Review Article

功能失调的高密度脂蛋白:髓过氧化物酶和对氧磷酶 -1 的作用

卷 28, 期 14, 2021

发表于: 16 July, 2020

页: [2842 - 2850] 页: 9

弟呕挨: 10.2174/0929867327999200716112353

价格: $65

摘要

低循环高密度脂蛋白 (HDL) 不仅是代谢综合征的定义标准,而且更普遍地与动脉粥样硬化心血管疾病 (ASCVD) 和其他慢性疾病有关。氧化应激是心脏代谢疾病的标志,通过抑制其功能进一步影响 HDL 活性。尤其是白细胞衍生酶髓过氧化物酶 (MPO) 最近引起了极大的兴趣,因为它催化氧化活性物质的形成,从而改变 HDL 的结构和功能,最终增加心血管风险。相反,对氧磷酶-1 (PON1) 是一种 HDL 相关酶,可保护 HDL 免受脂质氧化,然后作为预防 ASCVD 的保护因子。值得注意的是,最近的研究已经证明 MPO、PON1 和 HDL 如何形成功能复合物,其中 PON1 部分抑制 MPO 活性,而 MPO 反过来部分灭活 PON1。与此一致,高 MPO/PON1 比率是 ASCVD 患者的特征和代谢综合征,并已被建议作为功能失调的 HDL 的潜在标志物以及 ASCVD 的预测因子。在这篇综述中,我们总结了 MPO 和 PON1 在结构、功能和与 HDL 活性相互作用方面相互作用的证据。我们还提供了体外和实验动物模型的概述,最后侧重于来自一组 ASCVD 和代谢综合征患者的临床证据。

关键词: 高密度脂蛋白、髓过氧化物酶、对氧磷酶、动脉粥样硬化、代谢综合征、HDL 活性。

« Previous
[1]
Assmann, G.; Nofer, J.R. Atheroprotective effects of high-density lipoproteins. Annu. Rev. Med., 2003, 54, 321-341.
[http://dx.doi.org/10.1146/annurev.med.54.101601.152409] [PMID: 12414916]
[2]
Genest, J.J. Jr.; Bard, J.M.; Fruchart, J.C.; Ordovas, J.M.; Wilson, P.F.; Schaefer, E.J. Plasma apolipoprotein A-I, A-II, B, E and C-III containing particles in men with premature coronary artery disease. Atherosclerosis, 1991, 90(2-3), 149-157.
[http://dx.doi.org/10.1016/0021-9150(91)90109-G] [PMID: 1684707]
[3]
Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; Graham, I.M.; Halliday, A.; Landmesser, U.; Mihaylova, B.; Pedersen, T.R.; Riccardi, G.; Richter, D.J.; Sabatine, M.S.; Taskinen, M.R.; Tokgozoglu, L.; Wiklund, O.; Group, E.S.C.S.D. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur. Heart J., 2020, 41(1), 111-188.
[http://dx.doi.org/10.1093/eurheartj/ehz455] [PMID: 31504418]
[4]
Cameron, S.J.; Morrell, C.N.; Bao, C.; Swaim, A.F.; Rodriguez, A.; Lowenstein, C.J. A novel anti-inflammatory effect for high density lipoprotein. PLoS One, 2015, 10(12), e0144372.
[http://dx.doi.org/10.1371/journal.pone.0144372] [PMID: 26680360]
[5]
Negre-Salvayre, A.; Dousset, N.; Ferretti, G.; Bacchetti, T.; Curatola, G.; Salvayre, R. Antioxidant and cytoprotective properties of high-density lipoproteins in vascular cells. Free Radic. Biol. Med., 2006, 41(7), 1031-1040.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.07.006] [PMID: 16962927]
[6]
Rached, F.H.; Chapman, M.J.; Kontush, A. HDL particle subpopulations: focus on biological function. Biofactors, 2015, 41(2), 67-77.
[http://dx.doi.org/10.1002/biof.1202] [PMID: 25809447]
[7]
Soran, H.; Schofield, J.D.; Durrington, P.N. Antioxidant properties of HDL. Front. Pharmacol., 2015, 6, 222.
[http://dx.doi.org/10.3389/fphar.2015.00222] [PMID: 26528181]
[8]
Rosenblat, M.; Aviram, M. Paraoxonases role in the prevention of cardiovascular diseases. Biofactors, 2009, 35(1), 98-104.
[http://dx.doi.org/10.1002/biof.16] [PMID: 19319852]
[9]
Mackness, M.I.; Arrol, S.; Durrington, P.N. Paraoxonase prevents accumulation of lipoperoxides in low-density lipoprotein. FEBS Lett., 1991, 286(1-2), 152-154.
[http://dx.doi.org/10.1016/0014-5793(91)80962-3] [PMID: 1650712]
[10]
Aviram, M.; Rosenblat, M.; Bisgaier, C.L.; Newton, R.S.; Primo-Parmo, S.L.; La Du, B.N. Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase. J. Clin. Invest., 1998, 101(8), 1581-1590.
[http://dx.doi.org/10.1172/JCI1649] [PMID: 9541487]
[11]
Watson, A.D.; Berliner, J.A.; Hama, S.Y.; La Du, B.N.; Faull, K.F.; Fogelman, A.M.; Navab, M. Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidized low density lipoprotein. J. Clin. Invest., 1995, 96(6), 2882-2891.
[http://dx.doi.org/10.1172/JCI118359] [PMID: 8675659]
[12]
Besler, C.; Heinrich, K.; Rohrer, L.; Doerries, C.; Riwanto, M.; Shih, D.M.; Chroni, A.; Yonekawa, K.; Stein, S.; Schaefer, N.; Mueller, M.; Akhmedov, A.; Daniil, G.; Manes, C.; Templin, C.; Wyss, C.; Maier, W.; Tanner, F.C.; Matter, C.M.; Corti, R.; Furlong, C.; Lusis, A.J.; von Eckardstein, A.; Fogelman, A.M.; Lüscher, T.F.; Landmesser, U. Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease. J. Clin. Invest., 2011, 121(7), 2693-2708.
[http://dx.doi.org/10.1172/JCI42946] [PMID: 21701070]
[13]
Ikhlef, S.; Berrougui, H.; Kamtchueng Simo, O.; Zerif, E.; Khalil, A. Human paraoxonase 1 overexpression in mice stimulates HDL cholesterol efflux and reverse cholesterol transport. PLoS One, 2017, 12(3), e0173385.
[http://dx.doi.org/10.1371/journal.pone.0173385] [PMID: 28278274]
[14]
Draganov, D.I.; Teiber, J.F.; Speelman, A.; Osawa, Y.; Sunahara, R.; La Du, B.N. Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities. J. Lipid Res., 2005, 46(6), 1239-1247.
[http://dx.doi.org/10.1194/jlr.M400511-JLR200] [PMID: 15772423]
[15]
Ferretti, G.; Bacchetti, T.; Sahebkar, A. Effect of statin therapy on paraoxonase-1 status: a systematic review and meta-analysis of 25 clinical trials. Prog. Lipid Res., 2015, 60, 50-73.
[http://dx.doi.org/10.1016/j.plipres.2015.08.003] [PMID: 26416579]
[16]
Ferretti, G.; Bacchetti, T.; Busni, D.; Rabini, R.A.; Curatola, G. Protective effect of paraoxonase activity in high-density lipoproteins against erythrocyte membranes peroxidation: a comparison between healthy subjects and type 1 diabetic patients. J. Clin. Endocrinol. Metab., 2004, 89(6), 2957-2962.
[http://dx.doi.org/10.1210/jc.2003-031897] [PMID: 15181084]
[17]
Ferretti, G.; Bacchetti, T.; Moroni, C.; Savino, S.; Liuzzi, A.; Balzola, F.; Bicchiega, V. Paraoxonase activity in high-density lipoproteins: a comparison between healthy and obese females. J. Clin. Endocrinol. Metab., 2005, 90(3), 1728-1733.
[http://dx.doi.org/10.1210/jc.2004-0486] [PMID: 15613429]
[18]
Aviram, M.; Hardak, E.; Vaya, J.; Mahmood, S.; Milo, S.; Hoffman, A.; Billicke, S.; Draganov, D.; Rosenblat, M. Human serum paraoxonases (PON1) Q and R selectively decrease lipid peroxides in human coronary and carotid atherosclerotic lesions: PON1 esterase and peroxidase-like activities. Circulation, 2000, 101(21), 2510-2517.
[http://dx.doi.org/10.1161/01.CIR.101.21.2510] [PMID: 10831526]
[19]
Eren, E.; Yilmaz, N.; Aydin, O. High density lipoprotein and it’s dysfunction. Open Biochem. J., 2012, 6, 78-93.
[http://dx.doi.org/10.2174/1874091X01206010078] [PMID: 22888373]
[20]
Ferretti, G.; Bacchetti, T.; Nègre-Salvayre, A.; Salvayre, R.; Dousset, N.; Curatola, G. Structural modifications of HDL and functional consequences. Atherosclerosis, 2006, 184(1), 1-7.
[http://dx.doi.org/10.1016/j.atherosclerosis.2005.08.008] [PMID: 16157342]
[21]
Bergt, C.; Reicher, H.; Malle, E.; Sattler, W. Hypochlorite modification of high density lipoprotein: effects on cholesterol efflux from J774 macrophages. FEBS Lett., 1999, 452(3), 295-300.
[http://dx.doi.org/10.1016/S0014-5793(99)00677-8] [PMID: 10386609]
[22]
Zheng, L.; Nukuna, B.; Brennan, M.L.; Sun, M.; Goormastic, M.; Settle, M.; Schmitt, D.; Fu, X.; Thomson, L.; Fox, P.L.; Ischiropoulos, H.; Smith, J.D.; Kinter, M.; Hazen, S.L. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J. Clin. Invest., 2004, 114(4), 529-541.
[http://dx.doi.org/10.1172/JCI200421109] [PMID: 15314690]
[23]
Shao, B.; Tang, C.; Heinecke, J.W.; Oram, J.F. Oxidation of apolipoprotein A-I by myeloperoxidase impairs the initial interactions with ABCA1 required for signaling and cholesterol export. J. Lipid Res., 2010, 51(7), 1849-1858.
[http://dx.doi.org/10.1194/jlr.M004085] [PMID: 20064972]
[24]
Undurti, A.; Huang, Y.; Lupica, J.A.; Smith, J.D.; DiDonato, J.A.; Hazen, S.L. Modification of high density lipoprotein by myeloperoxidase generates a pro-inflammatory particle. J. Biol. Chem., 2009, 284(45), 30825-30835.
[http://dx.doi.org/10.1074/jbc.M109.047605] [PMID: 19726691]
[25]
Sorrentino, S.A.; Besler, C.; Rohrer, L.; Meyer, M.; Heinrich, K.; Bahlmann, F.H.; Mueller, M.; Horváth, T.; Doerries, C.; Heinemann, M.; Flemmer, S.; Markowski, A.; Manes, C.; Bahr, M.J.; Haller, H.; von Eckardstein, A.; Drexler, H.; Landmesser, U. Endothelial-vasoprotective effects of high-density lipoprotein are impaired in patients with type 2 diabetes mellitus but are improved after extended-release niacin therapy. Circulation, 2010, 121(1), 110-122.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.836346] [PMID: 20026785]
[26]
Marsche, G.; Furtmüller, P.G.; Obinger, C.; Sattler, W.; Malle, E. Hypochlorite-modified high-density lipoprotein acts as a sink for myeloperoxidase in vitro. Cardiovasc. Res., 2008, 79(1), 187-194.
[http://dx.doi.org/10.1093/cvr/cvn051] [PMID: 18296711]
[27]
Pennathur, S.; Bergt, C.; Shao, B.; Byun, J.; Kassim, S.Y.; Singh, P.; Green, P.S.; McDonald, T.O.; Brunzell, J.; Chait, A.; Oram, J.F.; O’brien, K.; Geary, R.L.; Heinecke, J.W. Human atherosclerotic intima and blood of patients with established coronary artery disease contain high density lipoprotein damaged by reactive nitrogen species. J. Biol. Chem., 2004, 279(41), 42977-42983.
[http://dx.doi.org/10.1074/jbc.M406762200] [PMID: 15292228]
[28]
Shao, B.; Cavigiolio, G.; Brot, N.; Oda, M.N.; Heinecke, J.W. Methionine oxidation impairs reverse cholesterol transport by apolipoprotein A-I. Proc. Natl. Acad. Sci. USA, 2008, 105(34), 12224-12229.
[http://dx.doi.org/10.1073/pnas.0802025105] [PMID: 18719109]
[29]
Winterbourn, C.C.; Kettle, A.J. Biomarkers of myeloperoxidase-derived hypochlorous acid. Free Radic. Biol. Med., 2000, 29(5), 403-409.
[http://dx.doi.org/10.1016/S0891-5849(00)00204-5] [PMID: 11020661]
[30]
Shao, B.; Bergt, C.; Fu, X.; Green, P.; Voss, J.C.; Oda, M.N.; Oram, J.F.; Heinecke, J.W. Tyrosine 192 in apolipoprotein A-I is the major site of nitration and chlorination by myeloperoxidase, but only chlorination markedly impairs ABCA1-dependent cholesterol transport. J. Biol. Chem., 2005, 280(7), 5983-5993.
[http://dx.doi.org/10.1074/jbc.M411484200] [PMID: 15574409]
[31]
Shao, B.; Oda, M.N.; Bergt, C.; Fu, X.; Green, P.S.; Brot, N.; Oram, J.F.; Heinecke, J.W. Myeloperoxidase impairs ABCA1-dependent cholesterol efflux through methionine oxidation and site-specific tyrosine chlorination of apolipoprotein A-I. J. Biol. Chem., 2006, 281(14), 9001-9004.
[http://dx.doi.org/10.1074/jbc.C600011200] [PMID: 16497665]
[32]
Shao, B. Site-specific oxidation of apolipoprotein A-I impairs cholesterol export by ABCA1, a key cardioprotective function of HDL. Biochim. Biophys. Acta, 2012, 1821(3), 490-501.
[http://dx.doi.org/10.1016/j.bbalip.2011.11.011] [PMID: 22178192]
[33]
Huang, Y.; Wu, Z.; Riwanto, M.; Gao, S.; Levison, B.S.; Gu, X.; Fu, X.; Wagner, M.A.; Besler, C.; Gerstenecker, G.; Zhang, R.; Li, X.M.; DiDonato, A.J.; Gogonea, V.; Tang, W.H.; Smith, J.D.; Plow, E.F.; Fox, P.L.; Shih, D.M.; Lusis, A.J.; Fisher, E.A.; DiDonato, J.A.; Landmesser, U.; Hazen, S.L. Myeloperoxidase, paraoxonase-1, and HDL form a functional ternary complex. J. Clin. Invest., 2013, 123(9), 3815-3828.
[http://dx.doi.org/10.1172/JCI67478] [PMID: 23908111]
[34]
Panzenboeck, U.; Raitmayer, S.; Reicher, H.; Lindner, H.; Glatter, O.; Malle, E.; Sattler, W. Effects of reagent and enzymatically generated hypochlorite on physicochemical and metabolic properties of high density lipoproteins. J. Biol. Chem., 1997, 272(47), 29711-29720.
[http://dx.doi.org/10.1074/jbc.272.47.29711] [PMID: 9368040]
[35]
van Dalen, C.J.; Whitehouse, M.W.; Winterbourn, C.C.; Kettle, A.J. Thiocyanate and chloride as competing substrates for myeloperoxidase. Biochem. J., 1997, 327(Pt 2), 487-492.
[http://dx.doi.org/10.1042/bj3270487] [PMID: 9359420]
[36]
Holzer, M.; Gauster, M.; Pfeifer, T.; Wadsack, C.; Fauler, G.; Stiegler, P.; Koefeler, H.; Beubler, E.; Schuligoi, R.; Heinemann, A.; Marsche, G. Protein carbamylation renders high-density lipoprotein dysfunctional. Antioxid. Redox Signal., 2011, 14(12), 2337-2346.
[http://dx.doi.org/10.1089/ars.2010.3640] [PMID: 21235354]
[37]
Wang, Z.; Nicholls, S.J.; Rodriguez, E.R.; Kummu, O.; Hörkkö, S.; Barnard, J.; Reynolds, W.F.; Topol, E.J.; DiDonato, J.A.; Hazen, S.L. Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nat. Med., 2007, 13(10), 1176-1184.
[http://dx.doi.org/10.1038/nm1637] [PMID: 17828273]
[38]
Gaidukov, L.; Tawfik, D.S. High affinity, stability, and lactonase activity of serum paraoxonase PON1 anchored on HDL with ApoA-I. Biochemistry, 2005, 44(35), 11843-11854.
[http://dx.doi.org/10.1021/bi050862i] [PMID: 16128586]
[39]
Haraguchi, Y.; Toh, R.; Hasokawa, M.; Nakajima, H.; Honjo, T.; Otsui, K.; Mori, K.; Miyamoto-Sasaki, M.; Shinohara, M.; Nishimura, K.; Ishida, T.; Hirata, K. Serum myeloperoxidase/paraoxonase 1 ratio as potential indicator of dysfunctional high-density lipoprotein and risk stratification in coronary artery disease. Atherosclerosis, 2014, 234(2), 288-294.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.03.009] [PMID: 24704632]
[40]
Pirillo, A.; Uboldi, P.; Catapano, A.L. Dual effect of hypochlorite in the modification of high density lipoproteins. Biochem. Biophys. Res. Commun., 2010, 403(3-4), 447-451.
[http://dx.doi.org/10.1016/j.bbrc.2010.11.053] [PMID: 21094143]
[41]
Kameda, T.; Ohkawa, R.; Yano, K.; Usami, Y.; Miyazaki, A.; Matsuda, K.; Kawasaki, K.; Sugano, M.; Kubota, T.; Tozuka, M. Effects of myeloperoxidase-induced oxidation on antiatherogenic functions of high-density lipoprotein. J. Lipids, 2015, 2015, 592594.
[http://dx.doi.org/10.1155/2015/592594] [PMID: 26257958]
[42]
Lu, N.; Xie, S.; Li, J.; Tian, R.; Peng, Y.Y. Myeloperoxidase-mediated oxidation targets serum apolipoprotein A-I in diabetic patients and represents a potential mechanism leading to impaired anti-apoptotic activity of high density lipoprotein. Clin. Chim. Acta, 2015, 441, 163-170.
[http://dx.doi.org/10.1016/j.cca.2014.12.014] [PMID: 25528002]
[43]
Zhang, R.; Brennan, M.L.; Fu, X.; Aviles, R.J.; Pearce, G.L.; Penn, M.S.; Topol, E.J.; Sprecher, D.L.; Hazen, S.L. Association between myeloperoxidase levels and risk of coronary artery disease. JAMA, 2001, 286(17), 2136-2142.
[http://dx.doi.org/10.1001/jama.286.17.2136] [PMID: 11694155]
[44]
Bergt, C.; Pennathur, S.; Fu, X.; Byun, J.; O’Brien, K.; McDonald, T.O.; Singh, P.; Anantharamaiah, G.M.; Chait, A.; Brunzell, J.; Geary, R.L.; Oram, J.F.; Heinecke, J.W. The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1-dependent cholesterol transport. Proc. Natl. Acad. Sci. USA, 2004, 101(35), 13032-13037.
[http://dx.doi.org/10.1073/pnas.0405292101] [PMID: 15326314]
[45]
Holzer, M.; Zangger, K.; El-Gamal, D.; Binder, V.; Curcic, S.; Konya, V.; Schuligoi, R.; Heinemann, A.; Marsche, G. Myeloperoxidase-derived chlorinating species induce protein carbamylation through decomposition of thiocyanate and urea: novel pathways generating dysfunctional high-density lipoprotein. Antioxid. Redox Signal., 2012, 17(8), 1043-1052.
[http://dx.doi.org/10.1089/ars.2011.4403] [PMID: 22462773]
[46]
Jornayvaz, F.R.; Brulhart-Meynet, M.C.; James, R.W. Myeloperoxidase and paraoxonase-1 in type 2 diabetic patients. Nutr. Metab. Cardiovasc. Dis., 2009, 19(9), 613-619.
[http://dx.doi.org/10.1016/j.numecd.2008.12.005] [PMID: 19201174]
[47]
Emami Razavi, A.; Basati, G.; Varshosaz, J.; Abdi, S. Association between HDL particles size and myeloperoxidase/paraoxonase-1 (MPO/PON1) ratio in patients with acute coronary syndrome. Acta Med. Iran., 2013, 51(6), 365-371.
[PMID: 23852840]
[48]
Yunoki, K.; Naruko, T.; Inaba, M.; Inoue, T.; Nakagawa, M.; Sugioka, K.; Ohsawa, M.; Iwasa, Y.; Komatsu, R.; Itoh, A.; Haze, K.; Yoshiyama, M.; Becker, A.E.; Ueda, M. Gender-specific correlation between plasma myeloperoxidase levels and serum high-density lipoprotein-associated paraoxonase-1 levels in patients with stable and unstable coronary artery disease. Atherosclerosis, 2013, 231(2), 308-314.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.08.037] [PMID: 24267244]
[49]
Zsíros, N.; Koncsos, P.; Lőrincz, H.; Seres, I.; Katkó, M.; Szentpéteri, A.; Varga, V.E.; Fülöp, P.; Paragh, G.; Harangi, M. Paraoxonase-1 arylesterase activity is an independent predictor of myeloperoxidase levels in overweight patients with or without cardiovascular complications. Clin. Biochem., 2016, 49(12), 862-867.
[http://dx.doi.org/10.1016/j.clinbiochem.2016.03.011] [PMID: 27129797]
[50]
Szentpéteri, A.; Zsíros, N.; Varga, V.E.; Lőrincz, H.; Katkó, M.; Seres, I.; Fülöp, P.; Paragh, G.; Harangi, M. Paraoxonase-1 and myeloperoxidase correlate with vascular biomarkers in overweight patients with newly diagnosed untreated hyperlipidaemia. Vasa, 2017, 46(5), 370-376.
[http://dx.doi.org/10.1024/0301-1526/a000643] [PMID: 28602123]
[51]
Variji, A.; Shokri, Y.; Fallahpour, S.; Zargari, M.; Bagheri, B.; Abediankenari, S.; Alizadeh, A.; Mahrooz, A. The combined utility of myeloperoxidase (MPO) and paraoxonase 1 (PON1) as two important HDL-associated enzymes in coronary artery disease: which has a stronger predictive role? Atherosclerosis, 2019, 280, 7-13.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.11.004] [PMID: 30448568]
[52]
Khine, H.W.; Teiber, J.F.; Haley, R.W.; Khera, A.; Ayers, C.R.; Rohatgi, A. Association of the serum myeloperoxidase/high-density lipoprotein particle ratio and incident cardiovascular events in a multi-ethnic population: observations from the Dallas Heart Study. Atherosclerosis, 2017, 263, 156-162.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.06.007] [PMID: 28645072]
[53]
Tziomalos, K.; Katrini, K.; Papagianni, M.; Christou, K.; Gkolfinopoulou, C.; Angelopoulou, S.M.; Sofogianni, A.; Savopoulos, C.; Hatzitolios, A.I.; Chroni, A. Impaired antioxidative activity of high-density lipoprotein is associated with more severe acute ischemic stroke. Metabolism, 2019, 98, 49-52.
[http://dx.doi.org/10.1016/j.metabol.2019.06.004] [PMID: 31202834]
[54]
Bacchetti, T.; Simonetti, O.; Ricotti, F.; Offidani, A.; Ferretti, G. Plasma oxidation status and antioxidant capacity in psoriatic children. Arch. Dermatol. Res., 2020, 312(1), 33-39.
[http://dx.doi.org/10.1007/s00403-019-01976-z] [PMID: 31531730]
[55]
Gkolfinopoulou, C.; Stratikos, E.; Theofilatos, D.; Kardassis, D.; Voulgari, P.V.; Drosos, A.A.; Chroni, A. Impaired antiatherogenic functions of high-density lipoprotein in patients with ankylosing spondylitis. J. Rheumatol., 2015, 42(9), 1652-1660.
[http://dx.doi.org/10.3899/jrheum.141532] [PMID: 26233507]
[56]
Neşelioglu, S.; Pekcan, G.; Gök, G.; Yurt, E.F. Investigation of dysfunctional HDL using myeloperoxidase/paraoxonase ratio in lymphoma. Harran Üniversitesi Tıp Fakültesi Dergisi, 2019, 16(2), 358-364.
[http://dx.doi.org/10.35440/hutfd.579011]
[57]
Jelić-Knezović, N.; Galijašević, S.; Lovrić, M.; Vasilj, M.; Selak, S.; Mikulić, I. Levels of nitric oxide metabolites and myeloperoxidase in subjects with type 2 diabetes mellitus on metformin therapy. Exp. Clin. Endocrinol. Diabetes, 2019, 127(1), 56-61.
[http://dx.doi.org/10.1055/a-0577-7776] [PMID: 29529688]
[58]
Gómez García, A.; Rivera Rodríguez, M.; Gómez Alonso, C.; Rodríguez Ochoa, D.Y.; Alvarez Aguilar, C. Myeloperoxidase is associated with insulin resistance and inflammation in overweight subjects with first-degree relatives with type 2 diabetes mellitus. Diabetes Metab. J., 2015, 39(1), 59-65.
[http://dx.doi.org/10.4093/dmj.2015.39.1.59] [PMID: 25729714]
[59]
Shiu, S.W.; Xiao, S.M.; Wong, Y.; Chow, W.S.; Lam, K.S.; Tan, K.C. Carbamylation of LDL and its relationship with myeloperoxidase in type 2 diabetes mellitus. Clin. Sci. (Lond.), 2014, 126(2), 175-181.
[http://dx.doi.org/10.1042/CS20130369] [PMID: 23905837]
[60]
Farbstein, D.; Levy, A.P. HDL dysfunction in diabetes: causes and possible treatments. Expert Rev. Cardiovasc. Ther., 2012, 10(3), 353-361.
[http://dx.doi.org/10.1586/erc.11.182] [PMID: 22390807]
[61]
Hermo, R.; Mier, C.; Mazzotta, M.; Tsuji, M.; Kimura, S.; Gugliucci, A. Circulating levels of nitrated apolipoprotein A-I are increased in type 2 diabetic patients. Clin. Chem. Lab. Med., 2005, 43(6), 601-606.
[http://dx.doi.org/10.1515/CCLM.2005.104] [PMID: 16006255]
[62]
Gugliucci, A.; Hermo, R.; Tsuji, M.; Kimura, S. Lower serum paraoxonase-1 activity in type 2 diabetic patients correlates with nitrated apolipoprotein A-I levels. Clin. Chim. Acta, 2006, 368(1-2), 201-202.
[http://dx.doi.org/10.1016/j.cca.2006.01.011] [PMID: 16500635]
[63]
Song, P.; Xu, J.; Song, Y.; Jiang, S.; Yuan, H.; Zhang, X. Association of plasma myeloperoxidase level with risk of coronary artery disease in patients with type 2 diabetes. Dis. Markers, 2015, 2015, 761939.
[http://dx.doi.org/10.1155/2015/761939] [PMID: 26451069]
[64]
Ferretti, G.; Bacchetti, T.; Masciangelo, S.; Grugni, G.; Bicchiega, V. Altered inflammation, paraoxonase-1 activity and HDL physicochemical properties in obese humans with and without Prader-Willi syndrome. Dis. Model. Mech., 2012, 5(5), 698-705.
[http://dx.doi.org/10.1242/dmm.009209] [PMID: 22822045]
[65]
Zur, B.; Look, M.; Holdenrieder, S.; Stoffel-Wagner, B. Elevated plasma myeloperoxidase concentration in adults with obesity. Clin. Chim. Acta, 2011, 412(19-20), 1891-1892.
[http://dx.doi.org/10.1016/j.cca.2011.06.010] [PMID: 21693110]
[66]
Heinecke, J.W.; Goldberg, I.J. Myeloperoxidase: a therapeutic target for preventing insulin resistance and the metabolic sequelae of obesity? Diabetes, 2014, 63(12), 4001-4003.
[http://dx.doi.org/10.2337/db14-1273] [PMID: 25414015]
[67]
Andrade, V.L.; Petruceli, E.; Belo, V.A.; Andrade-Fernandes, C.M.; Caetano Russi, C.V.; Bosco, A.A.; Tanus-Santos, J.E.; Sandrim, V.C. Evaluation of plasmatic MMP-8, MMP-9, TIMP-1 and MPO levels in obese and lean women. Clin. Biochem., 2012, 45(6), 412-415.
[http://dx.doi.org/10.1016/j.clinbiochem.2012.01.008] [PMID: 22285381]
[68]
Vazquez, E.; Sethi, A.A.; Freeman, L.; Zalos, G.; Chaudhry, H.; Haser, E.; Aicher, B.O.; Aponte, A.; Gucek, M.; Kato, G.J.; Waclawiw, M.A.; Remaley, A.T.; Cannon, R.O. III. High-density lipoprotein cholesterol efflux, nitration of apolipoprotein A-I, and endothelial function in obese women. Am. J. Cardiol., 2012, 109(4), 527-532.
[http://dx.doi.org/10.1016/j.amjcard.2011.10.008] [PMID: 22105786]
[69]
Mathew, A.V.; Li, L.; Byun, J.; Guo, Y.; Michailidis, G.; Jaiswal, M.; Chen, Y.E.; Pop-Busui, R.; Pennathur, S. Therapeutic lifestyle changes improve HDL function by inhibiting myeloperoxidase-mediated oxidation in patients with metabolic syndrome. Diabetes Care, 2018, 41(11), 2431-2437.
[http://dx.doi.org/10.2337/dc18-0049] [PMID: 30201848]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy