Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Effects of Desilication in NaOH/Piperidine Medium and Phosphorus Modification on the Catalytic Activity of HZSM-5 Catalyst in Methanol to Propylene Conversion

Author(s): Ebrahim Safaei and Majid Taghizadeh*

Volume 24, Issue 4, 2021

Published on: 13 July, 2020

Page: [546 - 558] Pages: 13

DOI: 10.2174/1386207323666200714002844

Price: $65

Abstract

Background: Propylene is one of the main petrochemical building blocks applied as a feedstock for various chemical and polymer intermediates. The methanol-to-propylene (MTP) processes are reliable options for propylene production from non-petroleum resources. The highsilica ZSM-5 zeolite is found to be a reliable candidate for the methanol to propylene catalysis.

Objective: In this study, the mesoporosity was first introduced into a high silica ZSM-5 zeolite via an alkaline treatment by NaOH solution with piperidine to decrease the diffusion limitation, and then the structure of zeolite was stabilized by phosphorus modification to improve the acidic properties and to enhance the catalyst stability.

Methods: High-silica H-ZSM-5 catalysts (Si/Al = 200) were successfully prepared through microwave-assisted hydrothermal technique in the presence of tetrapropyl ammonium hydroxide (TPAOH) structure-directing agent. The mesoporosity was efficiently introduced into the ZSM-5 crystals via desilication derived from alkaline NaOH/piperidine solution. Then, the acidity of the desilicated ZSM-5 samples was improved using phosphorus modification. The catalysts were subjected to XRD, ICP-OES, FE-SEM, BET, TGA, FT-IR and NH3-TPD analysis.

Results: The catalytic performance of the prepared catalysts in the methanol to propylene (MTP) reaction was examined in a fixed-bed reactor at 475 °C, atmospheric pressure and methanol WHSV of 0.9 h-1. The results showed that the alkaline treatment in NaOH/piperidine solution created uniform mesoporosity with no severe damage in the crystal structure. Similarly, phosphorus modification developed the acidic features and led to the optimal catalytic efficiency in terms of the maximum propylene selectivity (49.16%) and P/E ratio (5.97) as well as the catalyst lifetime.

Conclusion: The results showed an excellent catalytic activity in terms of 99.21% methanol conversion, good propylene selectivity up to 49.16%, a high ratio of P/E of 5.97 and a low selectivity to C5 + hydrocarbons of 11.57% for ZS-D-PI-P sample.

Keywords: Mesoporous ZSM-5, methanol to propylene (MTP), desilication, phosphorus modification, industry, pertrochemical.

[1]
Mei, C.; Wen, P.; Liu, Z.; Liu, H.; Wang, Y.; Yang, W.; Xie, Z.; Hua, W.; Gao, Z. Selective production of propylene from methanol: Mesoporosity development in high silica HZSM-5. J. Catal., 2008, 258(1), 243-249.
[http://dx.doi.org/10.1016/j.jcat.2008.06.019]
[2]
Zhao, G.; Teng, J.; Xie, Z.; Jin, W.; Yang, W.; Chen, Q.; Tang, Y. Effect of phosphorus on HZSM-5 catalyst for C4-olefin cracking reactions to produce propylene. J. Catal., 2007, 248(1), 29-37.
[http://dx.doi.org/10.1016/j.jcat.2007.02.027]
[3]
Ahmadpour, J.; Taghizadeh, M. Selective production of propylene from methanol over high-silica mesoporous ZSM-5 zeolites treated with NaOH and NaOH/tetrapropylammonium hydroxide. C. R. Chim., 2015, 18(8), 834-847.
[http://dx.doi.org/10.1016/j.crci.2015.05.002]
[4]
Chang, C.D.; Chu, C.T-W.; Socha, R.F. Methanol conversion to olefins over ZSM-5: I. Effect of temperature and zeolite SiO2Al2O3. J. Catal., 1984, 86(2), 289-296.
[http://dx.doi.org/10.1016/0021-9517(84)90374-9]
[5]
Liu, J.; Zhang, C.; Shen, Z.; Hua, W.; Tang, Y.; Shen, W.; Yue, Y.; Xu, H. Methanol to propylene: Effect of phosphorus on a high silica HZSM-5 catalyst. Catal. Commun., 2009, 10(11), 1506-1509.
[http://dx.doi.org/10.1016/j.catcom.2009.04.004]
[6]
Pérez-Ramírez, J.; Christensen, C.H.; Egeblad, K.; Christensen, C.H.; Groen, J.C. Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem. Soc. Rev., 2008, 37(11), 2530-2542.
[http://dx.doi.org/10.1039/b809030k] [PMID: 18949124]
[7]
Bari Siddiqui, M.A.; Aitani, A.M.; Saeed, M.R.; Al-Khattaf, S. Enhancing the production of light olefins by catalytic cracking of FCC naphtha over mesoporous ZSM-5 catalyst. Top. Catal., 2010, 53(19–20), 1387-1393.
[http://dx.doi.org/10.1007/s11244-010-9598-1]
[8]
Gao, X.; Tang, Zh.; Lu, G.; Cao, G.; Li, D.; Tan, Zh. Butene catalytic cracking to ethylene and propylene on mesoporous ZSM-5 by desilication. Solid State Sci., 2010, 12(7), 1278-1282.
[http://dx.doi.org/10.1016/j.solidstatesciences.2010.04.020]
[9]
Wu, Zh.Y.; Wang, Y.M. Catalytic application of mesoporous ZSM-5 zeolite. Curr. Org. Chem., 2014, 18(10), 1305-1322.
[http://dx.doi.org/10.2174/1385272819666140424212511]
[10]
Groen, J.C.; Zhu, W.; Brouwer, S.; Huynink, S.J.; Kapteijn, F.; Moulijn, J.A.; Pérez-Ramírez, J. Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication. J. Am. Chem. Soc., 2007, 129(2), 355-360.
[http://dx.doi.org/10.1021/ja065737o] [PMID: 17212415]
[11]
Jun, Y.; Lee, S.; Lee, K.; Choi, M. Effects of secondary mesoporosity and zeolite crystallinity on catalyst deactivation of ZSM-5 in propanal conversion. Microporous Mesoporous Mater., 2017, 245, 16-23.
[http://dx.doi.org/10.1016/j.micromeso.2017.02.071]
[12]
Qi, R.; Fu, T.; Wan, W.; Li, Zh. Pore fabrication of nano-ZSM-5 zeolite by internal desilication and its influence on the methanol to hydrocarbon reaction. Fuel Process. Technol., 2017, 155, 191-199.
[http://dx.doi.org/10.1016/j.fuproc.2016.05.046]
[13]
Wang, Y.; Li, X.; Ma, H.; Zhang, H.; Jiang, Y.; Wang, H.; Li, Zh.; Wu, J. Effect of the desilication of H-ZSM-5 by alkali treatment on the catalytic performance in Fischer–Tropsch synthesis. React. Kinet. Mech. Catal., 2017, 120(2), 775-790.
[http://dx.doi.org/10.1007/s11144-016-1120-8]
[14]
Groen, J.C.; Jansen, J.C.; Moulijn, J.A.; Pérez-Ramírez, J. Optimal aluminum-assisted mesoporosity development in MFI zeolites by desilication. J. Phys. Chem. B, 2004, 108(35), 13062-13065.
[http://dx.doi.org/10.1021/jp047194f]
[15]
Verboekend, D.; Pérez-Ramírez, J. Desilication mechanism revisited: highly mesoporous all-silica zeolites enabled through pore-directing agents. Chemistry, 2011, 17(4), 1137-1147.
[http://dx.doi.org/10.1002/chem.201002589] [PMID: 21243680]
[16]
Sadowska, K.; Góra-Marek, K.; Drozdek, M.; Kuśtrowski, P.; Datka, J.; Martinez-Triguero, J.; Rey, F. Desilication of highly siliceous zeolite ZSM-5 with NaOH and NaOH/tetrabutylamine hydroxide. Microporous Mesoporous Mater., 2013, 168, 195-205.
[http://dx.doi.org/10.1016/j.micromeso.2012.09.033]
[17]
Pérez-Ramírez, J.; Verboekend, D. Zeolite catalysts with tunable hierarchy factor by pore‐growth moderators. Adv. Funct. Mater., 2009, 19(24), 3972-3979.
[http://dx.doi.org/10.1002/adfm.200901394]
[18]
Wang, D.; Zhang, L.; Chen, L.; Wu, H.; Wu, P. Postsynthesis of mesoporous ZSM-5 zeolite by piperidine-assisted desilication and its superior catalytic properties in hydrocarbon cracking. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(7), 3511-3521.
[http://dx.doi.org/10.1039/C4TA06438K]
[19]
Xue, N.; Chen, X.; Nie, L.; Guo, X.; Ding, W. Chen, Yi; Gu, M.; Xie, Z. Understanding the enhancement of catalytic performance for olefin cracking: Hydrothermally stable acids in P/HZSM-5. J. Catal., 2007, 248(1), 20-28.
[http://dx.doi.org/10.1016/j.jcat.2007.02.022]
[20]
Blasco, T.; Corma, A.; Martínez-Triguero, J. Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition. J. Catal., 2006, 237(2), 267-277.
[http://dx.doi.org/10.1016/j.jcat.2005.11.011]
[21]
Lercher, J.A.; Rumplmayr, G. Controlled decrease of acid strength by orthophosphoric acid on ZSM5. Appl. Catal., 1986, 25(1–2), 215-222.
[http://dx.doi.org/10.1016/S0166-9834(00)81239-7]
[22]
Rahmani, M.; Taghizadeh, M. Synthesis optimization of mesoporous ZSM-5 through desilication-reassembly in the methanol-to-propylene reaction. React. Kinet. Mech. Catal., 2017, 122, 409-432.
[http://dx.doi.org/10.1007/s11144-017-1204-0]
[23]
Treacy, M.M.J.; Higgins, J.B. Collection of Simulated XRD Powder Patterns for Zeolites, 5th ed; Elsevier, 2007.
[24]
Baerlocher, C.; McCusker, L.B.; Olson, D.H. Atlas of Zeolite Framework Types, 6th ed; Elsevier, 2007.
[25]
ASTM Standard Test Method. 2011, D5758-01.
[26]
Ding, J.; Wang, M.; Peng, L.; Xue, N.; Wang, Y.; Wang, Y. Combined desilication and phosphorus modification for high-silica ZSM-5 zeolite with related study of hydrocarbon cracking performance. Appl. Catal. A Gen., 2015, 503, 147-155.
[http://dx.doi.org/10.1016/j.apcata.2015.07.011]
[27]
Groen, J.C.; Peffer, L.A.A.; Moulijn, J.A.; Pérez-Ramírez, J. Mechanism of hierarchical porosity development in MFI zeolites by desilication: the role of aluminium as a pore-directing agent. Chemistry, 2005, 11(17), 4983-4994.
[http://dx.doi.org/10.1002/chem.200500045] [PMID: 15968702]
[28]
Seo, G.; Ryoo, R. 31P, 27Al, and 129Xe NMR study of phosphorus-impregnated HZSM-5 zeolite catalysts. J. Catal., 1990, 124(1), 224-230.
[http://dx.doi.org/10.1016/0021-9517(90)90117-3]
[29]
Caeiro, G.; Magnoux, P.; Lopes, J.M.; Ramôa Ribeiro, F.; Menezes, S.M.C.; Costa, A.F.; Cerqueira, H.S. Stabilization effect of phosphorus on steamed H-MFI zeolites. Appl. Catal. A Gen., 2006, 314(2), 160-171.
[http://dx.doi.org/10.1016/j.apcata.2006.08.016]
[30]
Abelló, S.; Bonilla, A.; Pérez-Ramírez, J. Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching. Appl. Catal. A Gen., 2009, 364(1–2), 191-198.
[http://dx.doi.org/10.1016/j.apcata.2009.05.055]
[31]
Verboekend, D.; Pérez-Ramírez, J. Design of hierarchical zeolite catalysts by desilication. Catal. Sci. Technol., 2011, 1(6), 879-890.
[http://dx.doi.org/10.1039/c1cy00150g]
[32]
Suzuki, K.; Aoyagi, Y.; Katada, N.; Choi, M.; Ryoo, R.; Niwa, M. Acidity and catalytic activity of mesoporous ZSM-5 in comparison with zeolite ZSM-5, Al-MCM-41 and silica–alumina. Catal. Today, 2008, 132(1–4), 38-45.
[http://dx.doi.org/10.1016/j.cattod.2007.12.010]
[33]
Martins, G.V.A.; Berlier, G.; Bisio, C.; Coluccia, S.; Pastore, H.O.; Marchese, L. Quantification of Brønsted acid sites in microporous catalysts by a combined FTIR and NH3-TPD study. J. Phys. Chem. C, 2008, 112(18), 7193-7200.
[http://dx.doi.org/10.1021/jp710613q]
[34]
Van Speybroeck, V.; De Wispelaere, K.; Van der Mynsbrugge, J.; Vandichel, M.; Hemelsoet, K.; Waroquier, M. First principle chemical kinetics in zeolites: the methanol-to-olefin process as a case study. Chem. Soc. Rev., 2014, 43(21), 7326-7357.
[http://dx.doi.org/10.1039/C4CS00146J] [PMID: 25054453]
[35]
Zhang, H.; Ning, Zh.X.; Shang, J.P.; Liu, H.Y.; Han, Sh.H.; Qu, W.Sh.; Jiang, Y.; Guo, Y. A durable and highly selective PbO/HZSM-5 catalyst for methanol to propylene (MTP) conversion. Microporous Mesoporous Mater., 2017, 248, 173-178.
[http://dx.doi.org/10.1016/j.micromeso.2017.04.031]
[36]
Mohamed, R.M.; Aly, H.M.; El-Shahat, M.F.; Ibrahim, I.A. Effect of the silica sources on the crystallinity of nanosized ZSM-5 zeolite. Microporous Mesoporous Mater., 2005, 79(1–3), 7-12.
[http://dx.doi.org/10.1016/j.micromeso.2004.10.031]
[37]
Gil, B.; Mokrzycki, Ł.; Sulikowski, B.; Olejniczak, Z.; Walas, S. Desilication of ZSM-5 and ZSM-12 zeolites: Impact on textural, acidic and catalytic properties. Catal. Today, 2010, 152(1–4), 24-32.
[http://dx.doi.org/10.1016/j.cattod.2010.01.059]
[38]
Campbell, S.M.; Jiang, X-Z.; Howe, R.F. Methanol to hydrocarbons: spectroscopic studies and the significance of extra-framework aluminium. Microporous Mesoporous Mater., 1999, 29(1), 91-108.
[http://dx.doi.org/10.1016/S1387-1811(98)00323-0]
[39]
Sun, C.; Du, J.; Liu, J.; Yang, Y.; Ren, N.; Shen, W.; Xu, H.; Tang, Y. A facile route to synthesize endurable mesopore containing ZSM-5 catalyst for methanol to propylene reaction. Chem. Commun. (Camb.), 2010, 46(15), 2671-2673.
[http://dx.doi.org/10.1039/b925850g] [PMID: 20461876]
[40]
Hu, Zh.; Zhang, H.; Wang, L.; Zhang, H.; Zhang, Y.; Xu, H.; Shen, W.; Tang, Y. Highly stable boron-modified hierarchical nanocrystalline ZSM-5 zeolite for the methanol to propylene reaction. Catal. Sci. Technol., 2014, 4(9), 2891-2895.
[http://dx.doi.org/10.1039/C4CY00376D]
[41]
Milina, M.; Mitchell, S.; Crivelli, P.; Cooke, D.; Pérez-Ramírez, J. Mesopore quality determines the lifetime of hierarchically structured zeolite catalysts. Nat. Commun., 2014, 5, 3922.
[http://dx.doi.org/10.1038/ncomms4922]
[42]
Cui, T-L.; Lv, L-B.; Zhang, W-B.; Li, X-H.; Chen, J-Sh. Programmable synthesis of mesoporous ZSM-5 nanocrystals as selective and stable catalysts for the methanol-to-propylene process. Catal. Sci. Technol., 2016, 6(14), 5262-5266.
[http://dx.doi.org/10.1039/C6CY00379F]
[43]
Mentzel, U.V.; Højholt, K.T.; Holm, M.S.; Fehrmann, R.; Beato, P. Conversion of methanol to hydrocarbons over conventional and mesoporous H-ZSM-5 and H-Ga-MFI: Major differences in deactivation behavior. Appl. Catal. A Gen., 2012, 417, 290-297.
[http://dx.doi.org/10.1016/j.apcata.2012.01.003]
[44]
Martinez-Espin, J.S.; De Wispelaere, K.; Janssens, T.V.W.; Svelle, S.; Lillerud, K.P.; Beato, P.; Van Speybroeck, V.; Olsbye, U. Hydrogen transfer versus methylation: on the genesis of aromatics formation in the Methanol-To-Hydrocarbons reaction over H-ZSM-5. ACS Catal., 2017, 7(9), 5773-5780.
[http://dx.doi.org/10.1021/acscatal.7b01643]
[45]
Yang, Y.; Sun, C.; Du, J.; Yue, Y.; Hua, W.; Zhang, C.; Shen, W.; Xu, H. The synthesis of endurable B–Al–ZSM-5 catalysts with tunable acidity for methanol to propylene reaction. Catal. Commun., 2012, 24, 44-47.
[http://dx.doi.org/10.1016/j.catcom.2012.03.013]
[46]
Bakare, I.A.; Muraza, O.; Yoshioka, M.; Yamani, Z.H.; Yokoi, T. Conversion of methanol to olefins over Al-rich ZSM-5 modified with alkaline earth metal oxides. Catal. Sci. Technol., 2016, 6(21), 7852-7859.
[http://dx.doi.org/10.1039/C6CY00867D]
[47]
Mole, T.; Whiteside, J.A. Conversion of methanol to ethylene over ZSM-5 zeolite in the presence of deuterated water. J. Catal., 1982, 75(2), 284-290.
[http://dx.doi.org/10.1016/0021-9517(82)90211-1]
[48]
Wan, Z.; Wu, W.; Chen, W.; Yang, H.; Zhang, D. Direct synthesis of hierarchical ZSM-5 zeolite and its performance in catalyzing methanol to gasoline conversion. Ind. Eng. Chem. Res., 2014, 53, 19471-19478.
[http://dx.doi.org/10.1021/ie5036308]
[49]
Losch, P.; Pinar, A.B.; Willinger, M.G.; Soukup, K.; Chavan, S.; Vincent, B.; Pale, P.; Louis, B. H-ZSM-5 zeolite model crystals: Structure-diffusion-activity relationship in methanol-to-olefins catalysis. J. Catal., 2017, 345, 11-23.
[http://dx.doi.org/10.1016/j.jcat.2016.11.005]
[50]
Bjørgen, M.; Joensen, F.; Holm, M.S.; Olsbye, U.; Lillerud, K.P.; Svelle, S. Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH. Appl. Catal. A Gen., 2008, 345(1), 43-50.
[http://dx.doi.org/10.1016/j.apcata.2008.04.020]
[51]
Tarach, K.; Góra-Marek, K.; Tekla, J.; Brylewska, K.; Datka, J.; Mlekodaj, K.; Makowski, W.; Igualada López, M.C.; Martínez Triguero, J.; Rey, F. Catalytic cracking performance of alkaline-treated zeolite Beta in the terms of acid sites properties and their accessibility. J. Catal., 2014, 312, 46-57.
[http://dx.doi.org/10.1016/j.jcat.2014.01.009]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy