during solvent injection at elevated temperatures for heavy oil recovery. Fuel, 2014, 124, 202-211.
[http://dx.doi.org/10.1016/j.fuel.2014.02.003]
[50]
Ashtari, M.; Ashrafizadeh, S.N.; Bayat, M. Asphaltene removal from crude oil by means of ceramic membranes. J. Petrol. Sci. Eng., 2012, 82-83, 44-49.
[http://dx.doi.org/10.1016/j.petrol.2012.01.001]
[51]
Browarzik, D.; Laux, H.; Rahimian, I. Asphaltene flocculation in crude oil systems. Fluid Phase Equilib., 1999, 154(2), 285-300.
[http://dx.doi.org/10.1016/S0378-3812(98)00434-8]
[52]
Leyva, C.; Ancheyta, J.; Berrueco, C.; Millán, M. Chemical characterization of asphaltenes from various crude oils. Fuel Process. Technol., 2013, 106, 734-738.
[http://dx.doi.org/10.1016/j.fuproc.2012.10.009]
[53]
Luo, P.; Gu, Y. Effects of asphaltene content on the heavy oil viscosity at different temperatures. Fuel, 2007, 86(7-8), 1069-1078.
[http://dx.doi.org/10.1016/j.fuel.2006.10.017]
[54]
Zahedi, G.; Fazlali, A.R.; Hosseini, S.M.; Pazuki, G.R.; Sheikhattar, L. Prediction of asphaltene precipitation in crude oil. J. Petrol. Sci. Eng., 2009, 68(3-4), 218-222.
[http://dx.doi.org/10.1016/j.petrol.2009.06.023]
[55]
Hu, Y.F.; Guo, T.M. Effect of the structures of ionic liquids and alkylbenzene-derived amphiphiles on the inhibition of asphaltene precipitation from CO2-injected reservoir oils. Langmuir, 2005, 21(18), 8168-8174.
[http://dx.doi.org/10.1021/la050212f] [PMID: 16114918]
[56]
Lakshmi, D.S.; Senthilmurugan, B.; Drioli, E.; Figoli, A. Application of ionic liquid polymeric microsphere in oil field scale control process. J. Petrol. Sci. Eng., 2013, 112(0), 69-77.
[http://dx.doi.org/10.1016/j.petrol.2013.09.011]
[57]
Bera, A.; Kumar, T.; Ojha, K.; Mandal, A. Screening of microemulsion properties for application in enhanced oil recovery. Fuel, 2014, 121, 198-207.
[http://dx.doi.org/10.1016/j.fuel.2013.12.051]
[58]
Hendraningrat, L.; Li, S.; Torsæter, O. A coreflood investigation of nanofluid enhanced oil recovery. J. Petrol. Sci. Eng., 2013, 111, 128-138.
[http://dx.doi.org/10.1016/j.petrol.2013.07.003]
[59]
Nilsson, M.A.; Kulkarni, R.; Gerberich, L.; Hammond, R.; Singh, R.; Baumhoff, E.; Rothstein, J.P. Effect of fluid rheology on enhanced oil recovery in a microfluidic sandstone device. J. Non-Newt. Fluid Mech., 2013, 202, 112-119.
[http://dx.doi.org/10.1016/j.jnnfm.2013.09.011]
[60]
Zhao, D.F.; Liao, X.W.; Yin, D.D. Evaluation of CO2 enhanced oil recovery and sequestration potential in low permeability reservoirs, Yanchang Oilfield, China. J. Energ. Inst., 2014, 87(4), 306-313.
[http://dx.doi.org/10.1016/j.joei.2014.03.031]
[61]
Wever, D.A.Z.; Picchioni, F.; Broekhuis, A.A. Polymers for enhanced oil recovery: a paradigm for structure-property relationship in aqueous solution. Prog. Polym. Sci., 2011, 36(11), 1558-1628.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.05.006]
[62]
Pereira, J.F.B.; Costa, R.; Foios, N.; Coutinho, J.A.P. Ionic liquid enhanced oil recovery in sand-pack columns. Fuel, 2014, 134, 196-200.
