Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

The Anticancer Potential of Apigenin Via Immunoregulation

Author(s): Lu Xu, Mohamed Y. Zaky, Waleed Yousuf, Anwar Ullah, Gehad R. Abdelbaset, Yingqiu Zhang, Osama M. Ahmed, Shuyan Liu* and Han Liu*

Volume 27, Issue 4, 2021

Published on: 13 July, 2020

Page: [479 - 489] Pages: 11

DOI: 10.2174/1381612826666200713171137

Price: $65

Abstract

Apigenin is an edible flavonoid widely distributed in natural plants, including most vegetables and fruits. Previous studies have revealed that apigenin possesses multiple biological functions by demonstrating antiinflammatory, anti-oxidative, anti-bacterial, anti-viral, anti-tumor and cardiovascular protective effects. Furthermore, recent progressions have disclosed a novel perspective of the anti-cancer roles of apigenin through its immunoregulatory functions. With the rapid progression of the groundbreaking strategies being developed for cancer immunotherapy, its immunoregulatory roles are being recognized as intriguing features of the multifaceted apigenin. However, the current understanding of this emerging role of apigenin still remains limited. Therefore, in the present review, recent advances on the immunoregulatory properties of apigenin in various diseases with a special focus on neoplasm, are summarized. Clinical strategies of cancer immunotherapy are briefly introduced and findings on apigenin linked to immunoregulatory roles in immunotherapy-associated aspects are brought together. The bioactivity, bioavailability, toxicity and potential of apigenin, to be considered as a therapeutic agent in anti-tumor immunotherapy, is discussed. Disclosed molecular mechanisms underlying the immunoregulatory roles of apigenin in cancer immunotherapy are also summarized. Based on findings from the literature, apigenin has the potential to serve as a prospective adjuvant for anti-cancer immunotherapy and warrants further investigations.

Keywords: Apigenin, cancer, flavonoid, immunotherapy, immunoregulation, natural product.

[1]
Kruger S, Ilmer M, Kobold S, et al. Advances in cancer immunotherapy 2019 - latest trends. J Exp Clin Cancer Res 2019; 38(1): 268.
[http://dx.doi.org/10.1186/s13046-019-1266-0] [PMID: 31217020]
[2]
Pauken KE, Dougan M, Rose NR, Lichtman AH, Sharpe AH. Adverse Events Following Cancer Immunotherapy: Obstacles and Opportunities. Trends Immunol 2019; 40(6): 511-23.
[http://dx.doi.org/10.1016/j.it.2019.04.002] [PMID: 31053497]
[3]
Koh YC, Ho CT, Pan MH. Recent advances in cancer chemoprevention with phytochemicals. Yao Wu Shi Pin Fen Xi 2020; 28(1): 14-37.
[http://dx.doi.org/10.1016/j.jfda.2019.11.001] [PMID: 31883602]
[4]
Seelinger M, Popescu R, Giessrigl B, et al. Methanol extract of the ethnopharmaceutical remedy Smilax spinosa exhibits anti-neoplastic activity. Int J Oncol 2012; 41(3): 1164-72.
[http://dx.doi.org/10.3892/ijo.2012.1538] [PMID: 22752086]
[5]
Talman AM, Clain J, Duval R, Ménard R, Ariey F. Artemisinin Bioactivity and Resistance in Malaria Parasites. Trends Parasitol 2019; 35(12): 953-63.
[http://dx.doi.org/10.1016/j.pt.2019.09.005] [PMID: 31699532]
[6]
Wang Y, Zhang L, Wang Q, Zhang D. Recent advances in the nanotechnology-based drug delivery of Silybin. J Biomed Nanotechnol 2014; 10(4): 543-58.
[http://dx.doi.org/10.1166/jbn.2014.1798] [PMID: 24734507]
[7]
Cragg GM, Newman DJ. Plants as a source of anti-cancer agents. J Ethnopharmacol 2005; 100(1-2): 72-9.
[http://dx.doi.org/10.1016/j.jep.2005.05.011] [PMID: 16009521]
[8]
Buyel JF. Plants as sources of natural and recombinant anti-cancer agents. Biotechnol Adv 2018; 36(2): 506-20.
[http://dx.doi.org/10.1016/j.biotechadv.2018.02.002] [PMID: 29408560]
[9]
Rabbani G, Ahn SN. Structure, enzymatic activities, glycation and therapeutic potential of human serum albumin: A natural cargo. Int J Biol Macromol 2019; 123: 979-90.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.053] [PMID: 30439428]
[10]
Saha SK, Khuda-Bukhsh AR. Molecular approaches towards development of purified natural products and their structurally known derivatives as efficient anti-cancer drugs: current trends. Eur J Pharmacol 2013; 714(1-3): 239-48.
[http://dx.doi.org/10.1016/j.ejphar.2013.06.009] [PMID: 23819913]
[11]
Mohd IGR, Shawez K, Rizwan HK. Biophysical investigation of thymoquinone binding to ‘N’ and ‘B’ isoform of human serum albumin and explore the interaction mechanism and radical scavenging activity. RSC Advances 2015; 5(24): 18218-32.
[http://dx.doi.org/10.1039/C4RA09892G]
[12]
Vo QV, Nam PC, Thong NM, Trung NT, Phan CD, Mechler A. Antioxidant Motifs in Flavonoids: O-H versus C-H Bond Dissociation. ACS Omega 2019; 4(5): 8935-42.
[http://dx.doi.org/10.1021/acsomega.9b00677] [PMID: 31459981]
[13]
Salehi B, Venditti A, Sharifi-Rad M, et al. The Therapeutic Potential of Apigenin. Int J Mol Sci 2019; 20(6)E1305
[http://dx.doi.org/10.3390/ijms20061305] [PMID: 30875872]
[14]
Hostetler GL, Ralston RA, Schwartz SJ. Flavones: Food Sources, Bioavailability, Metabolism, and Bioactivity. Adv Nutr 2017; 8(3): 423-35.
[http://dx.doi.org/10.3945/an.116.012948] [PMID: 28507008]
[15]
Javadi B, Sahebkar A. Natural products with anti-inflammatory and immunomodulatory activities against autoimmune myocarditis. Pharmacol Res 2017; 124: 34-42.
[http://dx.doi.org/10.1016/j.phrs.2017.07.022] [PMID: 28757189]
[16]
Carruba G, Cocciadiferro L, Di Cristina A, et al. Nutrition, aging and cancer: lessons from dietary intervention studies. Immun Ageing 2016; 13: 13.
[http://dx.doi.org/10.1186/s12979-016-0069-9] [PMID: 27057203]
[17]
Hoensch H, Groh B, Edler L, Kirch W. Prospective cohort comparison of flavonoid treatment in patients with resected colorectal cancer to prevent recurrence. World J Gastroenterol 2008; 14(14): 2187-93.
[http://dx.doi.org/10.3748/wjg.14.2187] [PMID: 18407592]
[18]
Kumar S, Gupta P, Sharma S, Kumar D. A review on immunostimulatory plants. J Chin Integr Med 2011; 9(2): 117-28.
[http://dx.doi.org/10.3736/jcim20110201] [PMID: 21288444]
[19]
Baraya YS, Wong KK, Yaacob NS. The Immunomodulatory Potential of Selected Bioactive Plant-Based Compounds in Breast Cancer: A Review. Anticancer Agents Med Chem 2017; 17(6): 770-83.
[http://dx.doi.org/10.2174/1871520616666160817111242] [PMID: 27539316]
[20]
Mozaffarian D, Wu JHY. Flavonoids, Dairy Foods, and Cardiovascular and Metabolic Health: A Review of Emerging Biologic Pathways. Circ Res 2018; 122(2): 369-84.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.309008] [PMID: 29348256]
[21]
Jiang J, Yan L, Shi Z, Wang L, Shan L, Efferth T. Hepatoprotective and anti-inflammatory effects of total flavonoids of Qu Zhi Ke (peel of Citrus changshan-huyou) on non-alcoholic fatty liver disease in rats via modulation of NF-κB and MAPKs. Phytomedicine 2019.64153082
[http://dx.doi.org/10.1016/j.phymed.2019.153082] [PMID: 31541796]
[22]
González-Paramás AM, Ayuda-Durán B, Martínez S, González-Manzano S, Santos-Buelga C. The Mechanisms Behind the Biological Activity of Flavonoids. Curr Med Chem 2019; 26(39): 6976-90.
[http://dx.doi.org/10.2174/0929867325666180706104829] [PMID: 29984643]
[23]
Farhadi F, Khameneh B, Iranshahi M, Iranshahy M. Antibacterial activity of flavonoids and their structure-activity relationship: An update review. Phytother Res 2019; 33(1): 13-40.
[http://dx.doi.org/10.1002/ptr.6208] [PMID: 30346068]
[24]
Sudhakaran M, Sardesai S, Doseff AI. Flavonoids: New Frontier for Immuno-Regulation and Breast Cancer Control. Antioxidants 2019; 8(4)E103
[http://dx.doi.org/10.3390/antiox8040103] [PMID: 30995775]
[25]
Maleki SJ, Crespo JF, Cabanillas B. Anti-inflammatory effects of flavonoids. Food Chem 2019.299125124
[http://dx.doi.org/10.1016/j.foodchem.2019.125124] [PMID: 31288163]
[26]
Raffa D, Maggio B, Raimondi MV, Plescia F, Daidone G. Recent discoveries of anticancer flavonoids. Eur J Med Chem 2017; 142: 213-28.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.034] [PMID: 28793973]
[27]
Guo H, Wan X, Niu F, et al. Evaluation of antiviral effect and toxicity of total flavonoids extracted from Robinia pseudoacacia cv. idaho. Biomed Pharmacother 2019.118109335
[http://dx.doi.org/10.1016/j.biopha.2019.109335] [PMID: 31452513]
[28]
Sánchez M, Romero M, Gómez-Guzmán M, Tamargo J, Pérez-Vizcaino F, Duarte J. Cardiovascular Effects of Flavonoids. Curr Med Chem 2019; 26(39): 6991-7034.
[http://dx.doi.org/10.2174/0929867326666181220094721] [PMID: 30569843]
[29]
Shukla S, Gupta S. Apigenin: a promising molecule for cancer prevention. Pharm Res 2010; 27(6): 962-78.
[http://dx.doi.org/10.1007/s11095-010-0089-7] [PMID: 20306120]
[30]
Madunić J, Madunić IV, Gajski G, Popić J, Garaj-Vrhovac V. Apigenin: A dietary flavonoid with diverse anticancer properties. Cancer Lett 2018; 413: 11-22.
[http://dx.doi.org/10.1016/j.canlet.2017.10.041] [PMID: 29097249]
[31]
Wang YC, Huang KM. In vitro anti-inflammatory effect of apigenin in the Helicobacter pylori-infected gastric adenocarcinoma cells. Food Chem Toxicol 2013; 53: 376-83.
[http://dx.doi.org/10.1016/j.fct.2012.12.018] [PMID: 23266501]
[32]
Ozçelik B, Kartal M, Orhan I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm Biol 2011; 49(4): 396-402.
[http://dx.doi.org/10.3109/13880209.2010.519390] [PMID: 21391841]
[33]
Yan X, Qi M, Li P, Zhan Y, Shao H. Apigenin in cancer therapy: anti-cancer effects and mechanisms of action. Cell Biosci 2017; 7: 50.
[http://dx.doi.org/10.1186/s13578-017-0179-x] [PMID: 29034071]
[34]
Xu L, Zhang Y, Tian K, et al. Apigenin suppresses PD-L1 expression in melanoma and host dendritic cells to elicit synergistic therapeutic effects. J Exp Clin Cancer Res 2018; 37(1): 261.
[http://dx.doi.org/10.1186/s13046-018-0929-6] [PMID: 30373602]
[35]
Kasiri N, Rahmati M, Ahmadi L, Eskandari N. The significant impact of apigenin on different aspects of autoimmune disease. Inflammopharmacology 2018; 26(6): 1359-73.
[http://dx.doi.org/10.1007/s10787-018-0531-8] [PMID: 30229507]
[36]
Zhang J, Liu D, Huang Y, Gao Y, Qian S. Biopharmaceutics classification and intestinal absorption study of apigenin. Int J Pharm 2012; 436(1-2): 311-7.
[http://dx.doi.org/10.1016/j.ijpharm.2012.07.002] [PMID: 22796171]
[37]
Khan H, Ullah H, Martorell M, et al. et al. Flavonoids nanoparticles in cancer: Treatment, prevention and clinical prospects. Semin Cancer Biol 2019.S1044-579X(19)30182-8
[http://dx.doi.org/10.1016/j.semcancer.2019.07.023] [PMID: 31374244]
[38]
Ding SM, Zhang ZH, Song J, Cheng XD, Jiang J, Jia XB. Enhanced bioavailability of apigenin via preparation of a carbon nanopowder solid dispersion. Int J Nanomedicine 2014; 9: 2327-33.
[http://dx.doi.org/10.2147/IJN.S60938] [PMID: 24872695]
[39]
Sloley BD, Urichuk LJ, Morley P, et al. Identification of kaempferol as a monoamine oxidase inhibitor and potential Neuroprotectant in extracts of Ginkgo biloba leaves. J Pharm Pharmacol 2000; 52(4): 451-9.
[http://dx.doi.org/10.1211/0022357001774075] [PMID: 10813558]
[40]
Wang QQ, Cheng N, Yi WB, Peng SM, Zou XQ. Synthesis, nitric oxide release, and α-glucosidase inhibition of nitric oxide donating apigenin and chrysin derivatives. Bioorg Med Chem 2014; 22(5): 1515-21.
[http://dx.doi.org/10.1016/j.bmc.2014.01.038] [PMID: 24508143]
[41]
Mahajan UB, Chandrayan G, Patil CR, et al. The Protective Effect of Apigenin on Myocardial Injury in Diabetic Rats mediating Activation of the PPAR-γ Pathway. Int J Mol Sci 2017; 18(4)E756
[http://dx.doi.org/10.3390/ijms18040756] [PMID: 28375162]
[42]
Gupta S, Afaq F, Mukhtar H. Selective growth-inhibitory, cell-cycle deregulatory and apoptotic response of apigenin in normal versus human prostate carcinoma cells. Biochem Biophys Res Commun 2001; 287(4): 914-20.
[http://dx.doi.org/10.1006/bbrc.2001.5672] [PMID: 11573952]
[43]
Birt DF, Walker B, Tibbels MG, Bresnick E. Anti-mutagenesis and anti-promotion by apigenin, robinetin and indole-3-carbinol. Carcinogenesis 1986; 7(6): 959-63.
[http://dx.doi.org/10.1093/carcin/7.6.959] [PMID: 3708757]
[44]
Zhang L, Cheng X, Gao Y, et al. Apigenin induces autophagic cell death in human papillary thyroid carcinoma BCPAP cells. Food Funct 2015; 6(11): 3464-72.
[http://dx.doi.org/10.1039/C5FO00671F] [PMID: 26292725]
[45]
Mirzoeva S, Franzen CA, Pelling JC. Apigenin inhibits TGF-β-induced VEGF expression in human prostate carcinoma cells via a Smad2/3- and Src-dependent mechanism. Mol Carcinog 2014; 53(8): 598-609.
[http://dx.doi.org/10.1002/mc.22005] [PMID: 23359392]
[46]
Bao YY, Zhou SH, Lu ZJ, Fan J, Huang YP. Inhibiting GLUT-1 expression and PI3K/Akt signaling using apigenin improves the radiosensitivity of laryngeal carcinoma in vivo. Oncol Rep 2015; 34(4): 1805-14.
[http://dx.doi.org/10.3892/or.2015.4158] [PMID: 26238658]
[47]
Chao SC, Huang SC, Hu DN, Lin HY. Subtoxic Levels of Apigenin Inhibit Expression and Secretion of VEGF by Uveal Melanoma Cells via Suppression of ERK1/2 and PI3K/Akt Pathways. Evid Based Complement Alternat Med 2013.2013817674
[http://dx.doi.org/10.1155/2013/817674] [PMID: 24288566]
[48]
Coombs MR, Harrison ME, Hoskin DW. Apigenin inhibits the inducible expression of programmed death ligand 1 by human and mouse mammary carcinoma cells. Cancer Lett 2016; 380(2): 424-33.
[http://dx.doi.org/10.1016/j.canlet.2016.06.023] [PMID: 27378243]
[49]
Wu DG, Yu P, Li JW, et al. Apigenin potentiates the growth inhibitory effects by IKK-β-mediated NF-κB activation in pancreatic cancer cells. Toxicol Lett 2014; 224(1): 157-64.
[http://dx.doi.org/10.1016/j.toxlet.2013.10.007] [PMID: 24148603]
[50]
Xu M, Wang S, Song YU, Yao J, Huang K, Zhu X. Apigenin suppresses colorectal cancer cell proliferation, migration and invasion via inhibition of the Wnt/β-catenin signaling pathway. Oncol Lett 2016; 11(5): 3075-80.
[http://dx.doi.org/10.3892/ol.2016.4331] [PMID: 27123066]
[51]
Cheong JW, Min YH, Eom JI, Kim SJ, Jeung HK, Kim JS. Inhibition of CK2alpha and PI3K/Akt synergistically induces apoptosis of CD34+CD38- leukaemia cells while sparing haematopoietic stem cells. Anticancer Res 2010; 30(11): 4625-34.
[PMID: 21115916]
[52]
Ketkaew Y, Osathanon T, Pavasant P, Sooampon S. Apigenin inhibited hypoxia induced stem cell marker expression in a head and neck squamous cell carcinoma cell line. Arch Oral Biol 2017; 74: 69-74.
[http://dx.doi.org/10.1016/j.archoralbio.2016.11.010] [PMID: 27886571]
[53]
Erdogan S, Doganlar O, Doganlar ZB, et al. The flavonoid apigenin reduces prostate cancer CD44(+) stem cell survival and migration through PI3K/Akt/NF-κB signaling. Life Sci 2016; 162: 77-86.
[http://dx.doi.org/10.1016/j.lfs.2016.08.019] [PMID: 27569589]
[54]
Kim B, Jung N, Lee S, Sohng JK, Jung HJ. Apigenin Inhibits Cancer Stem Cell-Like Phenotypes in Human Glioblastoma Cells via Suppression of c-Met Signaling. Phytother Res 2016; 30(11): 1833-40.
[http://dx.doi.org/10.1002/ptr.5689] [PMID: 27468969]
[55]
Lefort EC, Blay J. Apigenin and its impact on gastrointestinal cancers. Mol Nutr Food Res 2013; 57(1): 126-44.
[http://dx.doi.org/10.1002/mnfr.201200424] [PMID: 23197449]
[56]
Ganai SA. Plant-derived flavone Apigenin: The small-molecule with promising activity against therapeutically resistant prostate cancer. Biomed Pharmacother 2017; 85: 47-56.
[http://dx.doi.org/10.1016/j.biopha.2016.11.130] [PMID: 27930986]
[57]
Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 2013; 14(10): 1014-22.
[http://dx.doi.org/10.1038/ni.2703] [PMID: 24048123]
[58]
Altmann DM. A Nobel Prize-worthy pursuit: cancer immunology and harnessing immunity to tumour neoantigens. Immunology 2018; 155(3): 283-4.
[http://dx.doi.org/10.1111/imm.13008] [PMID: 30320408]
[59]
Gong J, Chehrazi-Raffle A, Reddi S, Salgia R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer 2018; 6(1): 8.
[http://dx.doi.org/10.1186/s40425-018-0316-z] [PMID: 29357948]
[60]
Weber J. Overcoming immunologic tolerance to melanoma: targeting CTLA-4 with ipilimumab (MDX-010). Oncologist 2008; 13(Suppl. 4): 16-25.
[http://dx.doi.org/10.1634/theoncologist.13-S4-16] [PMID: 19001147]
[61]
Schadendorf D, Hodi FS, Robert C, et al. Pooled Analysis of Long-Term Survival Data From Phase II and Phase III Trials of Ipilimumab in Unresectable or Metastatic Melanoma. J Clin Oncol 2015; 33(17): 1889-94.
[http://dx.doi.org/10.1200/JCO.2014.56.2736] [PMID: 25667295]
[62]
Broz ML, Binnewies M, Boldajipour B, et al. Dissecting the Tumor Myeloid Compartment Reveals Rare Activating Antigen-Presenting Cells Critical for T Cell Immunity. Cancer Cell 2014; 26(6): 938.
[http://dx.doi.org/10.1016/j.ccell.2014.11.010] [PMID: 28898680]
[63]
Ul Islam B, Ahmad P, Rabbani G, et al. Neo-epitopes on crotonaldehyde modified DNA preferably recognize circulating autoantibodies in cancer patients. Tumour Biol 2016; 37(2): 1817-24.
[http://dx.doi.org/10.1007/s13277-015-3955-4] [PMID: 26318300]
[64]
Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008; 26: 677-704.
[http://dx.doi.org/10.1146/annurev.immunol.26.021607.090331] [PMID: 18173375]
[65]
Baig MH, Adil M, Khan R, et al. Enzyme targeting strategies for prevention and treatment of cancer: Implications for cancer therapy. Semin Cancer Biol 2019; 56: 1-11.
[http://dx.doi.org/10.1016/j.semcancer.2017.12.003] [PMID: 29248538]
[66]
Friedman CF, Proverbs-Singh TA, Postow MA. Treatment of the Immune-Related Adverse Effects of Immune Checkpoint Inhibitors: A Review. JAMA Oncol 2016; 2(10): 1346-53.
[http://dx.doi.org/10.1001/jamaoncol.2016.1051] [PMID: 27367787]
[67]
Calabrese LH, Calabrese C, Cappelli LC. Rheumatic immune-related adverse events from cancer immunotherapy. Nat Rev Rheumatol 2018; 14(10): 569-79.
[http://dx.doi.org/10.1038/s41584-018-0074-9] [PMID: 30171203]
[68]
Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 2012; 12(4): 269-81.
[http://dx.doi.org/10.1038/nri3191] [PMID: 22437939]
[69]
Hawkins RE, Gilham DE, Debets R, et al. ATTACK Consortium. Development of adoptive cell therapy for cancer: a clinical perspective. Hum Gene Ther 2010; 21(6): 665-72.
[http://dx.doi.org/10.1089/hum.2010.086] [PMID: 20408760]
[70]
Liu L, Sommermeyer D, Cabanov A, Kosasih P, Hill T, Riddell SR. Inclusion of Strep-tag II in design of antigen receptors for T-cell immunotherapy. Nat Biotechnol 2016; 34(4): 430-4.
[http://dx.doi.org/10.1038/nbt.3461] [PMID: 26900664]
[71]
June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science 2018; 359(6382): 1361-5.
[http://dx.doi.org/10.1126/science.aar6711] [PMID: 29567707]
[72]
Hammerl D, Rieder D, Martens JWM, Trajanoski Z, Debets R, Adoptive T. Cell Therapy: New Avenues Leading to Safe Targets and Powerful Allies. Trends Immunol 2018; 39(11): 921-36.
[http://dx.doi.org/10.1016/j.it.2018.09.004] [PMID: 30309702]
[73]
Neelapu SS, Tummala S, Kebriaei P, et al. Chimeric antigen receptor T-cell therapy - assessment and management of toxicities. Nat Rev Clin Oncol 2018; 15(1): 47-62.
[http://dx.doi.org/10.1038/nrclinonc.2017.148] [PMID: 28925994]
[74]
Porter D, Frey N, Wood PA, Weng Y, Grupp SA. Grading of cytokine release syndrome associated with the CAR T cell therapy tisagenlecleucel. J Hematol Oncol 2018; 11(1): 35.
[http://dx.doi.org/10.1186/s13045-018-0571-y] [PMID: 29499750]
[75]
Rahimi A, Hossein-Nataj H, Hajheydari Z, et al. Expression analysis of PD-1 and Tim-3 immune checkpoint receptors in patients with vitiligo; positive association with disease activity. Exp Dermatol 2019; 28(6): 674-81.
[http://dx.doi.org/10.1111/exd.13952] [PMID: 31046170]
[76]
Haq SK, Rabbani G, Ahmad E, Atif SM, Khan RH. Protease inhibitors: a panacea? J Biochem Mol Toxicol 2010; 24(4): 270-7.
[http://dx.doi.org/10.1002/jbt.20335] [PMID: 20135636]
[77]
Feng X, Weng D, Zhou F, et al. Activation of PPARγ by a Natural Flavonoid Modulator, Apigenin Ameliorates Obesity-Related Inflammation Via Regulation of Macrophage Polarization. EBioMedicine 2016; 9: 61-76.
[http://dx.doi.org/10.1016/j.ebiom.2016.06.017] [PMID: 27374313]
[78]
Zhang X, Wang G, Gurley EC, Zhou H. Flavonoid apigenin inhibits lipopolysaccharide-induced inflammatory response through multiple mechanisms in macrophages. PLoS One 2014; 9(9)e107072
[http://dx.doi.org/10.1371/journal.pone.0107072] [PMID: 25192391]
[79]
Wang Q, Zeng P, Liu Y, Wen G, Fu X, Sun X. Inhibition of autophagy ameliorates atherogenic inflammation by augmenting apigenin-induced macrophage apoptosis. Int Immunopharmacol 2015; 27(1): 24-31.
[http://dx.doi.org/10.1016/j.intimp.2015.04.018] [PMID: 25899084]
[80]
Zeng P, Liu B, Wang Q, et al. Apigenin Attenuates Atherogenesis through Inducing Macrophage Apoptosis via Inhibition of AKT Ser473 Phosphorylation and Downregulation of Plasminogen Activator Inhibitor-2. Oxid Med Cell Longev 2015.2015379538
[http://dx.doi.org/10.1155/2015/379538] [PMID: 25960827]
[81]
Liao Y, Shen W, Kong G, Lv H, Tao W, Bo P. Apigenin induces the apoptosis and regulates MAPK signaling pathways in mouse macrophage ANA-1 cells. PLoS One 2014; 9(3)e92007
[http://dx.doi.org/10.1371/journal.pone.0092007] [PMID: 24646936]
[82]
Ginwala R, McTish E, Raman C, et al. Apigenin, a Natural Flavonoid, Attenuates EAE Severity Through the Modulation of Dendritic Cell and Other Immune Cell Functions. J Neuroimmune Pharmacol 2016; 11(1): 36-47.
[http://dx.doi.org/10.1007/s11481-015-9617-x] [PMID: 26040501]
[83]
Rezai-Zadeh K, Ehrhart J, Bai Y, et al. Apigenin and luteolin modulate microglial activation via inhibition of STAT1-induced CD40 expression. J Neuroinflammation 2008; 5: 41.
[http://dx.doi.org/10.1186/1742-2094-5-41] [PMID: 18817573]
[84]
Li X, Han Y, Zhou Q, et al. Apigenin, a potent suppressor of dendritic cell maturation and migration, protects against collagen-induced arthritis. J Cell Mol Med 2016; 20(1): 170-80.
[http://dx.doi.org/10.1111/jcmm.12717] [PMID: 26515512]
[85]
Verbeek R, Plomp AC, van Tol EA, van Noort JM. The flavones luteolin and apigenin inhibit in vitro antigen-specific proliferation and interferon-gamma production by murine and human autoimmune T cells. Biochem Pharmacol 2004; 68(4): 621-9.
[http://dx.doi.org/10.1016/j.bcp.2004.05.012] [PMID: 15276069]
[86]
Dilidaer ZY, Zheng Y, Liu Z, et al. Increased BAFF expression in nasal polyps is associated with local IgE production, Th2 response and concomitant asthma. Eur Arch Otorhinolaryngol 2017; 274(4): 1883-90.
[http://dx.doi.org/10.1007/s00405-016-4435-1] [PMID: 28035475]
[87]
Zhang S, Liu X, Sun C, et al. Apigenin Attenuates Experimental Autoimmune Myocarditis by Modulating Th1/Th2 Cytokine Balance in Mice. Inflammation 2016; 39(2): 678-86.
[http://dx.doi.org/10.1007/s10753-015-0294-y] [PMID: 26658748]
[88]
Kang HK, Ecklund D, Liu M, Datta SK. Apigenin, a non-mutagenic dietary flavonoid, suppresses lupus by inhibiting autoantigen presentation for expansion of autoreactive Th1 and Th17 cells. Arthritis Res Ther 2009; 11(2): R59.
[http://dx.doi.org/10.1186/ar2682] [PMID: 19405952]
[89]
Xu L, Zhang L, Bertucci AM, Pope RM, Datta SK. Apigenin, a dietary flavonoid, sensitizes human T cells for activation-induced cell death by inhibiting PKB/Akt and NF-kappaB activation pathway. Immunol Lett 2008; 121(1): 74-83.
[http://dx.doi.org/10.1016/j.imlet.2008.08.004] [PMID: 18812189]
[90]
Yano S, Umeda D, Yamashita T, et al. Dietary flavones suppresses IgE and Th2 cytokines in OVA-immunized BALB/c mice. Eur J Nutr 2007; 46(5): 257-63.
[http://dx.doi.org/10.1007/s00394-007-0658-7] [PMID: 17497073]
[91]
Park J, Kim SH, Kim TS. Inhibition of interleukin-4 production in activated T cells via down-regulation of NF-AT DNA binding activity by apigenin, a flavonoid present in dietary plants. Immunol Lett 2006; 103(2): 108-14.
[http://dx.doi.org/10.1016/j.imlet.2005.10.002] [PMID: 16280168]
[92]
Li J, Zhang B. Apigenin protects ovalbumin-induced asthma through the regulation of Th17 cells. Fitoterapia 2013; 91: 298-304.
[http://dx.doi.org/10.1016/j.fitote.2013.09.009] [PMID: 24060907]
[93]
Huang CH, Kuo PL, Hsu YL, et al. The natural flavonoid apigenin suppresses Th1- and Th2-related chemokine production by human monocyte THP-1 cells through mitogen-activated protein kinase pathways. J Med Food 2010; 13(2): 391-8.
[http://dx.doi.org/10.1089/jmf.2009.1229] [PMID: 20170340]
[94]
Li RR, Pang LL, Du Q, Shi Y, Dai WJ, Yin KS. Apigenin inhibits allergen-induced airway inflammation and switches immune response in a murine model of asthma. Immunopharmacol Immunotoxicol 2010; 32(3): 364-70.
[http://dx.doi.org/10.3109/08923970903420566] [PMID: 20095800]
[95]
Liu Y, Li Z, Xue X, Wang Y, Zhang Y, Wang J. Apigenin reverses lung injury and immunotoxicity in paraquat-treated mice. Int Immunopharmacol 2018; 65: 531-8.
[http://dx.doi.org/10.1016/j.intimp.2018.10.046] [PMID: 30408630]
[96]
Yano S, Umeda D, Maeda N, Fujimura Y, Yamada K, Tachibana H. Dietary apigenin suppresses IgE and inflammatory cytokines production in C57BL/6N mice. J Agric Food Chem 2006; 54(14): 5203-7.
[http://dx.doi.org/10.1021/jf0607361] [PMID: 16819936]
[97]
Cardenas H, Arango D, Nicholas C, et al. Dietary Apigenin Exerts Immune-Regulatory Activity in Vivo by Reducing NF-κB Activity, Halting Leukocyte Infiltration and Restoring Normal Metabolic Function. Int J Mol Sci 2016; 17(3): 323.
[http://dx.doi.org/10.3390/ijms17030323] [PMID: 26938530]
[98]
Che DN, Cho BO, Shin JY, et al. Apigenin Inhibits IL-31 Cytokine in Human Mast Cell and Mouse Skin Tissues. Molecules 2019; 24(7)E1290
[http://dx.doi.org/10.3390/molecules24071290] [PMID: 30987029]
[99]
Bauer D, Mazzio E, Soliman KFA. Whole Transcriptomic Analysis of Apigenin on TNFα Immuno-activated MDA-MB-231 Breast Cancer Cells. Cancer Genomics Proteomics 2019; 16(6): 421-31.
[http://dx.doi.org/10.21873/cgp.20146] [PMID: 31659097]
[100]
Lieben L. Immunotherapy: Keeping breast cancer in check. Nat Rev Cancer 2017; 17(8): 454-5.
[http://dx.doi.org/10.1038/nrc.2017.55] [PMID: 28684877]
[101]
Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy. Blood 2018; 131(1): 58-67.
[http://dx.doi.org/10.1182/blood-2017-06-741033] [PMID: 29118008]
[102]
Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol 2004; 173(2): 945-54.
[http://dx.doi.org/10.4049/jimmunol.173.2.945] [PMID: 15240681]
[103]
Munn DH, Mellor AL. IDO in the Tumor Microenvironment: Inflammation, Counter-Regulation, and Tolerance. Trends Immunol 2016; 37(3): 193-207.
[http://dx.doi.org/10.1016/j.it.2016.01.002] [PMID: 26839260]
[104]
Munn DH, Sharma MD, Baban B, et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 2005; 22(5): 633-42.
[http://dx.doi.org/10.1016/j.immuni.2005.03.013] [PMID: 15894280]
[105]
Fallarino F, Grohmann U, You S, et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol 2006; 176(11): 6752-61.
[http://dx.doi.org/10.4049/jimmunol.176.11.6752] [PMID: 16709834]
[106]
Liu H, Huang L, Bradley J, et al. GCN2-dependent metabolic stress is essential for endotoxemic cytokine induction and pathology. Mol Cell Biol 2014; 34(3): 428-38.
[http://dx.doi.org/10.1128/MCB.00946-13] [PMID: 24248597]
[107]
Ghițu A, Schwiebs A, Radeke HH, et al. A Comprehensive Assessment of Apigenin as an Antiproliferative, Proapoptotic, Antiangiogenic and Immunomodulatory Phytocompound. Nutrients 2019; 11(4)E858
[http://dx.doi.org/10.3390/nu11040858] [PMID: 30995771]
[108]
Yoon MS, Lee JS, Choi BM, et al. Apigenin inhibits immunostimulatory function of dendritic cells: Implication of immunotherapeutic adjuvant. Mol Pharmacol 2006; 70(3): 1033-44.
[http://dx.doi.org/10.1124/mol.106.024547] [PMID: 16782805]
[109]
Bol KF, Schreibelt G, Gerritsen WR, de Vries IJ, Figdor CG. Dendritic Cell-Based Immunotherapy: State of the Art and Beyond. Clin Cancer Res 2016; 22(8): 1897-906.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1399] [PMID: 27084743]
[110]
Cheever MA, Higano CS. PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res 2011; 17(11): 3520-6.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-3126] [PMID: 21471425]
[111]
Melero I, Gaudernack G, Gerritsen W, et al. Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol 2014; 11(9): 509-24.
[http://dx.doi.org/10.1038/nrclinonc.2014.111] [PMID: 25001465]
[112]
Gattinoni L, Powell DJ Jr, Rosenberg SA, Restifo NP. Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 2006; 6(5): 383-93.
[http://dx.doi.org/10.1038/nri1842] [PMID: 16622476]
[113]
Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 2015; 348(6230): 62-8.
[http://dx.doi.org/10.1126/science.aaa4967] [PMID: 25838374]
[114]
Tran E, Turcotte S, Gros A, et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 2014; 344(6184): 641-5.
[http://dx.doi.org/10.1126/science.1251102] [PMID: 24812403]
[115]
Batista-Duharte A, Téllez-Martínez D, Fuentes DLP, Carlos IZ. Molecular adjuvants that modulate regulatory T cell function in vaccination: A critical appraisal. Pharmacol Res 2018; 129: 237-50.
[http://dx.doi.org/10.1016/j.phrs.2017.11.026] [PMID: 29175113]
[116]
Gooden MJ, de Bock GH, Leffers N, Daemen T, Nijman HW. The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer 2011; 105(1): 93-103.
[http://dx.doi.org/10.1038/bjc.2011.189] [PMID: 21629244]
[117]
Chuang CM, Monie A, Wu A, Hung CF. Combination of apigenin treatment with therapeutic HPV DNA vaccination generates enhanced therapeutic antitumor effects. J Biomed Sci 2009; 16: 49.
[http://dx.doi.org/10.1186/1423-0127-16-49] [PMID: 19473507]
[118]
Nelson N, Szekeres K, Iclozan C, et al. Apigenin: Selective CK2 inhibitor increases Ikaros expression and improves T cell homeostasis and function in murine pancreatic cancer. PLoS One 2017; 12(2)e0170197
[http://dx.doi.org/10.1371/journal.pone.0170197] [PMID: 28152014]
[119]
Lim SO, Li CW, Xia W, et al. Deubiquitination and Stabilization of PD-L1 by CSN5. Cancer Cell 2016; 30(6): 925-39.
[http://dx.doi.org/10.1016/j.ccell.2016.10.010] [PMID: 27866850]
[120]
Shang B, Liu Y, Jiang SJ, Liu Y. Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep 2015; 5: 15179.
[http://dx.doi.org/10.1038/srep15179] [PMID: 26462617]
[121]
Joshi NS, Akama-Garren EH, Lu Y, et al. Regulatory T Cells in Tumor-Associated Tertiary Lymphoid Structures Suppress Anti-tumor T Cell Responses. Immunity 2015; 43(3): 579-90.
[http://dx.doi.org/10.1016/j.immuni.2015.08.006] [PMID: 26341400]
[122]
Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res 1999; 59(13): 3128-33.
[PMID: 10397255]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy