Abstract
Heterocyclic compounds are the largely diverse organic molecules and find prevalent applications in the fine chemical industry, medicinal chemistry and agricultural science. They are also among the most commonly bearing frameworks in numerous drugs and pharmaceutical substances. Therefore, the development of convenient, efficient and environmentally benign methods to produce various types of heterocyclic compounds is an attractive area of research. For the synthesis and functionalization of heterocycles, enormous achievements have been attributed over the past decades. Recently, ironcatalyzed reactions have accomplished a noteworthy development in the synthesis of heterocycles. This review highlights some remarkable achievements in the iron-catalyzed synthesis of heterocyclic compounds published in the last five years.
Keywords: Catalysis, iron, earth-abundant transition metal, synthetic methods, five-membered heterocycles, six-membered heterocycles.
Graphical Abstract
(b) Katritzky, A.R.; Ramsden, C.A.; Scriven, E.F.V. Comprehensive Heterocyclic Chemistry III; Taylor, R.J.K., Ed.; Elsevier: Oxford, 2008.
(c) Orru, R.V.A. Synthesis of Heterocycles via Multicomponent Reaction I; Ruijter, E., Ed.; Springer: Berlin, 2010.
[http://dx.doi.org/10.1007/978-3-642-12675-8]
(d) Eycken, E. Microwave-Assisted Synthesis of Heterocycles; Kappe, C.O., Ed.; Springer: Berlin, 2006.
[http://dx.doi.org/10.1007/11497363]
(e) Gribble, G.W. Recent developments in indole ring synthesismethodology and applications. In: J. Chem. Soc. Perkin Trans; , 2000; 1, pp. 1045-1075.
[http://dx.doi.org/10.1039/a909834h]
(f) Gilchrist, T.A. Synthesis of aromatic heterocycles. J. Chem. Soc. Perkin Trans., 1998, 1, 615-628.
[http://dx.doi.org/10.1039/a704493c]
(g) Amishiro, N.; Okamoto, A.; Murakata, C.; Tamaoki, T.; Okabe, M.; Saito, H. Synthesis and antitumor activity of duocarmycin derivatives: modification of segment-A of A-ring pyrrole compounds. J. Med. Chem., 1999, 42(15), 2946-2960.
[http://dx.doi.org/10.1021/jm990094r] [PMID: 10425104]
[http://dx.doi.org/10.1007/BF02854894] [PMID: 16796374]
(b) Koehn, F.E.; Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov., 2005, 4(3), 206-220.
[http://dx.doi.org/10.1038/nrd1657] [PMID: 15729362]
(c) Cordell, G.A.; Beattie, M.L.Q.; Fransworth, N.R. The potential of alkaloids production. Metab. Eng., 2001, 4, 41-48.
(b) Baran, P.S.; Guerrero, C.A.; Ambhaikar, N.B.; Hafensteiner, B.D. Short, enantioselective total synthesis of stephacidin A. Angew. Chem. Int. Ed. Engl., 2005, 44(4), 606-609.
[http://dx.doi.org/10.1002/anie.200461864] [PMID: 15586393]
(c) Köhling, P.; Schmidt, A.M.; Eilbracht, P. Tandem hydroformylation/Fischer indole synthesis: a novel and convenient approach to indoles from olefins. Org. Lett., 2003, 5(18), 3213-3216.
[http://dx.doi.org/10.1021/ol0350184] [PMID: 12943390]
(d) Yang, S.; Denny, W.A. A new short synthesis of 3-substituted 5-amino-1- (chloromethyl)-1,2-dihydro-3H-benzo[e]indoles (amino-CBIs). J. Org. Chem., 2002, 67(25), 8958-8961.
[http://dx.doi.org/10.1021/jo0263115] [PMID: 12467414]
(e) Caron, S.; Vazquez, E.; Stevens, R.W.; Nakao, K.; Koike, H.; Murata, Y. Efficient synthesis of [6-chloro-2-(4-chlorobenzoyl)-1H-indol-3-yl]-acetic acid, a novel COX-2 inhibitor. J. Org. Chem., 2003, 68(10), 4104-4107.
[http://dx.doi.org/10.1021/jo034274r] [PMID: 12737602]
(f) Jiang, B.; Yang, C.G.; Wang, J. Enantioselective synthesis of marine indole alkaloid hamacanthin B. J. Org. Chem., 2002, 67(4), 1396-1398.
[http://dx.doi.org/10.1021/jo0108109] [PMID: 11846695]
(b) Grohe, K. Antibiotics-the new generation[including nalidixic acid and fluoroquinolones such as ciprofloxacin. Chem. Britain, 1992, 28, 34-36.
(c) Wentland, M.P.; Cornett, J.B. Quinolone antibacterial agents. Ann. Rpt. Med. Chem., 1985, 20, 145-154.
(b) Yamamoto, Y. Science of Synthesis, Houben-Weyl Methods of Molecular Transformations, Six-Membered Hetarenes with Two Identical Heteroatoms; Thieme Verlag: Stuttgart, 2004, p. 16.
[http://dx.doi.org/10.1002/9780470988619]
(b) Vicario, J.L.; Badia, D.; Carrillo, L. New Methods for the Asymmetric Synthesis of Nitrogen Heterocycles; Research Signpost: Kerala, 2005.
(c) Alonso, F.; Beletskaya, I.P.; Yus, M. Transition-metal-catalyzed addition of heteroatom-hydrogen bonds to alkynes. . Chem. Rev., 2004, 104(6), 3079-3159.
[http://dx.doi.org/10.1021/cr0201068] [PMID: 15186189]
(d) Humphrey, G.R.; Kuethe, J.T. Practical methodologies for the synthesis of indoles. Chem. Rev., 2006, 106(7), 2875-2911.
[http://dx.doi.org/10.1021/cr0505270] [PMID: 16836303]
(e) Joule, J.A.; Mills, K. Heterocyclic Chemistry at a Glance; John Wiley & Sons: Germany, 2007.
(f) Katritzky, R.; Ramsden, C.A.; Screeven, E.F.V.; Taylor, R.J.K. Comprehensive Heterocyclic Chemistry III; Elsevier: New York, 2008.
(g) Patil, N.T.; Yamamoto, Y. Coinage metal-assisted synthesis of heterocycles. Chem. Rev., 2008, 108(8), 3395-3442.
[http://dx.doi.org/10.1021/cr050041j] [PMID: 18611054]
(h) Agarwal, S.; Cämmerer, S.; Filali, S.; Fröhner, W.; Knöll, J.; Krahl, M.P.; Reddy, K.R.; Knölker, H.J. Novel routes to pyrroles, indoles and carbazolesapplications in natural product synthesis. Curr. Org. Chem., 2005, 9, 1601-1614.
[http://dx.doi.org/10.2174/138527205774370496]
(i) Knölker, H.J. Synthesis of biologically active carbazole alkaloids using organometallic chemistry. Curr. Org. Synth., 2004, 1, 309-331.
[http://dx.doi.org/10.2174/1570179043366594]
[http://dx.doi.org/10.1021/cr1003776] [PMID: 21894896]
(b) Majumdar, K.C.; Taher, A.; Nandi, R.K. Synthesis of heterocycles by domino-Knoevenagel–hetero-Diels–Alder reactions. Tetrahedron, 2012, 68, 5693-5718.
[http://dx.doi.org/10.1016/j.tet.2012.04.098]
(c) Majumdar, K.C.; Sinha, B. Palladium-mediated total synthesis of bioactive natural products. Synthesis, 2013, 45, 1271-1299.
[http://dx.doi.org/10.1055/s-0032-1316918]
(d) Majumdar, K.C.; Samanta, S.; Sinha, B. Recent developments in palladium-catalyzed formation of five- and six-membered fused heterocycles. Synthesis, 2012, 44, 817-847.
[http://dx.doi.org/10.1055/s-0031-1289734]
(e) Majumdar, K.C. Regioselective formation of medium-ring heterocycles of biological relevance by intramolecular cyclization. RSC Adv., 2011, 1, 1152-1170.
[http://dx.doi.org/10.1039/C1RA00494H]
(f) Majumdar, K.C.; Debnath, P.; De, N.; Roy, B. Metal-catalyzed heterocyclization: synthesis of five- and six-membered nitrogen heterocycles through carbon-nitrogen bond forming reactions. Curr. Org. Chem., 2011, 15, 1760-1801.
[http://dx.doi.org/10.2174/138527211795656633]
(g) Majumdar, K.C.; Chattopadhyay, B.; Maji, P.K.; Chattopadhyay, S.K.; Samanta, S. Recent development in palladium-mediated synthesis of nitrogen heterocycles. Heterocycles, 2010, 81, 795-866.
[http://dx.doi.org/10.3987/REV-09-662-2] [PMID: ]
(h) Majumdar, K.C.; Chattopadhyay, B.; Ray, K. Formation of five- and sixmembered heterocyclic compounds by ringclosing metathesis. Curr. Org. Synth., 2010, 7, 153-176.
[http://dx.doi.org/10.2174/157017910790820292]
(i) Majumdar, K.C.; Roy, B.; Debnath, P.; Taher, A. Metal-mediated heterocyclization: synthesis of heterocyclic compounds containing more than one heteroatom through carbon-heteroatom bond forming reactions. Curr. Org. Chem., 2010, 14, 846-887.
[http://dx.doi.org/10.2174/138527210791111876]
(j) Bauer, I.; Knölker, H.J. Synthesis of pyrrole and carbazole alkaloids. Top. Curr. Chem., 2012, 309, 203-253.
[http://dx.doi.org/10.1007/128_2011_192] [PMID: 21728136]
(k) Schmidt, A.W.; Reddy, K.R.; Knölker, H.J. Occurrence, biogenesis, and synthesis of biologically active carbazole alkaloids. Chem. Rev., 2012, 112(6), 3193-3328.
[http://dx.doi.org/10.1021/cr200447s] [PMID: 22480243]
[http://dx.doi.org/10.2174/138527208786241556]
(b) Prokopcová, H.; Bergman, S.D.; Aelvoet, K.; Smout, V.; Herrebout, W.; Van der Veken, B.; Meerpoel, L.; Maes, B.U.W. C-2 arylation of piperidines through directed transition-metal-catalyzed sp3 C-H activation. Chemistry, 2010, 16(44), 13063-13067.
[http://dx.doi.org/10.1002/chem.201001887] [PMID: 20981669]
(c) Lundgren, R.J.; Stradiotto, M. Transition-metal-catalyzed trifluoromethylation of aryl halides. Angew. Chem. Int. Ed. Engl., 2010, 49(49), 9322-9324.
[http://dx.doi.org/10.1002/anie.201004051] [PMID: 20878960]
(d) Walker, D.B.; Howqeqo, J.; Davis, A.P. Synthesis of regioselectively functionalized pyrenes via transition-metal-catalyzed electrocyclization. Synthesis, 2010, 21, 3686-3692.
(e) Zhou, Y.; Zhao, J.; Liu, L. Meta-selective transition-metal catalyzed arene C-H bond functionalization. Angew. Chem. Int. Ed. Engl., 2009, 48(39), 7126-7128.
[http://dx.doi.org/10.1002/anie.200902762] [PMID: 19655360]
(f) Li, Q.; Yu, Z.X. Conjugated diene-assisted allylic C-H bond activation: cationic Rh(I)-catalyzed syntheses of polysubstituted tetrahydropyrroles, tetrahydrofurans, and cyclopentanes from ene-2-dienes. J. Am. Chem. Soc., 2010, 132(13), 4542-4543.
[http://dx.doi.org/10.1021/ja100409b] [PMID: 20232873]
(g) Djakovitch, L.; Batail, N.; Genelot, M. Recent advances in the synthesis of N-containing heteroaromatics via heterogeneously transition metal catalysed cross-coupling reactions. Molecules, 2011, 16(6), 5241-5267.
[http://dx.doi.org/10.3390/molecules16065241] [PMID: 21701436]
(h) Ranu, B.C.; Chatterjee, T.; Mukherjee, N.; Maity, P.; Majhi, B. Synthesis of bioactive five- and six-membered heterocycles catalyzed by heterogeneous supported metals. In:Green Synthetic Approaches for Biologically Relevant Heterocycles; Brahmachari, G., Ed.; Elsevier: Oxford, 2015.
[http://dx.doi.org/10.1007/s11434-012-5141-z]
[http://dx.doi.org/10.1021/acscentsci.6b00272] [PMID: 27981231]
[http://dx.doi.org/10.1021/cr040664h] [PMID: 15584700]
(b) Plietker, B. Iron Catalysis in Organic Chemistry: Reactions and Applications; Wiley-VCH: Weinheim, 2008.
[http://dx.doi.org/10.1002/9783527623273]
(c) Morris, R.H. Asymmetric hydrogenation, transfer hydrogenation and hydrosilylation of ketones catalyzed by iron complexes. Chem. Soc. Rev., 2009, 38(8), 2282-2291.
[http://dx.doi.org/10.1039/b806837m] [PMID: 19623350]
(d) Sun, C.L.; Li, B.J.; Shi, Z.J. Direct C-H transformation via iron catalysis. Chem. Rev., 2011, 111(3), 1293-1314.
[http://dx.doi.org/10.1021/cr100198w] [PMID: 21049955]
(e) Junge, K.; Schröder, K.; Beller, M. Homogeneous catalysis using iron complexes: recent developments in selective reductions. Chem. Commun. (Camb.), 2011, 47(17), 4849-4859.
[http://dx.doi.org/10.1039/c0cc05733a] [PMID: 21437312]
(f) Mancheño, O.G. New trends towards well-defined low-valent iron catalysts. Angew. Chem. Int. Ed. Engl., 2011, 50(10), 2216-2218.
[http://dx.doi.org/10.1002/anie.201007271] [PMID: 21305680]
(g) Plietker, B.; Beller, M. Iron Catalysis: Fundamentals and Applications; Springer: Berlin, 2011.
[http://dx.doi.org/10.1007/978-3-642-14670-1]
(h) Blanchard, S.; Derat, E.; Murr, M.D.; Fensterbank, L.; Malacria, M. Mourie-Mansuy, V. Non-innocent ligands: new opportunities in iron catalysis. Eur. J. Inorg. Chem., 2012, 376-389.
[http://dx.doi.org/10.1002/ejic.201100985]
(i) Darwish, M.; Wills, M. Asymmetric catalysis using iron complexes– ‘Ruthenium Lite’? Catal. Sci. Technol., 2012, 2, 243-255.
[http://dx.doi.org/] [PMID: 10.1039/C1CY00390A]
(j) Mousseau, J.J.; Charette, A.B. Direct functionalization processes: a journey from palladium to copper to iron to nickel to metal-free coupling reactions. Acc. Chem. Res., 2013, 46(2), 412-424.
[http://dx.doi.org/10.1021/ar300185z] [PMID: 23098328]
(k) Gopalaiah, K. Chiral iron catalysts for asymmetric synthesis. Chem. Rev., 2013, 113(5), 3248-3296.
[http://dx.doi.org/10.1021/cr300236r] [PMID: 23461563]
(l) Knölker, H.J. Organoiron Chemistry. Organometallics in Synthesis; Wiley: Hoboken, 2013.
(m) Rana, S.; Modak, A.; Maity, S.; Patra, T.; Maity, D. Iron catalysis in synthetic chemistry In:Progress in Inorganic Chemistry; Knrlin, K.D., Ed.; John Wiley & Sons: Hoboken, 2014, 59, pp. 1-95.
(n) Bauer, I.; Knölker, H.J. Iron catalysis in organic synthesis. Chem. Rev., 2015, 115(9), 3170-3387.
[http://dx.doi.org/10.1021/cr500425u] [PMID: 25751710]
[http://dx.doi.org/10.1007/s41061-016-0047-x] [PMID: 27573401]
(b) Legros, J.; Figadère, B. Iron-promoted C-C bond formation in the total synthesis of natural products and drugs. Nat. Prod. Rep., 2015, 32(11), 1541-1555.
[http://dx.doi.org/10.1039/C5NP00059A] [PMID: 26395292]
[http://dx.doi.org/10.1002/0471264180.or083.01]
(b) Czaplik, W.M.; Mayer, M.; Cvengroš, J.; von Wangelin, A.J. Coming of age: sustainable iron-catalyzed cross-coupling reactions. ChemSusChem., 2009, 2, 396-417.
[http://dx.doi.org/10.1002/cssc.200900055] [PMID: 19425040]
(c) Sherry, B.D.; Fürstner, A. The promise and challenge of iron-catalyzed cross coupling. Acc. Chem. Res., 2008, 41, 1500-1511.
[http://dx.doi.org/10.1021/ar800039x]
[http://dx.doi.org/10.1039/C8CC09523J]
(b) Adak, L.; Kawamura, S.; Toma, G.; Takenaka, T.; Isozaki, K.; Takaya, H.; Orita, A.; Li, H.C.; Shing, T.K.M.; Nakamura, M. Synthesis of aryl Cglycosides via iron-catalyzed cross coupling of halosugars: stereoselective anomeric arylation of glycosyl radicals. J. Am. Chem. Soc., 2017, 139, 10693-10701.
[http://dx.doi.org/10.1021/jacs.7b03867]
(c) Jin, M.; Adak, L.; Nakamura, M. Iron-catalyzed enantioselective crosscoupling reactions of a-chloroesters with aryl Grignard reagents. J. Am. Chem. Soc., 2015, 137, 7128-7134.
[http://dx.doi.org/10.1021/jacs.5b02277]
(d) Hatakeyama, T.; Fujiwara, Y.; Okada, Y.; Itoh, T.; Hashimoto, T.; Kawamura, S.; Ogata, K.; Takaya, H.; Nakamura, M. Kumada–Tamao–Corriu coupling of alkyl halides catalyzed by an iron–bisphosphine complex Chem. Lett., 2011, 40, 1030-1032.
[http://dx.doi.org/10.1246/cl.2011.1030]
(e) Nakamura, M.; Matsuo, K.; Ito, S.; Nakamura, E. Iron-catalyzed crosscoupling of primary and secondary alkyl halides with aryl Grignard reagents. J. Am. Chem. Soc., 2004, 126, 3686-3687.
[http://dx.doi.org/10.1021/ja049744t]
(f) Bedford, R.B.; Carter, E.; Cogswell, P.M.; Gower, N.J.; Haddow, M.F.; Harvey, J.N.; Murphy, D.M.; Neeve, E.C.; Nunn, J. Simplifying iron-phosphine catalysts for cross-coupling reactions. Angew. Chem. Int. Ed., 2013, 52, 1285-1288.
[http://dx.doi.org/10.1002/anie.201207868]
(g) Hatakeyama, T.; Kondo, Y.; Fujiwara, Y.; Takaya, H.; Ito, S.; Nakamura, E.; Nakamura, M. Iron-catalysed fluoroaromatic coupling reactions under catalytic modulation with 1,2-bis(diphenylphosphino)benzene. Chem. Commun., 2009, 45, 1216-1218.
[http://dx.doi.org/10.1039/B820879D]
(h) Kawamura, S.; Kawabata, T.; Ishizuka, K.; Nakamura, M. Iron-catalysed cross-coupling of halohydrins with aryl aluminium reagents: a protecting-group-free strategy attaining remarkable rate enhancement and diastereoinduction. Chem. Commun., 2012, 48, 9376-9378.
[http://dx.doi.org/10.1039/C2CC34185A]
(i) Hatakeyama, T.; Hashimoto, T.; Kondo, Y.; Fujiwara, Y.; Seike, H.; Takaya, H.; Tamada, Y.; Ono, T.; Nakamura, M. Iron-catalyzed Suzuki−Miyaura coupling of alkyl halides. J. Am. Chem. Soc., 2010, 132, 10674-10676.
[http://dx.doi.org/10.1021/ja103973a]
(j) Bedford, R.B.; Brenner, P.B.; Carter, E.; Carvell, T.W.; Cogswell, P.M.; Gallagher, T.; Harvey, J.N.; Murphy, D.M.; Neeve, E.C.; Nunn, J.; Pye, D.R. Expedient iron-catalyzed coupling of alkyl, benzyl and allyl halides with arylboronic esters. Chem. Eur. J., 2014, 20, 7935-7938.
[http://dx.doi.org/10.1002/chem.201402174]
[http://dx.doi.org/10.1016/j.tet.2014.04.025]
(b) Mandal, S.K.; Chattopadhyay, A.P. Iron-catalyzed synthesis of heterocycles. IOSR J. Appl. Chem., 2016, 9, 40-65.
(c) Jena, A.K.; Sahu, S.J. Review on Fe-catalyzed carbon-carbon, carbon-heteroatom oxidative coupling reactions: en route to heterocycles. Chem. Pharma. Res., 2017, 9, 315-341.
(d) Elwahy, A.H.M.; Shaaban, M.R. Synthesis of heterocycles catalyzed by iron oxide nanoparticles. Heterocycles, 2017, 94, 595-655.
[http://dx.doi.org/10.3987/REV-16-854]
(e) Sreedevi, R.; Saranya, S.; Rohit, K.R.; Anilkumar, G. Recent trends in iron-catalyzed reactions towards the synthesis of nitrogen-containing heterocycles. Adv. Synth. Catal., 2019, 361, 2236-2249.
[http://dx.doi.org/10.1002/adsc.201801471]
(f) Mishra, M.; Mohapatra, S.; Mishra, N.P.; Jena, B.K.; Panda, P.; Nayak, S. Recent advances in iron(III) chloride catalyzed synthesis of heterocycles. Tetrahedron Lett., 2019, 60150925
[http://dx.doi.org/10.1016/j.tetlet.2019.07.016]
[http://dx.doi.org/10.1021/cr078199m] [PMID: 18095718]
(b) Gribble, G.W. Comprehensive Heterocyclic Chemistry II; Katritzky, A.R.; Rees, C.W.; Scriven, E.F.V. ., Eds.; Pergamon-Elsevier Science:; Amsterdam, 1996.
[http://dx.doi.org/10.1021/acs.orglett.6b02819] [PMID: 27958754]
[http://dx.doi.org/10.1021/acs.orglett.7b04007] [PMID: 29420042]
[http://dx.doi.org/10.1039/C9QO00675C]
[http://dx.doi.org/10.1039/C4RA09348H]
[http://dx.doi.org/10.1039/C6RA06979G]
[http://dx.doi.org/10.1126/science.1233701] [PMID: 23641113]
[http://dx.doi.org/10.1002/ejoc.201403511]
[http://dx.doi.org/10.1002/chem.201602708] [PMID: 27624405]
[http://dx.doi.org/10.1021/jacs.7b00270] [PMID: 28298089]
[http://dx.doi.org/10.1002/anie.201708519] [PMID: 29024289]
[http://dx.doi.org/10.1002/adsc.201801656]
[http://dx.doi.org/10.1002/chem.201600107] [PMID: 26919545]
[http://dx.doi.org/10.1002/jhet.349]
[http://dx.doi.org/10.1002/anie.201510045] [PMID: 26663257]
[http://dx.doi.org/10.1002/slct.201701530]
[http://dx.doi.org/10.1021/acs.joc.8b02888] [PMID: 30520304]
[http://dx.doi.org/10.2174/138527211795378263]
(b) Tanitame, A.; Oyamada, Y.; Ofuji, K.; Fujimoto, M.; Iwai, N.; Hiyama, Y.; Suzuki, K.; Ito, H.; Terauchi, H.; Kawasaki, M.; Nagai, K.; Wachi, M.; Yamagishi, J. Synthesis and antibacterial activity of a novel series of potent DNA gyrase inhibitors. Pyrazole derivatives. J. Med. Chem., 2004, 47(14), 3693-3696.
[http://dx.doi.org/10.1021/jm030394f] [PMID: 15214796]
[http://dx.doi.org/10.1016/j.jorganchem.2018.02.043]
[http://dx.doi.org/10.1039/C6RA20988B]
[http://dx.doi.org/10.1007/s11164-015-2198-8]
[http://dx.doi.org/10.1039/C6RA25372E]
[http://dx.doi.org/10.1039/C6NJ02264B]
[http://dx.doi.org/10.1021/acs.orglett.5b01854] [PMID: 26196356]
[http://dx.doi.org/10.1016/j.tet.2015.02.057]
[http://dx.doi.org/10.1016/j.catcom.2015.05.014]
[http://dx.doi.org/10.1021/acs.orglett.7b00203] [PMID: 28248514]
[http://dx.doi.org/10.1080/00397911.2015.1062987]
[http://dx.doi.org/10.1002/adsc.201500335]
[http://dx.doi.org/10.1039/C4RA12490A]
[http://dx.doi.org/10.2174/1570193X11310010004]
[http://dx.doi.org/10.1007/s11164-013-1184-2]
[http://dx.doi.org/10.1007/s11164-016-2457-3]
[http://dx.doi.org/10.20944/preprints201807.0620.v1]
[http://dx.doi.org/10.1002/jhet.3450]
[http://dx.doi.org/10.1016/j.ejmech.2004.03.001] [PMID: 15110969]
[http://dx.doi.org/10.1039/C6GC03137D]
[http://dx.doi.org/10.1002/ajoc.201800312]
[http://dx.doi.org/10.1021/acs.orglett.6b00326] [PMID: 26910876]
[http://dx.doi.org/10.1016/j.tet.2014.12.010]
[http://dx.doi.org/10.1039/C5RA12734C]
[http://dx.doi.org/10.1016/j.tetlet.2016.07.071]
[http://dx.doi.org/10.1002/ejoc.201700977]
[http://dx.doi.org/10.1039/C6NJ02134D]
[http://dx.doi.org/10.1016/j.tetlet.2018.01.018]
[http://dx.doi.org/10.1021/acs.orglett.7b03252] [PMID: 29144763]
[http://dx.doi.org/10.1016/B978-008096518-5.00109-X]
(b) Michael, J.P. Quinoline, quinazoline and acridone alkaloids. Nat. Prod. Rep., 1997, 14(1), 11-20.
[http://dx.doi.org/10.1039/np9971400011] [PMID: 9121729]
(c) Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles, 2nd ed; Wiley-VCH: Weinheim, 2003, p. 316.
[http://dx.doi.org/10.1002/352760183X]
(d) Musiol, R.; Serda, M.; Hensel-Bielowka, S.; Polanski, J. Quinoline-based antifungals. Curr. Med. Chem., 2010, 17(18), 1960-1973.
[http://dx.doi.org/10.2174/092986710791163966] [PMID: 20377510]
[http://dx.doi.org/10.1002/ejoc.201500766]
[http://dx.doi.org/10.1039/C9OB01294J] [PMID: 31414692]
[http://dx.doi.org/10.1039/C5OB02658J] [PMID: 26820189]
[http://dx.doi.org/10.1002/adsc.201801097]
[http://dx.doi.org/10.1002/adsc.201600107]
[http://dx.doi.org/10.1021/acs.orglett.9b02353] [PMID: 31418575]
[http://dx.doi.org/10.1021/acs.joc.6b02767] [PMID: 28032761]
[http://dx.doi.org/10.1002/adsc.201901172]
[http://dx.doi.org/10.1080/00397911.2015.1135955]
[http://dx.doi.org/10.1039/C4CY01618A]
[http://dx.doi.org/10.1039/C7OB01159H] [PMID: 28660261]
[http://dx.doi.org/10.1021/acs.joc.7b02943] [PMID: 29341614]
[http://dx.doi.org/10.1002/adsc.201500335]
[http://dx.doi.org/10.1016/j.tetlet.2015.12.094]
[http://dx.doi.org/10.1039/C7CC07089F] [PMID: 28990598]
[http://dx.doi.org/10.1002/slct.201701383]
[http://dx.doi.org/10.1002/anie.200461668] [PMID: 15619251]
(b) Kirsch, S.F. Syntheses of polysubstituted furans: recent developments. Org. Biomol. Chem., 2006, 4(11), 2076-2080.
[http://dx.doi.org/10.1039/b602596j] [PMID: 16729118]
(c) Graening, T.; Thrun, F. Furans and their benzoderivatives: Synthesis, in: Comprehensive Heterocyclic Chemistry III; Katritzky, A.R., Ed.; Elsevier: New York, 2008, 3, pp. 497-569.
[http://dx.doi.org/10.1016/j.tet.2017.04.030]
[http://dx.doi.org/10.1039/C8OB01184B] [PMID: 29989633]
[http://dx.doi.org/10.1021/acs.joc.5b01448] [PMID: 26158240]
[http://dx.doi.org/10.1039/C8QO01190G]
[http://dx.doi.org/10.1016/S0968-0896(99)00282-5] [PMID: 10968283]
(b) Larget, R.; Lockhart, B.; Renard, P.; Largeron, M. A convenient extension of the Wessely-Moser rear-rangement for the synthesis of substituted alkylaminoflavones as neuroprotective agents in vitro. Bioorg. Med. Chem. Lett., 2000, 10(8), 835-838.
[http://dx.doi.org/10.1016/S0960-894X(00)00110-4] [PMID: 10782697]
(c) Prakash, O.; Kumar, R.; Parkash, V. Synthesis and antifungal activity of some new 3-hydroxy-2-(1-phenyl-3-aryl-4-pyrazolyl) chromones. Eur. J. Med. Chem., 2008, 43(2), 435-440.
[http://dx.doi.org/10.1016/j.ejmech.2007.04.004] [PMID: 17555846]
[http://dx.doi.org/10.1021/acs.joc.5b02371] [PMID: 26554431]
[http://dx.doi.org/10.1055/s-0034-1380013]
[http://dx.doi.org/10.1002/adsc.201500058]
[http://dx.doi.org/10.1039/C7OB02941A] [PMID: 29327026]
[http://dx.doi.org/10.1021/acs.joc.6b01827] [PMID: 27736056]
[http://dx.doi.org/10.1002/adsc.201600759]
[http://dx.doi.org/10.1002/adsc.201901410]
[http://dx.doi.org/10.1039/C7CC04965J] [PMID: 28825080]
[http://dx.doi.org/10.1039/C7RA13080E]
[http://dx.doi.org/10.1002/adsc.201800693]
[http://dx.doi.org/10.1080/00397911.2015.1085573]
[http://dx.doi.org/10.1002/slct.201900850]
[http://dx.doi.org/10.3987/COM-14-S(K)102]
[http://dx.doi.org/10.1002/anie.201510045] [PMID: 26663257]
[http://dx.doi.org/10.1021/acs.orglett.8b03702] [PMID: 30628796]
[http://dx.doi.org/10.1039/C9CC10089J] [PMID: 32091035]