[http://dx.doi.org/10.1016/j.fuel.2014.05.055]
[63]
Lago, S.; Rodriguez, H.; Khoshkbarchi, M.K.; Soto, A.; Arce, A. Enhanced oil recovery using the ionic liquid trihexyl(tetradecyl)phosphonium chloride: phase behaviour and properties. RSC Adv, 2012, 2(25), 9392-9397.
[http://dx.doi.org/10.1039/c2ra21698a]
[64]
Fan, H.F.; Li, Z.B.; Liang, T. Experimental study on using ionic liquids to upgrade heavy oil. J. Fuel Chem. Tech., 2007, 35(1), 32-35.
[http://dx.doi.org/10.1016/S1872-5813(07)60009-7]
[65]
Fan, Z-x.; Wang, T-f.; He, Y-h. Upgrading and viscosity reducing of heavy oils by [BMIM][AlCl4] ionic liquid. J. Fuel Chem. Tech., 2009, 37(6), 690-693.
[http://dx.doi.org/10.1016/S1872-5813(10)60015-1]
[66]
Flores, C.A.; Flores, E.A.; Hernández, E.; Castro, L.V.; García, A.; Alvarez, F.; Vázquez, F.S. Anion and cation effects of ionic liquids and ammonium salts evaluated as dehydrating agents for super-heavy crude oil: experimental and theoretical points of view. J. Mol. Liq., 2014, 196, 249-257.
[http://dx.doi.org/10.1016/j.molliq.2014.03.044]
[67]
Saaid, M.I.; Mahat, S.Q.A.; Lal, B.; Mutalib, M.I.A.; M., Sabil K., Experimental investigation on the effectiveness of 1-butyl-3-methylimidazolium perchlorate ionic liquid as a reducing agent for heavy oil upgrading. Ind. Eng. Chem. Res., 2014, 53(19), 8279-8284.
[http://dx.doi.org/10.1021/ie500499j]
[68]
Hernandez, J.A.M.; Ramirez, S.L.; Dominguez, J.M.; Valencia, C.D.; Cruz, I.G.; Guevara, J.A.G. Survey on ionic liquids effect based on metal anions over the thermal stability of heavy oil. J. Therm. Anal. Calorim., 2009, 95(1), 173-179.
[http://dx.doi.org/10.1007/s10973-007-8919-5]
[69]
Chai, J.; Xu, L.; Liu, W.; Zhu, M. Comparison of the phase behavior and thermodynamic properties between ionic liquid-oil and water-oil microemulsion systems. J. Chem. Eng. Data, 2012, 57(9), 2394-2400.
[http://dx.doi.org/10.1021/je3000537]
[70]
Gao, Y.; Li, N.; Zhang, S.; Zheng, L.; Li, X.; Dong, B.; Yu, L. Organic solvents induce the formation of oil-in-ionic liquid microemulsion aggregations. J. Phys. Chem. B, 2009, 113(5), 1389-1395.
[http://dx.doi.org/10.1021/jp808522b] [PMID: 19138136]
[71]
Jabbari, M.; Izadmanesh, Y.; Ghavidel, H. Synthesis of ionic liquids as novel emulsifier and demulsifiers. J. Mol. Liq., 2019, 293, 111512.
[http://dx.doi.org/10.1016/j.molliq.2019.111512]
[72]
Murgia, S.; Palazzo, G.; Mamusa, M.; Lampis, S.; Monduzzi, M. Aerosol-OT forms oil-in-water spherical micelles in the presence of the ionic liquid bmimBF4. J. Phys. Chem. B, 2009, 113(27), 9216-9225.
[http://dx.doi.org/10.1021/jp902970n] [PMID: 19527013]
[73]
Rao, V.G.; Banerjee, C.; Ghosh, S.; Mandal, S.; Kuchlyan, J.; Sarkar, N. A step toward the development of high-temperature stable ionic liquid-in-oil microemulsions containing double-chain anionic surface active ionic liquid. J. Phys. Chem. B, 2013, 117(24), 7472-7480.
[http://dx.doi.org/10.1021/jp403265p] [PMID: 23697660]
[74]
Sharma, S.C.; Warr, G.G. A nonaqueous liquid crystal emulsion: fluorocarbon oil in a hexagonal phase in an ionic liquid. J. Phys. Chem. Lett., 2011, 2(15), 1937-1939.
[http://dx.doi.org/10.1021/jz200806p]
[75]
Wang, A.; Chen, L.; Jiang, D.; Yan, Z. Phase behavior of vegetable oil-based ionic liquid microemulsions. J. Chem. Eng. Data, 2014, 59(3), 666-671.
[http://dx.doi.org/10.1021/je400595k]
[76]
Zhou, S.; Ma, Z.; Baker, G.A.; Rondinone, A.J.; Zhu, Q.; Luo, H.; Wu, Z.; Dai, S. Self-assembly of metal oxide nanoparticles into hierarchically patterned porous architectures using ionic liquid/oil emulsions. Langmuir, 2009, 25(13), 7229-7233.
[http://dx.doi.org/10.1021/la901149m] [PMID: 19563219]
[77]
Mandal, S.; Ghosh, S.; Banerjee, C.; Kuchlyan, J.; Banik, D.; Sarkar, N. A novel ionic liquid-in-oil microemulsion composed of biologically acceptable components: an excitation wavelength dependent fluorescence resonance energy transfer study. J. Phys. Chem. B, 2013, 117(11), 3221-3231.
[http://dx.doi.org/10.1021/jp4009515] [PMID: 23445434]
[78]
Rao, V.G.; Mandal, S.; Ghosh, S.; Banerjee, C.; Sarkar, N. Ionic liquid-in-oil microemulsions composed of double chain surface active ionic liquid as a surfactant: temperature dependent solvent and rotational relaxation dynamics of coumarin-153 in [Py][TF2N]/[C4mim][AOT]/benzene microemulsions. J. Phys. Chem. B, 2012, 116(28), 8210-8221.
[http://dx.doi.org/10.1021/jp304668f] [PMID: 22721252]
[79]
Zhao, X.; Liu, Y.; Xu, C.; Yan, Y.; Zhang, Y.; Zhang, Q.; Zhao, S.; Chung, K.; Gray, M.R.; Shi, Q. Separation and characterization of vanadyl porphyrins in Venezuela Orinoco heavy crude oil. Energy Fuels, 2013, 27(6), 2874-2882.
[http://dx.doi.org/10.1021/ef400161p]
[80]
Less, S.; Vilagines, R. The electrocoalescers’ technology: advances, strengths and limitations for crude oil separation. J. Petrol. Sci. Eng., 2012, 81, 57-63.
[http://dx.doi.org/10.1016/j.petrol.2011.12.003]
[81]
Lin, K.Y.A.; Yang, H.; Petit, C.; Hsu, F.K. Removing oil droplets from water using a copper-based metal organic frameworks. Chem. Eng. J., 2014, 249, 293-301.
[http://dx.doi.org/10.1016/j.cej.2014.03.107]
[82]
Karimnezhad, H.; Rajabi, L.; Salehi, E.; Derakhshan, A.A.; Azimi, S. Novel nanocomposite Kevlar fabric membranes: fabrication characterization, and performance in oil/water separation. Appl. Surf. Sci., 2014, 293, 275-286.
[http://dx.doi.org/10.1016/j.apsusc.2013.12.149]
[83]
Yingming, F. Modification and separation of oil sand with ultrasonic wave and analysis of its products. Int. J. Min. Sci. Technol., 2013, 23(4), 531-535.
[http://dx.doi.org/10.1016/j.ijmst.2013.07.011]
[84]
Zhou, J.E.; Chang, Q.; Wang, Y.; Wang, J.; Meng, G. Separation of stable oil–water emulsion by the hydrophilic nano-sized ZrO2 modified Al2O3 microfiltration membrane. Separ. Purif. Tech., 2010, 75(3), 243-248.
[http://dx.doi.org/10.1016/j.seppur.2010.08.008]
[85]
Anderson, K.; Goodrich, P.; Hardacre, C.; Hussain, A.; Rooney, D.W.; Wassell, D. Removal of naphthenic acids from crude oil using amino acid ionic liquids. Fuel, 2013, 108, 715-722.
[http://dx.doi.org/10.1016/j.fuel.2013.02.030]
[86]
Duan, J.; Sun, Y.; Shi, L. Three different types of heterocycle of nitrogen-containing alkaline ionic liquids treatment of acid oil to remove naphthenic acids. Catal. Today, 2013, 212, 180-185.
[http://dx.doi.org/10.1016/j.cattod.2012.07.023]
[87]
Sun, Y.; Shi, L. Basic ionic liquids with imidazole anion: new reagents to remove naphthenic acids from crude oil with high total acid number. Fuel, 2012, 99, 83-87.
[http://dx.doi.org/10.1016/j.fuel.2012.04.014]
[88]
Hou, Y.; Ren, Y.; Peng, W.; Ren, S.; Wu, W. Separation of phenols from oil using imidazolium-based ionic liquids. Ind. Eng. Chem. Res., 2013, 52(50), 18071-18075.
[http://dx.doi.org/10.1021/ie403849g]
[89]
Ruivo, R.; Couto, R.; Simoes, P.C. Screening of ionic liquids as promising separation agents of oil mixtures for application in membranes. Separ. Purif. Tech., 2010, 76(1), 84-88.
[http://dx.doi.org/10.1016/j.seppur.2010.09.032]
[90]
Wang, Q.; Li, Z.; Yang, B.; Lei, L.; Zhu, J. Method for desulfurizing oil e.g. petroleum, involves extracting arene sulfide from separation oil using ionic liquid, where ionic liquid comprises dimethylamino modified pyridine positive ion and organic/inorganic negative ion. Chinese Patent CN103320156- A, April 29, 2015.
[91]
Corderí, S.; Calvar, N.; Gómez, E.; Domínguez, Á. Quaternary (liquid + liquid) equilibrium data for the extraction of toluene from alkanes using the ionic liquid. [EMim][MSO4] J. Chem. Thermodyn., 2014, 76, 79-86.
[http://dx.doi.org/10.1016/j.jct.2014.03.008]
[92]
Liu, Y.S.; Hu, Y.F.; Wang, H.B.; Xu, C.M.; Ji, D.J.; Sun, Y.; Guo, T.M. Ionic liquids: novel solvents for petroleum asphaltenes. Chin. J. Chem. Eng., 2005, 13(4), 564-567.
[93]
Williams, P.; Lupinsky, A.; Painter, P. Recovery of bitumen from low-grade oil sands using ionic liquids. Energy Fuels, 2010, 24(3), 2172-2173.
[http://dx.doi.org/10.1021/ef901384s]
[94]
Li, X.; Sun, W.; Wu, G.; He, L.; Li, H.; Sui, H. Ionic liquid enhanced solvent extraction for bitumen recovery from oil sands. Energy Fuels, 2011, 25(11), 5224-5231.
[http://dx.doi.org/10.1021/ef2010942]
[95]
Sun, W.; Sui, H.; Han, Z.; Li, X. Use of 1-ethyl-3-methyl imidazole tetrafluoroborate as an ionic liquid for assisting oil sand separation. Chinese Patent 102391185-A, April 16, 2014.
[96]
Hogshead, C.G.; Manias, E.; Williams, P.; Lupinsky, A.; Painter, P. Studies of bitumen-silica and oil-silica interactions in ionic liquids. Energy Fuels, 2011, 25, 293-299.
[http://dx.doi.org/10.1021/ef101404k]
[97]
Liang, W.; Zhang, S.; Li, H.; Zhang, G. Oxidative desulfurization of simulated gasoline catalyzed by acetic acid-based ionic liquids at room temperature. Fuel Process. Technol., 2013, 109, 27-31.
[http://dx.doi.org/10.1016/j.fuproc.2012.09.034]
[98]
Perez, J.R.H.; Likhanova, N.V.; Garcia, F.D.J.O.; Garnica, M.A.R.; Lopez, R.J.R.; Hernandez, P.S. Ionic liquid catalyst for improving heavy crude oil and waste oil, is prepared by using metals of VIB and VIIIB groups. U.S. Patents MX2008006051-A1; MX290557-B; US2012318714-A1; US20101 16713-A1, May 13, 2010.
[99]
Reyes, M.D.C.C.; Vacio, F.C.; Ochoa, R.N.; Garnica, M.A.R.; Lopez, R.J.R.; Hernandez, P.S. New ionic liquid catalyst comprises inorganic salts of group VIIIA metals, e.g. iron with inorganic salts and group VIA metals, e.g. molybdenum in a water base, useful in the processing of heavy oil and extra heavy crude. WIPO Patents WO2009011559-A1; MX2007008524-A1; US2010193401-A1, January 22 , 2009.
[100]
Shu, C.; Sun, T.; Zhang, H.; Jia, J.; Lou, Z. A novel process for gasoline desulfurization based on extraction with ionic liquids and reduction by sodium borohydride. Fuel, 2014, 121, 72-78.
[http://dx.doi.org/10.1016/j.fuel.2013.12.037]
[101]
Nie, Y.; Dong, Y.; Bai, L.; Dong, H.; Zhang, X. Fast oxidative desulfurization of fuel oil using dialkylpyridinium tetrachloroferrates ionic liquids. Fuel, 2013, 103, 997-1002.
[http://dx.doi.org/10.1016/j.fuel.2012.07.071]
[102]
Chu, X.; Hu, Y.; Li, J.; Liang, Q.; Liu, Y.; Zhang, X.; Peng, X.; Yue, W. Desulfurization of diesel fuel by extraction with [BF4]−-based ionic liquids. Chin. J. Chem. Eng., 2008, 16(6), 881-884.
[http://dx.doi.org/10.1016/S1004-9541(09)60010-0]
[103]
Zhu, W.; Wu, P.; Yang, L.; Chang, Y.; Chao, Y.; Li, H.; Jiang, Y.; Jiang, W.; Xun, S. Pyridinium-based temperature-responsive magnetic ionic liquid for oxidative desulfurization of fuels. Chem. Eng. J., 2013, 229, 250-256.
[http://dx.doi.org/10.1016/j.cej.2013.05.115]
[104]
Tian, Y.; Meng, X.; Shi, L. Removal of dimethyl disulfide via extraction using imidazolium-based phosphoric ionic liquids. Fuel, 2014, 129, 225-230.
[http://dx.doi.org/10.1016/j.fuel.2014.03.019]
[105]
Chaturvedi, D. Recent developments on task specific ionic liquids. Curr. Org. Chem., 2011, 15(8), 1236-1248.
[http://dx.doi.org/10.2174/138527211795202997]
[106]
Liu, B.Y.; Jin, N.X. The applications of ionic liquid as functional material: a review. Curr. Org. Chem., 2016, 20(20), 2109-2116.
[http://dx.doi.org/10.2174/1385272820666160527101844]
[107]
Radai, Z.; Kiss, N.Z.; Keglevich, G. An overview of the applications of ionic liquids as catalysts and additives in organic chemical reactions. Curr. Org. Chem., 2018, 22(6), 533-556.
[http://dx.doi.org/10.2174/1385272822666171227152013]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy