Review Article

L型钙通道结构、功能及分子模拟研究进展

卷 28, 期 3, 2021

发表于: 14 July, 2020

页: [514 - 524] 页: 11

弟呕挨: 10.2174/0929867327666200714154059

价格: $65

conference banner
摘要

L型钙通道(LTCCs),也称Cav1,属于电压门控钙通道(VGCCs/Cavs),在神经传递、细胞周期、肌肉收缩、心脏动作电位和基因表达等一系列生理过程中发挥重要作用。钙通道的异常调节参与神经、心血管、肌肉和精神疾病。因此,LTCC被认为是重要的药物靶点,一些LTCC药物正在临床使用。本文综述了近年来LTCCs在结构和生物学功能方面的研究进展。此外,还讨论了LTCCs的代表性调节剂和配体结合位点。最后,总结了分子建模和计算机辅助药物设计(CADD)的方法,以理解LTCCs的结构-功能关系。

关键词: L型钙通道,电压门控钙通道,同型选择性VGCC调节剂,药物结合位点,计算机辅助药物设计,分子建模

[1]
Zamponi, G.W. Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat. Rev. Drug Discov., 2016, 15(1), 19-34.
[http://dx.doi.org/10.1038/nrd.2015.5] [PMID: 26542451]
[2]
Catterall, W.A. Voltage-gated calcium channels. Cold Spring Harb. Perspect. Biol., 2011, 3(8)a003947
[http://dx.doi.org/10.1101/cshperspect.a003947] [PMID: 21746798]
[3]
Bourinet, E.; Zamponi, G.W. Block of voltage-gated calcium channels by peptide toxins. Neuropharmacology, 2017, 127, 109-115.
[http://dx.doi.org/10.1016/j.neuropharm.2016.10.016] [PMID: 27756538]
[4]
Simms, B.A.; Zamponi, G.W. Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron, 2014, 82(1), 24-45.
[http://dx.doi.org/10.1016/j.neuron.2014.03.016] [PMID: 24698266]
[5]
Vega-Vela, N.E.; Osorio, D.; Avila-Rodriguez, M.; Gonzalez, J.; García-Segura, L.M.; Echeverria, V.; Barreto, G.E. L-type calcium channels modulation by estradiol. Mol. Neurobiol., 2017, 54(7), 4996-5007.
[http://dx.doi.org/10.1007/s12035-016-0045-6] [PMID: 27525676]
[6]
Tang, L.; El-Din, T.M.G.; Payandeh, J.; Martinez, G.Q.; Heard, T.M.; Scheuer, T.; Zheng, N.; Catterall, W.A. Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. Nature, 2014, 505(7481), 56-61.
[http://dx.doi.org/10.1038/nature12775] [PMID: 24270805]
[7]
Tang, L.; El-Din, T.M.G.; Swanson, T.M.; Pryde, D.C.; Scheuer, T.; Zheng, N.; Catterall, W.A. Structural basis for inhibition of a voltage-gated Ca2+ channel by Ca2+ antagonist drugs. Nature, 2016, 537(7618), 117-121.
[http://dx.doi.org/10.1038/nature19102] [PMID: 27556947]
[8]
Wu, J.; Yan, Z.; Li, Z.; Yan, C.; Lu, S.; Dong, M.; Yan, N. Structure of the voltage-gated calcium channel Cav1.1 complex. Science, 2015, 350(6267)aad2395
[http://dx.doi.org/10.1126/science.aad2395] [PMID: 26680202]
[9]
Wu, J.; Yan, Z.; Li, Z.; Qian, X.; Lu, S.; Dong, M.; Zhou, Q.; Yan, N. Structure of the voltage-gated calcium channel Ca(v)1.1 at 3.6 Å resolution. Nature, 2016, 537(7619), 191-196.
[http://dx.doi.org/10.1038/nature19321] [PMID: 27580036]
[10]
Zhao, Y.; Huang, G.; Wu, J.; Wu, Q.; Gao, S.; Yan, Z.; Lei, J.; Yan, N. Molecular basis for ligand modulation of a mammalian voltage-gated Ca2+ channel. Cell, 2019, 177(6), 1495.e12-1506.e12.
[http://dx.doi.org/10.1016/j.cell.2019.04.043] [PMID: 31150622]
[11]
Catterall, W.A.; Perez-Reyes, E.; Snutch, T.P.; Striessnig, J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol. Rev., 2005, 57(4), 411-425.
[http://dx.doi.org/10.1124/pr.57.4.5] [PMID: 16382099]
[12]
Shimomura, T.; Yonekawa, Y.; Nagura, H.; Tateyama, M.; Fujiyoshi, Y.; Irie, K. A native prokaryotic voltage-dependent calcium channel with a novel selectivity filter sequence. eLife, 2020, 9e52828
[http://dx.doi.org/10.7554/eLife.52828] [PMID: 32093827]
[13]
Striessnig, J.; Pinggera, A.; Kaur, G.; Bock, G.; Tuluc, P. L-type Ca2+ channels in heart and brain. Wiley Interdiscip. Rev. Membr. Transp. Signal., 2014, 3(2), 15-38.
[http://dx.doi.org/10.1002/wmts.102] [PMID: 24683526]
[14]
Vargas, E.; Yarov-Yarovoy, V.; Khalili-Araghi, F.; Catterall, W.A.; Klein, M.L.; Tarek, M.; Lindahl, E.; Schulten, K.; Perozo, E.; Bezanilla, F.; Roux, B. An emerging consensus on voltage-dependent gating from computational modeling and molecular dynamics simulations. J. Gen. Physiol., 2012, 140(6), 587-594.
[http://dx.doi.org/10.1085/jgp.201210873] [PMID: 23183694]
[15]
Hering, S.; Zangerl-Plessl, E-M.; Beyl, S.; Hohaus, A.; Andranovits, S.; Timin, E.N. Calcium channel gating. Pflugers Arch., 2018, 470(9), 1291-1309.
[http://dx.doi.org/10.1007/s00424-018-2163-7] [PMID: 29951751]
[16]
Catterall, W.A.; Lenaeus, M.J.; El-Din, T.M.G. Structure and pharmacology of voltage-gated sodium and calcium channels. Annu. Rev. Pharmacol. Toxicol., 2020, 60, 133-154.
[http://dx.doi.org/10.1146/annurev-pharmtox-010818-021757] [PMID: 31537174]
[17]
Ferreira, G.; Yi, J.; Ríos, E.; Shirokov, R. Ion-dependent inactivation of barium current through L-type calcium channels. J. Gen. Physiol., 1997, 109(4), 449-461.
[http://dx.doi.org/10.1085/jgp.109.4.449] [PMID: 9101404]
[18]
Jurkat-Rott, K.; Lehmann-Horn, F. Paroxysmal muscle weakness: the familial periodic paralyses. J. Neurol., 2006, 253(11), 1391-1398.
[http://dx.doi.org/10.1007/s00415-006-0339-0] [PMID: 17139526]
[19]
Robinson, R.; Carpenter, D.; Shaw, M.A.; Halsall, J.; Hopkins, P. Mutations in RYR1 in malignant hyperthermia and central core disease. Hum. Mutat., 2006, 27(10), 977-989.
[http://dx.doi.org/10.1002/humu.20356] [PMID: 16917943]
[20]
Ortner, N.J.; Striessnig, J. L-type calcium channels as drug targets in CNS disorders. Channels (Austin), 2016, 10(1), 7-13.
[http://dx.doi.org/10.1080/19336950.2015.1048936] [PMID: 26039257]
[21]
Lee, S. Pharmacological inhibition of voltage-gated Ca(2+) channels for chronic pain relief. Curr. Neuropharmacol., 2013, 11(6), 606-620.
[http://dx.doi.org/10.2174/1570159X11311060005] [PMID: 24396337]
[22]
Godfraind, T. Discovery and development of calcium channel blockers. Front. Pharmacol., 2017, 8, 286.
[http://dx.doi.org/10.3389/fphar.2017.00286] [PMID: 28611661]
[23]
Striessnig, J.; Ortner, N.J.; Pinggera, A. Pharmacology of L-type calcium channels: novel drugs for old targets? Curr. Mol. Pharmacol., 2015, 8(2), 110-122.
[http://dx.doi.org/10.2174/1874467208666150507105845] [PMID: 25966690]
[24]
Carosati, E.; Ioan, P.; Micucci, M.; Broccatelli, F.; Cruciani, G.; Zhorov, B.S.; Chiarini, A.; Budriesi, R. 1,4-Dihydropyridine scaffold in medicinal chemistry, the story so far and perspectives (part 2): action in other targets and antitargets. Curr. Med. Chem., 2012, 19(25), 4306-4323.
[http://dx.doi.org/10.2174/092986712802884204] [PMID: 22709009]
[25]
Edraki, N.; Mehdipour, A.R.; Khoshneviszadeh, M.; Miri, R. Dihydropyridines: evaluation of their current and future pharmacological applications. Drug Discov. Today, 2009, 14(21-22), 1058-1066.
[http://dx.doi.org/10.1016/j.drudis.2009.08.004] [PMID: 19729074]
[26]
Koschak, A.; Reimer, D.; Huber, I.; Grabner, M.; Glossmann, H.; Engel, J.; Striessnig, J. Alpha 1D (Cav1.3) subunits can form l-type Ca2+ channels activating at negative voltages. J. Biol. Chem., 2001, 276(25), 22100-22106.
[http://dx.doi.org/10.1074/jbc.M101469200] [PMID: 11285265]
[27]
Kang, S.; Cooper, G.; Dunne, S.F.; Dusel, B.; Luan, C.H.; Surmeier, D.J.; Silverman, R.B. CaV1.3-selective L-type calcium channel antagonists as potential new therapeutics for Parkinson’s disease. Nat. Commun., 2012, 3(1), 1146.
[http://dx.doi.org/10.1038/ncomms2149] [PMID: 23093183]
[28]
Kang, S.; Cooper, G.; Dunne, S.F.; Luan, C.H.; James Surmeier, D.; Silverman, R.B. Antagonism of L-type Ca2+ channels CaV1.3 and CaV1.2 by 1,4-dihydropyrimidines and 4H-pyrans as dihydropyridine mimics. Bioorg. Med. Chem., 2013, 21(14), 4365-4373.
[http://dx.doi.org/10.1016/j.bmc.2013.04.054] [PMID: 23688558]
[29]
Franckowiak, G.; Bechem, M.; Schramm, M.; Thomas, G. The optical isomers of the 1,4-dihydropyridine BAY K 8644 show opposite effects on Ca channels. Eur. J. Pharmacol., 1985, 114(2), 223-226.
[http://dx.doi.org/10.1016/0014-2999(85)90631-4] [PMID: 2412855]
[30]
Vo, D.; Wolowyk, M.W.; Knaus, E.E. Synthesis and cardioselective beta-adrenergic antagonist activity of quinolyloxypropanolamines. Drug Des. Discov., 1992, 9(1), 69-78.
[PMID: 1360842]
[31]
Goldmann, S.; Stoltefuss, J. 1,4-dihydropyridines: effects of chirality and conformation on the calcium antagonist and calcium agonist activities. Angew. Chem. Int. Ed. Engl., 1991, 30(12), 1559-1578.
[http://dx.doi.org/10.1002/anie.199115591]
[32]
Tang, L.; El-Din, T.M.G.; Lenaeus, M.J.; Zheng, N.; Catterall, W.A. Structural basis for diltiazem block of a voltage-gated Ca2+ channel. Mol. Pharmacol., 2019, 96(4), 485-492.
[http://dx.doi.org/10.1124/mol.119.117531] [PMID: 31391290]
[33]
Srinivasan, V.; Sivaramakrishnan, H.; Karthikeyan, B. Detection, isolation and characterization of principal synthetic route indicative impurities in verapamil hydrochloride. Sci. Pharm., 2011, 79(3), 555-568.
[http://dx.doi.org/10.3797/scipharm.1101-19] [PMID: 21886903]
[34]
Li, W.; Shi, G. How CaV1.2-bound verapamil blocks Ca2+ influx into cardiomyocyte: atomic level views. Pharmacol. Res., 2019, 139, 153-157.
[http://dx.doi.org/10.1016/j.phrs.2018.11.017] [PMID: 30447294]
[35]
Musgaard, M.; Paramo, T.; Domicevica, L.; Andersen, O.J.; Biggin, P.C. Insights into channel dysfunction from modelling and molecular dynamics simulations. Neuropharmacology, 2018, 132, 20-30.
[http://dx.doi.org/10.1016/j.neuropharm.2017.06.030] [PMID: 28669899]
[36]
Doyle, D.A.; Morais Cabral, J.; Pfuetzner, R.A.; Kuo, A.; Gulbis, J.M.; Cohen, S.L.; Chait, B.T.; MacKinnon, R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science, 1998, 280(5360), 69-77.
[http://dx.doi.org/10.1126/science.280.5360.69] [PMID: 9525859]
[37]
Zhorov, B.S.; Folkman, E.V.; Ananthanarayanan, V.S. Homology model of dihydropyridine receptor: implications for L-type Ca(2+) channel modulation by agonists and antagonists. Arch. Biochem. Biophys., 2001, 393(1), 22-41.
[http://dx.doi.org/10.1006/abbi.2001.2484] [PMID: 11516158]
[38]
Xu, L.; Li, D.; Tao, L.; Yang, Y.; Li, Y.; Hou, T. Binding mechanisms of 1,4-dihydropyridine derivatives to L-type calcium channel Cav1.2: a molecular modeling study. Mol. Biosyst., 2016, 12(2), 379-390.
[http://dx.doi.org/10.1039/C5MB00781J] [PMID: 26673131]
[39]
Tikhonov, D.B.; Zhorov, B.S. Structural model for dihydropyridine binding to L-type calcium channels. J. Biol. Chem., 2009, 284(28), 19006-19017.
[http://dx.doi.org/10.1074/jbc.M109.011296] [PMID: 19416978]
[40]
Monteleone, S.; Lieb, A.; Pinggera, A.; Negro, G.; Fuchs, J.E.; Hofer, F.; Striessnig, J.; Tuluc, P.; Liedl, K.R. Mechanisms responsible for ω-pore currents in Cav calcium channel voltage-sensing domains. Biophys. J., 2017, 113(7), 1485-1495.
[http://dx.doi.org/10.1016/j.bpj.2017.08.010] [PMID: 28978442]
[41]
Feng, T.; Kalyaanamoorthy, S.; Ganesan, A.; Barakat, K. Atomistic modeling and molecular dynamics analysis of human CaV1.2 channel using external electric field and ion pulling simulations. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(6), 1116-1126.
[http://dx.doi.org/10.1016/j.bbagen.2019.04.006] [PMID: 30978379]
[42]
Carosati, E.; Cruciani, G.; Chiarini, A.; Budriesi, R.; Ioan, P.; Spisani, R.; Spinelli, D.; Cosimelli, B.; Fusi, F.; Frosini, M.; Matucci, R.; Gasparrini, F.; Ciogli, A.; Stephens, P.J.; Devlin, F.J. Calcium channel antagonists discovered by a multidisciplinary approach. J. Med. Chem., 2006, 49(17), 5206-5216.
[http://dx.doi.org/10.1021/jm0604373] [PMID: 16913709]
[43]
Baroni, M.; Cruciani, G.; Sciabola, S.; Perruccio, F.; Mason, J.S. A common reference framework for analyzing/comparing proteins and ligands. Fingerprints for ligands and proteins (FLAP): theory and application. J. Chem. Inf. Model., 2007, 47(2), 279-294.
[http://dx.doi.org/10.1021/ci600253e] [PMID: 17381166]
[44]
Carosati, E.; Budriesi, R.; Ioan, P.; Ugenti, M.P.; Frosini, M.; Fusi, F.; Corda, G.; Cosimelli, B.; Spinelli, D.; Chiarini, A.; Cruciani, G. Discovery of novel and cardioselective diltiazem-like calcium channel blockers via virtual screening. J. Med. Chem., 2008, 51(18), 5552-5565.
[http://dx.doi.org/10.1021/jm800151n] [PMID: 18754582]
[45]
Bergmann, R.; Linusson, A.; Zamora, I. SHOP: scaffold hopping by GRID-based similarity searches. J. Med. Chem., 2007, 50(11), 2708-2717.
[http://dx.doi.org/10.1021/jm061259g] [PMID: 17489578]
[46]
Irwin, J.J.; Shoichet, B.K. ZINC-a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model., 2005, 45(1), 177-182.
[http://dx.doi.org/10.1021/ci049714+] [PMID: 15667143]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy