Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Systematic Review Article

Neural Receptors Associated with Depression: A Systematic Review of the Past 10 Years

Author(s): Alice Barros Câmara* and Igor Augusto Brandão

Volume 19, Issue 6, 2020

Page: [417 - 436] Pages: 20

DOI: 10.2174/1871527319666200715102430

Price: $65

Abstract

Over the past few years, experimental research has been carried out to analyze the role of specific receptors in depression to better understand the mechanisms and pathophysiological aspects of the disease. In this paper, we aim to investigate the receptors family most involved in depression, as well as the tissues in which most depression related-receptors are expressed. The article also aims to identify the functions of the main receptors predominantly associated with the pathology. This review used a systematic methodology (Prospero; ID 168584) and followed the PRISMA guidelines. Studies were searched in PubMed/MEDLINE, Scientific Electronic Library Online, Web of Science, and Directory of Open Access Journals databases. Quantitative studies with conclusive results regarding receptors involved in depression were selected. The charts and network were made using R programming language and statistical analyses were carried out using SPSS v25 software. It can be seen that G protein-coupled receptors family is the most studied (p < 0.05). These receptors are expressed in the cerebral cortex, basal ganglia, and can interact with each other. A great number of studies have evaluated receptors related to beneficial effects in the disease (p < 0.05). The inflammation response and cell survival/proliferation are the main functions related to these receptors (p < 0.01) and behavioral tests in mice are the main methodologies applied in these studies (p < 0.05). Finally, the most influential protein on the network of receptors involved in depression is the Bradykinin receptor B1. G protein- coupled receptors located in cell membranes involving especially protective effects in depression and that expressed mainly in the cerebral cortex and basal ganglia have shown significant importance in this review. In addition, inflammation response or cell survival/proliferation are the main functions performed by the receptors related to depression as observed in this work.

Keywords: Depression, receptors, cerebral cortex, basal ganglia, inflammation, cell proliferation, cell survival, mice.

Graphical Abstract

[1]
Veeraiah P, Noronha JM, Maitra S, et al. Dysfunctional glutamatergic and γ-aminobutyric acidergic activities in prefrontal cortex of mice in social defeat model of depression. Biol Psychiatry 2014; 76(3): 231-8.
[http://dx.doi.org/10.1016/j.biopsych.2013.09.024] [PMID: 24239130]
[2]
Cui R. A systematic review of depression. Curr Neuropharmacol 2015; 13(4): 480.
[http://dx.doi.org/10.2174/1570159X1304150831123535 ] [PMID: 26412067]
[3]
Bjorklof GH, Engedal K, Selbæk G, Kouwenhoven SE, Helvik AS. Coping and depression in old age: A literature review. Dement Geriatr Cogn Disord 2013; 35(3-4): 121-54.
[http://dx.doi.org/10.1159/000346633] [PMID: 23392253]
[4]
Sibeoni J, Moro MR. Childhood and adolescent depression. Rev Prat 2014; 64(4): 487-90.
[PMID: 24855783]
[5]
Girgus JS, Yang K, Ferri CV. The gender difference in depression: Are elderly women at greater risk for depression than elderly men? Geriatrics (Basel) 2017; 2(4): 35.
[http://dx.doi.org/10.3390/geriatrics2040035] [PMID: 31011045]
[6]
Schlax J, Jünger C, Beutel ME, et al. Income and education predict elevated depressive symptoms in the general population: Results from the Gutenberg health study. BMC Public Health 2019; 19(1): 430.
[http://dx.doi.org/10.1186/s12889-019-6730-4] [PMID: 31014301]
[7]
Farrell C, O’Keane V. Epigenetics and the glucocorticoid receptor: A review of the implications in depression. Psychol Res 2016; 242: 349-56.
[http://dx.doi.org/10.1016/j.psychres.2016.06.022] [PMID: 27344028]
[8]
Lindqvist D, Dhabhar FS, James SJ, et al. Oxidative stress, inflammation and treatment response in major depression. Psychoneuroendocrinology 2017; 76: 197-205.
[http://dx.doi.org/10.1016/j.psyneuen.2016.11.031] [PMID: 27960139]
[9]
World Health Organization Mental Health governance https://www.who.int/data/gho/data/themes/mental-health/GHO/mental-health
[10]
Smith K, De Torres IBC. Mental health: A world of depression. Nature 2014; 515(7526): 181.
[http://dx.doi.org/10.1038/515180a] [PMID: 25391942]
[11]
Liu CH, Zhang GZ, Li B, et al. Role of inflammation in depression relapse. J Neuroinflammation 2019; 16(1): 90.
[http://dx.doi.org/10.1186/s12974-019-1475-7] [PMID: 30995920]
[12]
Brites D, Fernandes A. Neuroinflammation and depression: Microglia activation, extracellular microvesicles and microRNA dysregulation. Front Cell Neurosci 2015; 9: 476.
[http://dx.doi.org/10.3389/fncel.2015.00476] [PMID: 26733805]
[13]
Viana AF, Maciel IS, Dornelles FN, et al. Kinin B1 receptors mediate depression-like behavior response in stressed mice treated with systemic E. coli lipopolysaccharide. J Neuroinflammation 2010; 7(1): 98.
[http://dx.doi.org/10.1186/1742-2094-7-98] [PMID: 21194425]
[14]
Sun DP, Lee YW, Chen JT, Lin YW, Chen RM. The Bradykinin-BDKRB1 axis regulates aquaporin 4 gene expression and consequential migration and invasion of malignant glioblastoma cells via a Ca2+-MEK1-ERK1/2-NF-κB mechanism. Cancers (Basel) 2020; 12: 667.
[http://dx.doi.org/10.3390/cancers12030667]
[15]
Schulze-Topphoff U, Prat A, Prozorovski T, et al. Activation of kinin receptor B1 limits encephalitogenic T lymphocyte recruitment to the central nervous system. Nat Med 2009; 15(7): 788-93.
[http://dx.doi.org/10.1038/nm.1980] [PMID: 19561616]
[16]
Souza PPC, Brechter AB, Reis RI, Costa CAS, Lundberg P, Lerner UH. IL-4 and IL-13 inhibit IL-1β and TNF-α induced kinin B1 and B2 receptors through a STAT6-dependent mechanism. Br J Pharmacol 2013; 169(2): 400-12.
[http://dx.doi.org/10.1111/bph.12116] [PMID: 23351078]
[17]
Gustafsson A, Ventorp F, Wisén AG, Ohlsson L, Ljunggren L, Westrin Å. Effects of acute exercise on circulating soluble form of the urokinase receptor in patients with major depressive disorder. Biomark Insights 2017; 12: 1-10.
[http://dx.doi.org/10.1177/1177271917704193] [PMID: 28469403]
[18]
Haastrup E, Grau K, Eugen-Olsen J, Thorball C, Kessing LV, Ullum H. Soluble urokinase plasminogen activator receptor as a marker for use of antidepressants. PLoS One 2014; 9(10)e110555
[http://dx.doi.org/10.1371/journal.pone.0110555] [PMID: 25329298]
[19]
Wang Q, Liu D, Song P, Zou MH. Tryptophan-kynurenine pathway is dysregulated in inflammation, and immune activation. Front Biosci 2015; 20: 1116-43.
[http://dx.doi.org/10.2741/4363] [PMID: 25961549]
[20]
North RA. Molecular physiology of P2X receptors. Physiol Rev 2002; 82(4): 1013-67.
[http://dx.doi.org/10.1152/physrev.00015.2002] [PMID: 12270951]
[21]
Freitas HR, Ferraz G, Ferreira GC, et al. Glutathione-induced calcium shifts in chick retinal glial cells. PLoS One 2016; 11(4)e0153677
[http://dx.doi.org/10.1371/journal.pone.0153677] [PMID: 27078878]
[22]
Freitas HR, Reis RA. Glutathione induces GABA release through P2X7R activation on Müller glia. Neurogenesis (Austin) 2017; 4(1)e1283188
[http://dx.doi.org/10.1080/23262133.2017.1283188 ] [PMID: 28229088]
[23]
Wang X, Arcuino G, Takano T, et al. P2X7 receptor inhibition improves recovery after spinal cord injury. Nat Med 2004; 10(8): 821-7.
[http://dx.doi.org/10.1038/nm1082] [PMID: 15258577]
[24]
Farooq RK, Tanti A, Ainouche S, Roger S, Belzung C, Camus VA. P2X7 receptor antagonist reverses behavioural alterations, microglial activation and neuroendocrine dysregulation in an Unpredictable Chronic Mild Stress (UCMS) model of depression in mice. Psychoneuroendocrinology 2018; 97: 120-30.
[http://dx.doi.org/10.1016/j.psyneuen.2018.07.016] [PMID: 30015007]
[25]
Vereczkei A, Abdul-Rahman O, Halmai Z, et al. Association of purinergic receptor P2RX7 gene polymorphisms with depression symptoms. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92: 207-16.
[http://dx.doi.org/10.1016/j.pnpbp.2019.01.006] [PMID: 30664971]
[26]
Otrokocsi L, Kittel Á, Sperlágh B. P2X7 receptors drive spine synapse plasticity in the learned helplessness model of depression. Int J Neuropsychopharmacol 2017; 20(10): 813-22.
[http://dx.doi.org/10.1093/ijnp/pyx046] [PMID: 28633291]
[27]
Guo LT, Wang SQ, Su J, et al. Baicalin ameliorates neuroinflammation-induced depressive-like behavior through inhibition of toll-like receptor 4 expression via the PI3K/AKT/FoxO1 pathway. J Neuroinflammation 2019; 16(1): 95.
[http://dx.doi.org/10.1186/s12974-019-1474-8] [PMID: 31068207]
[28]
Zhang K, Lin W, Zhang J, Zhao Y, Wang X, Zhao M. Effect of Toll-like receptor 4 on depressive-like behaviors induced by chronic social defeat stress. Brain Behav 2020; 10(3)e01525
[http://dx.doi.org/10.1002/brb3.1525] [PMID: 31945269]
[29]
Guo L, Niu M, Yang J, et al. GHS-R1a deficiency alleviates depression-related behaviors after chronic social defeat stress. Front Neurosci 2019; 13: 364.
[http://dx.doi.org/10.3389/fnins.2019.00364] [PMID: 31057357]
[30]
Costa R, Tamascia ML, Sanches A, et al. Tactile stimulation of adult rats modulates hormonal responses, depression-like behaviors, and memory impairment induced by chronic mild stress: Role of angiotensin II. Behav Brain Res 2020; 379112250
[http://dx.doi.org/10.1016/j.bbr.2019.112250] [PMID: 31654661]
[31]
Costa-Ferreira W, Morais-Silva G, Gomes-de-Souza L, Marin MT, Crestani CC. The AT1 receptor antagonist losartan does not affect depressive-like state and memory impairment evoked by chronic stressors in rats. Front Pharmacol 2019; 10: 705.
[http://dx.doi.org/10.3389/fphar.2019.00705] [PMID: 31293424]
[32]
Liao C, de Molliens MP, Schneebeli ST, et al. Targeting the PAC1 receptor for neurological and metabolic disorders. Curr Top Med Chem 2019; 19(16): 1399-417.
[http://dx.doi.org/10.2174/1568026619666190709092647] [PMID: 31284862]
[33]
Lutfy K, Shankar G. Emerging evidence for the role of pituitary adenylate cyclase-activating peptide in neuropsychiatric disorders. Prog Mol Biol Transl Sci 2019; 167: 143-57.
[http://dx.doi.org/10.1016/bs.pmbts.2019.06.009] [PMID: 31601402]
[34]
Aizawa F, Ogaki Y, Kyoya N, et al. The deletion of GPR40/FFAR1 signaling damages maternal care and emotional function in female mice. Biol Pharm Bull 2017; 40(8): 1255-9.
[http://dx.doi.org/10.1248/bpb.b17-00082] [PMID: 28769007]
[35]
Nishinaka T, Yamashita T, Nakamoto K, Kasuya F, Tokuyama S. Involvement of the long-chain fatty acid receptor GPR40 in depression-related behavior. J Pharmacol Sci 2014; 125(1): 112-5.
[36]
Holmes SE, Scheinost D, Finnema SJ, et al. Lower synaptic density is associated with depression severity and network alterations. Nat Commun 2019; 10(1): 1529.
[http://dx.doi.org/10.1038/s41467-019-09562-7] [PMID: 30948709]
[37]
Ehlen JC, Hummer DL, Paul KN, Albers HE. GABA involvement in the circadian regulation of sleep GABA and Sleep. Basel: Springer 2010; Vol. 03: p. 321.
[http://dx.doi.org/10.1007/978-3-0346-0226-6_14]
[38]
Follesa P, Serra M, Cagetti E, et al. Allopregnanolone synthesis in cerebellar granule cells: Roles in regulation of GABA(A) receptor expression and function during progesterone treatment and withdrawal. Mol Pharmacol 2000; 57(6): 1262-70.
[PMID: 10825399]
[39]
Sanacora G, Mason GF, Krystal JH. Impairment of GABAergic transmission in depression: New insights from neuroimaging studies. Crit Rev Neurobiol 2000; 14(1): 23-45.
[http://dx.doi.org/10.1615/CritRevNeurobiol.v14.i1.20 ] [PMID: 11253954]
[40]
Longone P, di Michele F, D’Agati E, Romeo E, Pasini A, Rupprecht R. Neurosteroids as neuromodulators in the treatment of anxiety disorders. Front Endocrinol (Lausanne) 2011; 2: 55.
[http://dx.doi.org/10.3389/fendo.2011.00055] [PMID: 22654814]
[41]
Paul SM, Purdy RH. Neuroactive steroids. FASEB J 1992; 6(6): 2311-22.
[http://dx.doi.org/10.1096/fasebj.6.6.1347506] [PMID: 1347506]
[42]
Streeter CC, Whitfield TH, Owen L, et al. Effects of yoga versus walking on mood, anxiety, and brain GABA levels: A randomized controlled MRS study. J Altern Complement Med 2010; 16(11): 1145-52.
[http://dx.doi.org/10.1089/acm.2010.0007] [PMID: 20722471]
[43]
Fogaça MV, Duman RS. Cortical GABAergic dysfunction in stress and depression: New insights for therapeutic interventions. Front Cell Neurosci 2019; 13: 87.
[http://dx.doi.org/10.3389/fncel.2019.00087] [PMID: 30914923]
[44]
Creed MC, Ntamati NR, Tan KR. VTA GABA neurons modulate specific learning behaviors through the control of dopamine and cholinergic systems. Front Behav Neurosci 2014; 8: 8.
[http://dx.doi.org/10.3389/fnbeh.2014.00008] [PMID: 24478655]
[45]
van Zessen R, Phillips JL, Budygin EA, Stuber GD. Activation of VTA GABA neurons disrupts reward consumption. Neuron 2012; 73(6): 1184-94.
[http://dx.doi.org/10.1016/j.neuron.2012.02.016] [PMID: 22445345]
[46]
Garbutt JC, van Kammen DP. The interaction between GABA and dopamine: Implications for schizophrenia. Schizophr Bull 1983; 9(3): 336-53.
[http://dx.doi.org/10.1093/schbul/9.3.336] [PMID: 6137869]
[47]
Shimizu H, Takebayashi M, Tani M, et al. Sigma-1 receptor concentration in plasma of patients with late-life depression: A preliminary study. Neuropsychiatr Dis Treat 2013; 9: 1867-72.
[PMID: 24353420]
[48]
Liu X, Qu C, Yang H, et al. Chronic stimulation of the sigma-1 receptor ameliorates autonomic nerve dysfunction and atrial fibrillation susceptibility in a rat model of depression. Am J Physiol Heart Circ Physiol 2018; 315(6): H1521-31.
[http://dx.doi.org/10.1152/ajpheart.00607.2017] [PMID: 30216117]
[49]
Lee JH, Koh SQ, Guadagna S, et al. Altered relaxin family receptors RXFP1 and RXFP3 in the neocortex of depressed Alzheimer’s disease patients. Psychopharmacology (Berl) 2016; 233(4): 591-8.
[http://dx.doi.org/10.1007/s00213-015-4131-7] [PMID: 26542729]
[50]
Marwari S, Poulsen A, Shih N, et al. Intranasal administration of a stapled relaxin-3 mimetic has anxiolytic- and antidepressant-like activity in rats. Br J Pharmacol 2019; 176(20): 3899-923.
[http://dx.doi.org/10.1111/bph.14774] [PMID: 31220339]
[51]
Poleszak E, Szopa A, Bogatko K, et al. Antidepressant-like activity of typical antidepressant drugs in the forced swim test and tail suspension test in mice is augmented by DMPX, an Adenosine A2A receptor antagonist. Neurotox Res 2019; 35(2): 344-52.
[http://dx.doi.org/10.1007/s12640-018-9959-2] [PMID: 30267268]
[52]
Domenici MR, Ferrante A, Martire A, et al. Adenosine A2A receptor as potential therapeutic target in neuropsychiatric disorders. Pharmacol Res 2019; 147104338
[http://dx.doi.org/10.1016/j.phrs.2019.104338] [PMID: 31276772]
[53]
Szopa A, Bogatko K, Serefko A, et al. Agomelatine and tianeptine antidepressant activity in mice behavioral despair tests is enhanced by DMPX, a selective adenosine A2A receptor antagonist, but not DPCPX, a selective adenosine A1 receptor antagonist. Pharmacol Rep 2019; 71(4): 676-81.
[http://dx.doi.org/10.1016/j.pharep.2019.03.007] [PMID: 31200233]
[54]
López-Cruz L, Salamone JD, Correa M. Caffeine and selective adenosine receptor antagonists as new therapeutic tools for the motivational symptoms of depression. Front Pharmacol 2018; 9: 526.
[http://dx.doi.org/10.3389/fphar.2018.00526] [PMID: 29910727]
[55]
Browne CA, Smith T, Lucki I. Behavioral effects of the kappa opioid receptor partial agonist nalmefene in tests relevant to depression. Eur J Pharmacol 2020; 872(5)172948
[http://dx.doi.org/10.1016/j.ejphar.2020.172948] [PMID: 31991139]
[56]
Nobile B, Ramoz N, Jaussent I, et al. Polymorphism A118G of opioid receptor mu 1 (OPRM1) is associated with emergence of suicidal ideation at antidepressant onset in a large naturalistic cohort of depressed outpatients. Sci Rep 2019; 9(1): 2569.
[http://dx.doi.org/10.1038/s41598-019-39622-3] [PMID: 30796320]
[57]
Filliol D, Ghozland S, Chluba J, et al. Mice deficient for δ- and μ-opioid receptors exhibit opposing alterations of emotional responses. Nat Genet 2000; 25(2): 195-200.
[http://dx.doi.org/10.1038/76061] [PMID: 10835636]
[58]
Gong W, Zhou Y, Gong W, Qin X. Coniferyl ferulate exerts antidepressant effect via inhibiting the activation of NMDAR-CaMKII-MAPKs and mitochondrial apoptotic pathways. J Ethnopharmacol 2020; 251(6)112533
[http://dx.doi.org/10.1016/j.jep.2019.112533] [PMID: 31911178]
[59]
Park LT, Kadriu B, Gould TD, et al. A randomized trial of the N-methyl-d-aspartate receptor glycine site antagonist prodrug 4-chlorokynurenine in treatment-resistant depression. Int J Neuropsychopharmacol 2020; 23(7): 417-25.
[http://dx.doi.org/10.1093/ijnp/pyaa025] [PMID: 32236521]
[60]
Kalmoe MC, Janski AM, Zorumski CF, Nagele P, Palanca BJ, Conway CR. Ketamine and nitrous oxide: The evolution of NMDA receptor antagonists as antidepressant agents. J Neurol Sci 2020; 412116778
[http://dx.doi.org/10.1016/j.jns.2020.116778] [PMID: 32240970]
[61]
Aleksandrova LR, Phillips AG, Wang YT. Antidepressant effects of ketamine and the roles of AMPA glutamate receptors and other mechanisms beyond NMDA receptor antagonism. J Psychiatry Neurosci 2017; 42(4): 222-9.
[http://dx.doi.org/10.1503/jpn.160175] [PMID: 28234212]
[62]
Chen K, Yang LN, Lai C, Liu D, Zhu LQ. Role of GRINA/NMDARA1 in central nervous system diseases. Curr Neuropharmacol 2020; 18(9): 861-7.
[http://dx.doi.org/10.2174/1570159X18666200303104235 ] [PMID: 32124700]
[63]
Hamon M, Blier P. Monoamine neurocircuitry in depression and strategies for new treatments. Prog Neuropsychopharmacol Biol Psychiatry 2013; 45: 54-63.
[http://dx.doi.org/10.1016/j.pnpbp.2013.04.009] [PMID: 23602950]
[64]
de Kwaasteniet BP, Pinto C, Ruhé HG, van Wingen GA, Booij J, Denys D. Striatal dopamine D2/3 receptor availability in treatment resistant depression. PLoS One 2014; 9(11)e113612
[http://dx.doi.org/10.1371/journal.pone.0113612] [PMID: 25411966]
[65]
Zoons E, Tijssen MAJ, Dreissen YEM, Speelman JD, Smit M, Booij J. The relationship between the dopaminergic system and depressive symptoms in cervical dystonia. Eur J Nucl Med Mol Imaging 2017; 44(8): 1375-82.
[http://dx.doi.org/10.1007/s00259-017-3664-x] [PMID: 28314910]
[66]
Beyer CE, Dwyer JM, Piesla MJ, et al. Depression-like phenotype following chronic CB1 receptor antagonism. Neurobiol Dis 2010; 39(2): 148-55.
[http://dx.doi.org/10.1016/j.nbd.2010.03.020] [PMID: 20381618]
[67]
Kucerova J, Giugliano V, Babinska Z, et al. Enhanced self-administration of the CB1 receptor agonist WIN55, 212-2 in olfactory bulbectomized rats: Evaluation of possible serotonergic and dopaminergic underlying mechanisms. Front Pharmacol 2014; 5: 44.
[68]
He X, Yang L, Wang M, et al. Targeting the Endocannabinoid/CB1 receptor system for treating major depression through antidepressant activities of curcumin and dexanabinol-loaded solid lipid nanoparticles. Cell Physiol Biochem 2017; 42(6): 2281-94.
[http://dx.doi.org/10.1159/000480001] [PMID: 28848078]
[69]
Ohmura Y, Tsutsui-Kimura I, Sasamori H, et al. Different roles of distinct serotonergic pathways in anxiety-like behavior, antidepressant-like, and anti-impulsive effects. Neuropharmacology 2020; 167107703
[http://dx.doi.org/10.1016/j.neuropharm.2019.107703 ] [PMID: 31299228]
[70]
Żmudzka E, Sałaciak K, Sapa J, Pytka K. Serotonin receptors in depression and anxiety: Insights from animal studies. Life Sci 2018; 210: 106-24.
[http://dx.doi.org/10.1016/j.lfs.2018.08.050] [PMID: 30144453]
[71]
Murphy SE, de Cates AN, Gillespie AL, et al. Translating the promise of 5HT4 receptor agonists for the treatment of depression. Psychol Med 2020; 2020: 1-10.
[http://dx.doi.org/10.1017/S0033291720000604] [PMID: 32241310]
[72]
Keller J, Gomez R, Williams G, et al. HPA axis in major depression: Cortisol, clinical symptomatology and genetic variation predict cognition. Mol Psychiatry 2017; 22(4): 527-36.
[http://dx.doi.org/10.1038/mp.2016.120] [PMID: 27528460]
[73]
Poirier GL, Cordero MI, Sandi C. Female vulnerability to the development of depression-like behavior in a rat model of intimate partner violence is related to anxious temperament, coping responses, and amygdala vasopressin receptor 1a expression. Front Behav Neurosci 2013; 7: 35.
[http://dx.doi.org/10.3389/fnbeh.2013.00035] [PMID: 23641204]
[74]
Lesse A, Rether K, Gröger N, Braun K, Bock J. Chronic postnatal stress induces depressive-like behavior in male mice and programs second-hit stress-induced gene expression patterns of OxtR and AvpR1a in adulthood. Mol Neurobiol 2017; 54(6): 4813-9.
[http://dx.doi.org/10.1007/s12035-016-0043-8] [PMID: 27525673]
[75]
Charles R, Sakurai T, Takahashi N, et al. Introduction of the human AVPR1A gene substantially alters brain receptor expression patterns and enhances aspects of social behavior in transgenic mice. Dis Model Mech 2014; 7(8): 1013-22.
[http://dx.doi.org/10.1242/dmm.017053] [PMID: 24924430]
[76]
Chiba S, Numakawa T, Ninomiya M, Richards MC, Wakabayashi C, Kunugi H. Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39(1): 112-9.
[http://dx.doi.org/10.1016/j.pnpbp.2012.05.018] [PMID: 22664354]
[77]
Wang SS, Mu RH, Li CF, et al. microRNA-124 targets glucocorticoid receptor and is involved in depression-like behaviors. Prog Neuropsychopharmacol Biol Psychiat 2017; 79(Pt B): 417-25.
[http://dx.doi.org/10.1016/j.pnpbp.2017.07.024] [PMID: 28764913]
[78]
Kang HJ, Bae KY, Kim SW, et al. Longitudinal associations between glucocorticoid receptor methylation and late-life depression Prog Neuropsychopharmacol Biol Psychiat 2018; 84(Pt B): 56-62.
[http://dx.doi.org/10.1016/j.pnpbp.2018.02.004] [PMID: 29432878]
[79]
Chen F, Yu X, Meng G, et al. Hippocampal genetic knockdown of PPARδ causes depression-like behaviors and neurogenesis suppression. Int J Neuropsychopharmacol 2019; 22(6): 372-82.
[http://dx.doi.org/10.1093/ijnp/pyz008] [PMID: 31038173]
[80]
Wang FR, Qiao MQ, Xue L, Wei S. Possible involvement of µ opioid receptor in the antidepressant-like effect of shuyu formula in restraint stress-induced depression-like rats. Evid Based Complement Alternat Med 2015; 2015452412
[PMID: 25821488]
[81]
Imam MZ, Kuo A, Ghassabian S, et al. Intracerebroventricular administration of CYX-6, a potent μ-opioid receptor agonist, a δ- and κ-opioid receptor antagonist and a biased ligand at μ, δ & κ-opioid receptors, evokes antinociception with minimal constipation and respiratory depression in rats in contrast to morphine. Eur J Pharmacol 2020; 871172918
[http://dx.doi.org/10.1016/j.ejphar.2020.172918] [PMID: 31958457]
[82]
Ide S, Fujiwara S, Fujiwara M, et al. Antidepressant-like effect of venlafaxine is abolished in μ-opioid receptor-knockout mice. J Pharmacol Sci 2010; 114(1): 107-10.
[http://dx.doi.org/10.1254/jphs.10136SC] [PMID: 20703010]
[83]
Chai HH, Fu XC, Ma L, et al. The chemokine CXCL1 and its receptor CXCR2 contribute to chronic stress-induced depression in mice. FASEB J 2019; 33(8): 8853-64.
[http://dx.doi.org/10.1096/fj.201802359RR] [PMID: 31034777]
[84]
Colle R, de Larminat D, Rotenberg S, et al. PPAR-γ agonists for the treatment of major depression: A review. Pharmacopsychiatry 2017; 50(2): 49-55.
[PMID: 27978584]
[85]
Salmani H, Hosseini M, Baghcheghi Y, Moradi-Marjaneh R, Mokhtari-Zaer A. Losartan modulates brain inflammation and improves mood disorders and memory impairment induced by innate immune activation: The role of PPAR-γ activation. Cytokine 2020; 125154860
[http://dx.doi.org/10.1016/j.cyto.2019.154860] [PMID: 31574424]
[86]
Naserzadeh R, Abad N, Ghorbanzadeh B, Dolatshahi M, Mansouri MT. Simvastatin exerts antidepressant-like activity in mouse forced swimming test: Role of NO-cGMP-KATP channels pathway and PPAR-gamma receptors. Pharmacol Biochem Behav 2019; 180: 92-100.
[http://dx.doi.org/10.1016/j.pbb.2019.03.002] [PMID: 30857920]
[87]
Xiao D, Liu L, Li Y, Ruan J, Wang H, Licorisoflavan A. Licorisoflavan A exerts antidepressant-like effect in mice: Involvement of BDNF-TrkB pathway and AMPA receptors. Neurochem Res 2019; 44(9): 2044-56.
[http://dx.doi.org/10.1007/s11064-019-02840-2] [PMID: 31278631]
[88]
Diering GH, Huganir RL. The AMPA receptor code of synaptic plasticity. Neuron 2018; 100(2): 314-29.
[http://dx.doi.org/10.1016/j.neuron.2018.10.018] [PMID: 30359599]
[89]
Pham TH, Defaix C, Nguyen TML, et al. Cortical and raphe GABAA, AMPA receptors and glial GLT-1 glutamate transporter contribute to the sustained antidepressant activity of ketamine. Pharmacol Biochem Behav 2020; 192172913
[http://dx.doi.org/10.1016/j.pbb.2020.172913] [PMID: 32201299]
[90]
Jiang L, Zhang H, Zhou J, et al. Involvement of hippocampal AMPA receptors in electroacupuncture attenuating depressive-like behaviors and regulating synaptic proteins in rats subjected to chronic unpredictable mild stress. World Neurosurg 2020; 139: e455-62.
[PMID: 32311563]
[91]
Selakovic D, Joksimovic J, Jovicic N, et al. The impact of hippocampal sex hormones receptors in modulation of depressive-like behavior following chronic anabolic androgenic steroids and exercise protocols in rats. Front Behav Neurosci 2019; 13: 19.
[http://dx.doi.org/10.3389/fnbeh.2019.00019] [PMID: 30792631]
[92]
Dai D, Li QC, Zhu QB, et al. Direct involvement of androgen receptor in oxytocin gene expression: possible relevance for mood disorders. Neuropsychopharmacology 2017; 42(10): 2064-71.
[http://dx.doi.org/10.1038/npp.2017.76] [PMID: 28447621]
[93]
Tozzi A, Durante V, Manca P, et al. Bidirectional synaptic plasticity is driven by sex neurosteroids targeting estrogen and androgen receptors in hippocampal CA1 pyramidal neurons. Front Cell Neurosci 2019; 13: 534.
[http://dx.doi.org/10.3389/fncel.2019.00534] [PMID: 31866827]
[94]
Haljas K, Lahti J, Tuomi T, et al. Melatonin receptor 1B gene rs10830963 polymorphism, depressive symptoms and glycaemic traits. Ann Med 2018; 50(8): 704-12.
[http://dx.doi.org/10.1080/07853890.2018.1509118 ] [PMID: 30089436]
[95]
Satyanarayanan SK, Su H, Lin YW, Su KP. Circadian rhythm and melatonin in the treatment of depression. Curr Pharm Des 2018; 24(22): 2549-55.
[http://dx.doi.org/10.2174/1381612824666180803112304 ] [PMID: 30073921]
[96]
Varma A, Kaul RK, Varma P, Kalra V, Malhotra V. The effect of antidepressants on serum melatonin levels in endogenous depression. J Assoc Physicians India 2002; 50: 1262-5.
[PMID: 12568211]
[97]
Srinivasan V, Smits M, Spence W, et al. Melatonin in mood disorders. World J Biol Psychiatry 2006; 7(3): 138-51.
[http://dx.doi.org/10.1080/15622970600571822] [PMID: 16861139]
[98]
Hansen MV, Andersen LT, Madsen MT, et al. Effect of melatonin on depressive symptoms and anxiety in patients undergoing breast cancer surgery: A randomized, double-blind, placebo-controlled trial. Breast Cancer Res Treat 2014; 145(3): 683-95.
[http://dx.doi.org/10.1007/s10549-014-2962-2] [PMID: 24756186]
[99]
Narváez M, Borroto-Escuela DO, Millón C, et al. Galanin receptor 2-neuropeptide Y Y1 receptor interactions in the dentate gyrus are related with antidepressant-like effects. Brain Struct Funct 2016; 221(8): 4129-39.
[http://dx.doi.org/10.1007/s00429-015-1153-1] [PMID: 26666529]
[100]
Millón C, Flores-Burgess A, Narváez M, et al. The neuropeptides Galanin and Galanin(1-15) in depression-like behaviours. Neuropeptides 2017; 64: 39-45.
[http://dx.doi.org/10.1016/j.npep.2017.01.004] [PMID: 28196617]
[101]
Lam D, Ancelin ML, Ritchie K, Freak-Poli R, Saffery R, Ryan J. Genotype-dependent associations between serotonin transporter gene (SLC6A4) DNA methylation and late-life depression. BMC Psychiatry 2018; 18(1): 282.
[http://dx.doi.org/10.1186/s12888-018-1850-4] [PMID: 30180828]
[102]
McQuaid RJ, McInnis OA, Stead JD, Matheson K, Anisman H. A paradoxical association of an oxytocin receptor gene polymorphism: Early-life adversity and vulnerability to depression. Front Neurosci 2013; 7: 128.
[http://dx.doi.org/10.3389/fnins.2013.00128] [PMID: 23898235]
[103]
Choi D, Tsuchiya KJ, Takei N. Interaction effect of oxytocin receptor (OXTR) rs53576 genotype and maternal postpartum depression on child behavioural problems. Sci Rep 2019; 9(1): 7685.
[http://dx.doi.org/10.1038/s41598-019-44175-6] [PMID: 31118457]
[104]
Rodrigues SM, Saslow LR, Garcia N, John OP, Keltner D. Oxytocin receptor genetic variation relates to empathy and stress reactivity in humans. Proc Natl Acad Sci USA 2009; 106(50): 21437-41.
[http://dx.doi.org/10.1073/pnas.0909579106] [PMID: 19934046]
[105]
Saphire-Bernstein S, Way BM, Kim HS, Sherman DK, Taylor SE. Oxytocin Receptor Gene (OXTR) is related to psychological resources. Proc Natl Acad Sci USA 2011; 108(37): 15118-22.
[http://dx.doi.org/10.1073/pnas.1113137108] [PMID: 21896752]
[106]
Bašić J, Milošević V, Stanković M, et al. The influence of rs53576 and rs2254298 oxytocin receptor gene polymorphisms on plasma oxytocin levels and measures of empathy. Arch Biol Sci 2019; 71(1): 159-65.
[http://dx.doi.org/10.2298/ABS181206057B]
[107]
Camara AB. Neural receptors and Alzheimer’s disease: A systematic review of the literature on the families of receptors most associated with the disease, their functions and areas of expression. J Bras Psiquiatr 2019; 68(3): 159-74.
[http://dx.doi.org/10.1590/0047-2085000000242]
[108]
Castro C, Tavares E, Camara A, Nobre I. Molecular regulation of circadian rhythm and psychiatric disorders: A systematic review. J Bras Psiquiatr 2020; 69(1): 57-72.
[109]
Almasi A, Zarei M, Raoufi S, et al. Influence of hippocampal GABAB receptor inhibition on memory in rats with acute β-amyloid toxicity. Metab Brain Dis 2018; 33(6): 1859-67.
[http://dx.doi.org/10.1007/s11011-018-0292-5] [PMID: 30039187]
[110]
Mirzaei F, Khazaei M, Komaki A, Amiri I, Jalili C. Virgin Coconut Oil (VCO) by normalizing NLRP3 inflammasome showed potential neuroprotective effects in Amyloid-β induced toxicity and high-fat diet fed rat. Food Chem Toxicol 2018; 118: 68-83.
[http://dx.doi.org/10.1016/j.fct.2018.04.064] [PMID: 29729307]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy