Abstract
Single cell RNA-Seq technology enables the assessment of RNA expression in individual cells. This makes it popular in experimental biology for gleaning specifications of novel cell types as well as inferring heterogeneity. Experimental data conventionally contains zero counts or dropout events for many single cell transcripts. Such missing data hampers the accurate analysis using standard workflows, designed for massive RNA-Seq datasets. Imputation for single cell datasets is done to infer the missing values. This was traditionally done with ad-hoc code but later customized pipelines, workflows and specialized software appeared for this purpose. This made it easy to benchmark and cluster things in an organized manner. In this review, we have assembled a catalog of available RNASeq single cell imputation algorithms/workflows and associated softwares for the scientific community performing single-cell RNA-Seq data analysis. Continued development of imputation methods, especially using deep learning approaches, would be necessary for eradicating associated pitfalls and addressing challenges associated with future large scale and heterogeneous datasets.
Keywords: Single cell, RNA-Seq, imputation, algorithms, heterogeneity, analysis.
Graphical Abstract
Current Genomics
Title:An Overview of Algorithms and Associated Applications for Single Cell RNA-Seq Data Imputation
Volume: 22 Issue: 5
Author(s): Zarrin Basharat*, Sania Majeed, Humaira Saleem, Ishtiaq Ahmad Khan and Azra Yasmin
Affiliation:
- Jamil–ur–Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi–75270,Pakistan
Keywords: Single cell, RNA-Seq, imputation, algorithms, heterogeneity, analysis.
Abstract: Single cell RNA-Seq technology enables the assessment of RNA expression in individual cells. This makes it popular in experimental biology for gleaning specifications of novel cell types as well as inferring heterogeneity. Experimental data conventionally contains zero counts or dropout events for many single cell transcripts. Such missing data hampers the accurate analysis using standard workflows, designed for massive RNA-Seq datasets. Imputation for single cell datasets is done to infer the missing values. This was traditionally done with ad-hoc code but later customized pipelines, workflows and specialized software appeared for this purpose. This made it easy to benchmark and cluster things in an organized manner. In this review, we have assembled a catalog of available RNASeq single cell imputation algorithms/workflows and associated softwares for the scientific community performing single-cell RNA-Seq data analysis. Continued development of imputation methods, especially using deep learning approaches, would be necessary for eradicating associated pitfalls and addressing challenges associated with future large scale and heterogeneous datasets.
Export Options
About this article
Cite this article as:
Basharat Zarrin*, Majeed Sania , Saleem Humaira , Khan Ahmad Ishtiaq and Yasmin Azra , An Overview of Algorithms and Associated Applications for Single Cell RNA-Seq Data Imputation, Current Genomics 2021; 22 (5) . https://dx.doi.org/10.2174/1389202921999200716104916
DOI https://dx.doi.org/10.2174/1389202921999200716104916 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements