Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Review Article

Cancer Stem Cells and their Management in Cancer Therapy

Author(s): Suzan Shenouda, Ketan Kulkarni, Yasser Abuetabh and Consolato Sergi *

Volume 15, Issue 3, 2020

Page: [212 - 227] Pages: 16

DOI: 10.2174/1574892815666200713145931

Price: $65

Abstract

Background: In the last decade, the proposed Cancer Stem Cell (CSC) hypothesis has steadily changed the way cancer treatment is approached. CSCs may be the source of the heterogeneous non-tumorigenic cell population included in a neoplasm. Intratumor and intertumoral heterogeneity is a well-known phenomenon that massively entangles the diagnosis and treatment of cancer. The literature seems to suggest that heterogeneity develops progressively within tumor-initiating stem cells. CSCs harbor genetic and/or epigenetic alterations that allow them to differentiate into multiple tumor cell types sequentially.

Objective: The CSC hypothesis, cellular therapy, and the most recent patents on CSCs were reviewed.

Methods: PubMed, Scopus, and Google Scholar were screened for this information. Also, an analysis of the most recent data targeting CSCs in pediatric cancer developed at two Canadian institutions is provided. The genes involved with the activation of CSCs and the drugs used to antagonize them are also highlighted.

Results: It is underlined that (1) CSCs possess stem cell-like properties, including the ability for self-renewal; (2) CSCs can start carcinogenesis and are responsible for tumor recurrence after treatment; (3) Although some limitations have been raised, which may oppose the CSC hypothesis, cancer progression and metastasis have been recognized to be caused by CSCs.

Conclusion: The significant roles of cell therapy may include an auto-transplant with high-dose treatment, an improvement of the immune function, creation of chimeric antigen receptor T cells, and the recruitment of NK cell-based immunotherapy.

Keywords: Cancer, gene therapy, hypothesis, patents, stem cells, treatment.

[1]
Rajasekhar VK, Dalerba P, Passegué E, Lagasse E, Najbauer J. The 5th International Society for Stem Cell Research (ISSCR) Annual Meeting, June 2007. Stem Cells 2008; 26(1): 292-8.
[http://dx.doi.org/10.1634/stemcells.2007-0647] [PMID: 17962698]
[2]
Dalerba P, Cho RW, Clarke MF. Cancer stem cells: Models and concepts. Annu Rev Med 2007; 58: 267-84.
[http://dx.doi.org/10.1146/annurev.med.58.062105.204854] [PMID: 17002552]
[3]
Koren E, Fuchs Y. The bad seed: Cancer stem cells in tumor development and resistance. Drug Resist Updat 2016; 28: 1-12.
[http://dx.doi.org/10.1016/j.drup.2016.06.006] [PMID: 27620951]
[4]
Nassar D, Blanpain C. Cancer stem cells: Basic concepts and therapeutic implications. Annu Rev Pathol 2016; 11: 47-76.
[http://dx.doi.org/10.1146/annurev-pathol-012615-044438] [PMID: 27193450]
[5]
Reid PA, Wilson P, Li Y, Marcu LG, Bezak E. Current understanding of cancer stem cells: Review of their radiobiology and role in head and neck cancers. Head Neck 2017; 39(9): 1920-32.
[http://dx.doi.org/10.1002/hed.24848] [PMID: 28644558]
[6]
Koch U, Krause M, Baumann M. Cancer stem cells at the crossroads of current cancer therapy failures-radiation oncology perspective. Semin Cancer Biol 2010; 20(2): 116-24.
[http://dx.doi.org/10.1016/j.semcancer.2010.02.003] [PMID: 20219680]
[7]
Schatton T, Frank MH. Cancer stem cells and human malignant melanoma. Pigment Cell Melanoma Res 2008; 21(1): 39-55.
[http://dx.doi.org/10.1111/j.1755-148X.2007.00427.x] [PMID: 18353142]
[8]
Lyssiotis CA, Foreman RK, Staerk J, et al. Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proc Natl Acad Sci USA 2009; 106(22): 8912-7.
[http://dx.doi.org/10.1073/pnas.0903860106] [PMID: 19447925]
[9]
Bergsagel DE, Valeriote FA. Growth characteristics of a mouse plasma cell tumor. Cancer Res 1968; 28(11): 2187-96.www.ncbi.nlm.nih.gov/pubmed/5723963
[10]
Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367(6464): 645-8.
[http://dx.doi.org/10.1038/367645a0] [PMID: 7509044]
[11]
Goodson WH III, Lowe L, Carpenter DO, et al. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. Carcinogenesis 2015; 36(Suppl. 1): S254-96.
[http://dx.doi.org/10.1093/carcin/bgv039] [PMID: 26106142]
[12]
Clarke MF. A self-renewal assay for cancer stem cells. Cancer Chemother Pharmacol 2005; 56(Suppl. 1): 64-8.
[http://dx.doi.org/10.1007/s00280-005-0097-1] [PMID: 16273355]
[13]
Zen Y, Fujii T, Yoshikawa S, et al. Histological and culture studies with respect to ABCG2 expression support the existence of a cancer cell hierarchy in human hepatocellular carcinoma. Am J Pathol 2007; 170(5): 1750-62.
[http://dx.doi.org/10.2353/ajpath.2007.060798] [PMID: 17456779]
[14]
Alvarez Palomo AB, McLenachan S, Chen FK, et al. Prospects for clinical use of reprogrammed cells for autologous treatment of macular degeneration. Fibrogenesis Tissue Repair 2015; 8: 9.
[http://dx.doi.org/10.1186/s13069-015-0026-9] [PMID: 25984235]
[15]
Marcu L, van Doorn T, Olver I. Modelling of post-irradiation accelerated repopulation in squamous cell carcinomas. Phys Med Biol 2004; 49(16): 3767-79.
[http://dx.doi.org/10.1088/0031-9155/49/16/021] [PMID: 15446804]
[16]
Park CH, Bergsagel DE, McCulloch EA. Mouse myeloma tumor stem cells: A primary cell culture assay. J Natl Cancer Inst 1971; 46(2): 411-22.
[http://dx.doi.org/www.ncbi.nlm.nih.gov/pubmed/5115909]
[17]
Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3(7): 730-7.
[http://dx.doi.org/10.1038/nm0797-730]
[18]
Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells. Science 1977; 197(4302): 461-3.
[http://dx.doi.org/10.1126/science.560061]
[19]
Park TS, Donnenberg VS, Donnenberg AD, Zambidis ET, Zimmerlin L. Dynamic interactions between cancer stem cells and their stromal partners. Curr Pathobiol Rep 2014; 2(1): 41-52.
[http://dx.doi.org/10.1007/s40139-013-0036-5] [PMID: 24660130]
[20]
Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414(6859): 105-11.
[http://dx.doi.org/10.1038/35102167] [PMID: 11689955]
[21]
Rich JN. Cancer stem cells: understanding tumor hierarchy and heterogeneity. Medicine (Baltimore) 2016; 95(1)(Suppl. 1): S2-7.
[http://dx.doi.org/10.1097/MD.0000000000004764] [PMID: 27611934]
[22]
Rich JN. Cancer stem cells: Master gatekeepers and regulators of cancer growth and metastasis Introduction. Medicine (Baltimore) 2016; 95(1)(Suppl. 1): S1.
[http://dx.doi.org/10.1097/MD.0000000000004558] [PMID: 27611933]
[23]
Rich JN, Matsui WH, Chang JC. Cancer stem cells: A nuanced perspective. Medicine (Baltimore) 2016; 95(1)(Suppl. 1): S26-8.
[http://dx.doi.org/10.1097/MD.0000000000004559] [PMID: 27611936]
[24]
Morrissy AS, Garzia L, Shih DJ, et al. Divergent clonal selection dominates medulloblastoma at recurrence. Nature 2016; 529(7586): 351-7.
[http://dx.doi.org/10.1038/nature16478] [PMID: 26760213]
[25]
Huntly BJ, Gilliland DG. Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer 2005; 5(4): 311-21.
[http://dx.doi.org/10.1038/nrc1592] [PMID: 15803157]
[26]
De Los Angeles A, Ferrari F, Xi R, et al. Hallmarks of pluripotency. Nature 2015; 525(7570): 469-78.
[http://dx.doi.org/10.1038/nature15515] [PMID: 26399828]
[27]
Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature 2004; 432(7015): 396-401.
[http://dx.doi.org/10.1038/nature03128] [PMID: 15549107]
[28]
Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63(18): 5821-8.http://www.ncbi.nlm.nih.gov/ pubmed/14522905
[29]
Hoffman AM, Dow SW. Concise review: Stem cell trials using companion animal disease models. Stem Cells 2016; 34(7): 1709-29.
[http://dx.doi.org/10.1002/stem.2377] [PMID: 27066769]
[30]
Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005; 65(23): 10946-51.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2018] [PMID: 16322242]
[31]
Martelli AM, Lonetti A, Buontempo F, et al. Targeting signaling pathways in T-cell acute lymphoblastic leukemia initiating cells. Adv Biol Regul 2014; 56: 6-21.
[http://dx.doi.org/10.1016/j.jbior.2014.04.004] [PMID: 24819383]
[32]
Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature 2007; 445(7123): 111-5.
[http://dx.doi.org/10.1038/nature05384] [PMID: 17122771]
[33]
Li J, Zhong XY, Li ZY, et al. CD133 expression in osteosarcoma and derivation of CD133+ cells. Mol Med Rep 2013; 7(2): 577-84.
[http://dx.doi.org/10.3892/mmr.2012.1231] [PMID: 23242469]
[34]
Zou X, Hou Y, Xu J, et al. Mitochondria transfer via tunneling nanotubes is an important mechanism by which CD133+ scattered tubular cells eliminate hypoxic tubular cell injury. Biochem Biophys Res Commun 2020; 522(1): 205-12.
[http://dx.doi.org/10.1016/j.bbrc.2019.11.006] [PMID: 31759629]
[35]
Glumac PM, LeBeau AM. The role of CD133 in cancer: A concise review. Clin Transl Med 2018; 7(1): 18.
[http://dx.doi.org/10.1186/s40169-018-0198-1] [PMID: 29984391]
[36]
Flores-Figueroa E, Essers M, Bowman TV. Hematopoiesis “awakens”: Evolving technologies, the force behind them. Exp Hematol 2016; 44(2): 101-5.
[http://dx.doi.org/10.1016/j.exphem.2015.10.006] [PMID: 26546749]
[37]
Traver D, Akashi K, Weissman IL, Lagasse E. Mice defective in two apoptosis pathways in the myeloid lineage develop acute myeloblastic leukemia. Immunity 1998; 9(1): 47-57.
[http://dx.doi.org/10.1016/S1074-7613(00)80587-7]
[38]
Cozzio A, Passegué E, Ayton PM, Karsunky H, Cleary ML, Weissman IL. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 2003; 17(24): 3029-35.
[http://dx.doi.org/10.1101/gad.1143403] [PMID: 14701873]
[39]
Barr S, Thomson S, Buck E, et al. Bypassing cellular EGF receptor dependence through epithelial-to-mesenchymal-like transitions. Clin Exp Metastasis 2008; 25(6): 685-93.
[http://dx.doi.org/10.1007/s10585-007-9121-7] [PMID: 18236164]
[40]
Yang K, Wang X, Zhang H, et al. The evolving roles of canonical WNT signaling in stem cells and tumorigenesis: Implications in targeted cancer therapies. Lab Invest 2016; 96(2): 116-36.
[http://dx.doi.org/10.1038/labinvest.2015.144] [PMID: 26618721]
[41]
Yang J, Mani SA, Weinberg RA. Exploring a new twist on tumor metastasis. Cancer Res 2006; 66(9): 4549-52.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3850] [PMID: 16651402]
[42]
Hajra KM, Chen DY, Fearon ER. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 2002; 62(6): 1613-8.www.ncbi.nlm.nih.gov/pubmed/11912130
[43]
Forsman CL, Ng BC, Heinze RK, et al. BMP-binding protein twisted gastrulation is required in mammary gland epithelium for normal ductal elongation and myoepithelial compartmentalization. Dev Biol 2013; 373(1): 95-106.
[http://dx.doi.org/10.1016/j.ydbio.2012.10.007] [PMID: 23103586]
[44]
Johnston J, Al-Bahrani R, Abuetabh Y, et al. Twisted gastrulation expression in cholangiocellular and hepatocellular carcinoma. J Clin Pathol 2012; 65(10): 945-8.
[http://dx.doi.org/10.1136/jclinpath-2011-200577] [PMID: 22639408]
[45]
Sun M, Forsman C, Sergi C, Gopalakrishnan R, O’Connor MB, Petryk A. The expression of twisted gastrulation in postnatal mouse brain and functional implications. Neuroscience 2010; 169(2): 920-31.
[http://dx.doi.org/10.1016/j.neuroscience.2010.05.026] [PMID: 20493240]
[46]
Busch C, Bareiss PM, Sinnberg T, et al. Isolation of three stem cell lines from human sacrococcygeal teratomas. J Pathol 2009; 217(4): 589-96.
[http://dx.doi.org/10.1002/path.2486] [PMID: 19142973]
[47]
Vicente-Dueñas C, Hauer J, Ruiz-Roca L, et al. Tumoral stem cell reprogramming as a driver of cancer: Theory, biological models, implications in cancer therapy. Semin Cancer Biol 2015; 32: 3-9.
[http://dx.doi.org/10.1016/j.semcancer.2014.02.001] [PMID: 24530939]
[48]
Ruiz-Vela A, Aguilar-Gallardo C, Simón C. Building a framework for embryonic microenvironments and cancer stem cells. Stem Cell Rev Rep 2009; 5(4): 319-27.
[http://dx.doi.org/10.1007/s12015-009-9096-7] [PMID: 20058196]
[49]
Sell S. Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol 2004; 51(1): 1-28.
[http://dx.doi.org/10.1016/j.critrevonc.2004.04.007] [PMID: 15207251]
[50]
Cohnheim J. Über Entzündung und Eiterung. Pathol Anat Physiol Klin Med 1867; 40: 1-79.
[51]
Virchows VR. Editorial. Arch Pathol Anat Physiol Klin Med 1855; 3: 23.
[52]
Durante F. Nesso fisio-pathologico tra la struttura dei nei materni e la genesi di alcuni tumori maligni. Arch di Mem ed Osserv di Chir Prat 1874; 11: 217-26.
[53]
Sell S. On the stem cell origin of cancer. Am J Pathol 2010; 176(6): 2584-494.
[http://dx.doi.org/10.2353/ajpath.2010.091064] [PMID: 20431026]
[54]
Pierce GB, Pantazis CG, Caldwell JE, Wells RS. Specificity of the control of tumor formation by the blastocyst. Cancer Res 1982; 42(3): 1082-7. https://www.ncbi.nlm.nih.gov/pubmed/6277473
[55]
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100(7): 3983-8.
[http://dx.doi.org/10.1073/pnas.0530291100] [PMID: 12629218]
[56]
Gangopadhyay S, Nandy A, Hor P, Mukhopadhyay A. Breast cancer stem cells: A novel therapeutic target. Clin Breast Cancer 2013; 13(1): 7-15.
[http://dx.doi.org/10.1016/j.clbc.2012.09.017] [PMID: 23127340]
[57]
Massimino M, Biassoni V, Gandola L, et al. Childhood medulloblastoma. Crit Rev Oncol Hematol 2016; 105: 35-51.
[http://dx.doi.org/10.1016/j.critrevonc.2016.05.012] [PMID: 27375228]
[58]
Gilbertson RJ, Ellison DW. The origins of medulloblastoma subtypes. Annu Rev Pathol 2008; 3: 341-65.
[http://dx.doi.org/10.1146/annurev.pathmechdis.3.121806.151518] [PMID: 18039127]
[59]
Zhao K, Lou R, Huang F, et al. Immunomodulation effects of mesenchymal stromal cells on acute graft-versus-host disease after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2015; 21(1): 97-104.
[http://dx.doi.org/10.1016/j.bbmt.2014.09.030] [PMID: 25300866]
[60]
Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol 2016; 131(6): 803-20.
[http://dx.doi.org/10.1007/s00401-016-1545-1] [PMID: 27157931]
[61]
Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 2002; 39(3): 193-206.
[http://dx.doi.org/10.1002/glia.10094] [PMID: 12203386]
[62]
Hemmati HD, Nakano I, Lazareff JA, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 2003; 100(25): 15178-83.
[http://dx.doi.org/10.1073/pnas.2036535100] [PMID: 14645703]
[63]
Monzani E, Facchetti F, Galmozzi E, et al. Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer 2007; 43(5): 935-46.
[http://dx.doi.org/10.1016/j.ejca.2007.01.017] [PMID: 17320377]
[64]
Fang D, Nguyen TK, Leishear K, et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 2005; 65(20): 9328-37.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1343] [PMID: 16230395]
[65]
Patrawala L, Calhoun T, Schneider-Broussard R, et al. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 2006; 25(12): 1696-708.
[http://dx.doi.org/10.1038/sj.onc.1209327] [PMID: 16449977]
[66]
Bahitham W, Liao X, Peng F, et al. Mitochondriome and cholangiocellular carcinoma. PLoS One 2014; 9(8): e104694.
[http://dx.doi.org/10.1371/journal.pone.0104694] [PMID: 25137133]
[67]
Al-Bahrani R, Tuertcher D, Zailaie S, et al. Differential SIRT1 expression in hepatocellular carcinomas and cholangiocarcinoma of the liver. Ann Clin Lab Sci 2015; 45(1): 3-9.www.ncbi.nlm.nih. gov/pubmed/25696003
[68]
Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, Moriwaki H. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun 2006; 351(4): 820-4.
[http://dx.doi.org/10.1016/j.bbrc.2006.10.128] [PMID: 17097610]
[69]
Sergi C, Ehemann V, Beedgen B, Linderkamp O, Otto HF. Huge fetal sacrococcygeal teratoma with a completely formed eye and intratumoral DNA ploidy heterogeneity. Pediatr Dev Pathol 1999; 2(1): 50-7.
[http://dx.doi.org/10.1007/s100249900089]
[70]
Tuladhar R, Patole SK, Whitehall JS. Sacrococcygeal teratoma in the perinatal period. Postgrad Med J 2000; 76(902): 754-9.
[http://dx.doi.org/10.1136/pgmj.76.902.754]
[71]
McKillop SJ, Belletrutti MJ, Lee BE, et al. Adenovirus necrotizing hepatitis complicating atypical teratoid rhabdoid tumor. Pediatr Int 2015; 57(5): 974-7.
[http://dx.doi.org/10.1111/ped.12674] [PMID: 26508178]
[72]
Hook S, Spicer R, Williams J, et al. Severe anemia in a 25-day-old infant due to gastric teratoma with focal neuroblastoma. Am J Perinatol 2003; 20(5): 233-7.
[http://dx.doi.org/10.1055/s-2003-42343] [PMID: 13680506]
[73]
Busch C, Oppitz M, Wehrmann M, Schweizer P, Drews U. Immunohistochemical localization of nanog and Oct4 in stem cell compartments of human sacrococcygeal teratomas. Histopathology 2008; 52(6): 717-30.
[http://dx.doi.org/10.1111/j.1365-2559.2008.03017.x] [PMID: 18439155]
[74]
Drut R. Immunohistochemical localization of nanog and Oct4 in stem cell compartments of human sacrococcygeal teratomas. Histopathology 2009; 54(6): 763.
[http://dx.doi.org/10.1111/j.1365-2559.2009.03284.x]
[75]
Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A. Tumor growth need not be driven by rare cancer stem cells. Science 2007; 317(5836): 337.
[http://dx.doi.org/10.1126/science.1142596] [PMID: 17641192]
[76]
Hill RP. Identifying cancer stem cells in solid tumors: Case not proven. Cancer Res 2006; 66(4): 1891-5.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3450]
[77]
Adamson PC. Improving the outcome for children with cancer: Development of targeted new agents. CA Cancer J Clin 2015; 65(3): 212-20.
[http://dx.doi.org/10.3322/caac.21273] [PMID: 25754421]
[78]
Burdach SEG, Westhoff MA, Steinhauser MF, Debatin KM. Precision medicine in pediatric oncology. Mol Cell Pediatr 2018; 5(1): 6.
[http://dx.doi.org/10.1186/s40348-018-0084-3] [PMID: 30171420]
[79]
Evans WE, Pui CH, Yang JJ. The promise and the reality of genomics to guide precision medicine in pediatric oncology: The decade ahead. Clin Pharmacol Ther 2020; 107(1): 176-80.
[http://dx.doi.org/10.1002/cpt.1660] [PMID: 31563145]
[80]
Forrest SJ, Geoerger B, Janeway KA. Precision medicine in pediatric oncology. Curr Opin Pediatr 2018; 30(1): 17-24.
[http://dx.doi.org/10.1097/MOP.0000000000000570] [PMID: 29189430]
[81]
Mody RJ, Prensner JR, Everett J, Parsons DW, Chinnaiyan AM. Precision medicine in pediatric oncology: Lessons learned and next steps. Pediatr Blood Cancer 2017; 64(3)
[http://dx.doi.org/10.1002/pbc.26288] [PMID: 27748023]
[82]
Seibel NL, Janeway K, Allen CE, et al. Pediatric oncology enters an era of precision medicine. Curr Probl Cancer 2017; 41(3): 194-200.
[http://dx.doi.org/10.1016/j.currproblcancer.2017.01.002] [PMID: 28343740]
[83]
Tran TH, Shah AT, Loh ML. Precision medicine in pediatric oncology: Translating genomic discoveries into optimized therapies. Clin Cancer Res 2017; 23(18): 5329-38.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0115] [PMID: 28600472]
[84]
Vo KT, Parsons DW, Seibel NL. Precision medicine in pediatric oncology. Surg Oncol Clin N Am 2020; 29(1): 63-72.
[http://dx.doi.org/10.1016/j.soc.2019.08.005] [PMID: 31757314]
[85]
Huynh M, Marcu LG, Giles E, Short M, Matthews D, Bezak E. Current status of proton therapy outcome for paediatric cancers of the central nervous system - Analysis of the published literature. Cancer Treat Rev 2018; 70: 272-88.
[http://dx.doi.org/10.1016/j.ctrv.2018.10.003] [PMID: 30326423]
[86]
Brudno JN, Kochenderfer JN. Recent advances in CAR T-cell toxicity: Mechanisms, manifestations and management. Blood Rev 2019; 34: 45-55.
[http://dx.doi.org/10.1016/j.blre.2018.11.002] [PMID: 30528964]
[87]
Friedman GK, Gillespie GY. Cancer stem cells and pediatric solid tumors. Cancers (Basel) 2011; 3(1): 298-318.
[http://dx.doi.org/10.3390/cancers3010298] [PMID: 21394230]
[88]
Shukrun R, Pode Shakked N, Dekel B. Targeted therapy aimed at cancer stem cells: Wilms’ tumor as an example. Pediatr Nephrol 2014; 29(5): 815-23.
[http://dx.doi.org/10.1007/s00467-013-2501-0] [PMID: 23760992]
[89]
Eun K, Ham SW, Kim H. Cancer stem cell heterogeneity: Origin and new perspectives on CSC targeting. BMB Rep 2017; 50(3): 117-25.
[http://dx.doi.org/10.5483/BMBRep.2017.50.3.222] [PMID: 27998397]
[90]
Grupp SA, Asgharzadeh S, Yanik GA. Neuroblastoma: issues in transplantation. Biol Blood Marrow Transplant 2012; 18(1)(Suppl.): S92-S100.
[http://dx.doi.org/10.1016/j.bbmt.2011.10.020] [PMID: 22226119]
[91]
Grupp SA, Dvorak CC, Nieder ML, et al. COG Stem Cell Transplant Scientific Committee. Children’s Oncology Group’s 2013 blueprint for research: Stem cell transplantation. Pediatr Blood Cancer 2013; 60(6): 1044-7.
[http://dx.doi.org/10.1002/pbc.24437] [PMID: 23255402]
[92]
Grupp SA, Prak EL, Boyer J, et al. Adoptive transfer of autologous T cells improves T-cell repertoire diversity and long-term B-cell function in pediatric patients with neuroblastoma. Clin Cancer Res 2012; 18(24): 6732-41.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1432] [PMID: 23092876]
[93]
Grupp SA, Verneris M, Sondel PM, Cooper LJ. Immunotherapy for pediatric cancer. Biol Blood Marrow Transplant 2008; 14(1)(Suppl. 1): 33-43.
[http://dx.doi.org/10.1016/j.bbmt.2007.10.014] [PMID: 18162219]
[94]
Capitini CM, Gottschalk S, Brenner M, Cooper LJ, Handgretinger R, Mackall CL. Highlights of the second international conference on “Immunotherapy in Pediatric Oncology”. Pediatr Hematol Oncol 2011; 28(6): 459-60.
[http://dx.doi.org/10.3109/08880018.2011.596615] [PMID: 21854215]
[95]
Capitini CM, Mackall CL, Wayne AS. Immune-based therapeutics for pediatric cancer. Expert Opin Biol Ther 2010; 10(2): 163-78.
[http://dx.doi.org/10.1517/14712590903431022] [PMID: 19947897]
[96]
Wayne AS, Capitini CM, Mackall CL. Immunotherapy of childhood cancer: From biologic understanding to clinical application. Curr Opin Pediatr 2010; 22(1): 2-11.
[http://dx.doi.org/10.1097/MOP.0b013e3283350d3e] [PMID: 19952749]
[97]
le Viseur C, Hotfilder M, Bomken S, et al. In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties. Cancer Cell 2008; 14(1): 47-58.
[http://dx.doi.org/10.1016/j.ccr.2008.05.015] [PMID: 18598943]
[98]
Ballen KK, Logan BR, Laughlin MJ, et al. Effect of cord blood processing on transplantation outcomes after single myeloablative umbilical cord blood transplantation. Biol Blood Marrow Transplant 2015; 21(4): 688-95.
[http://dx.doi.org/10.1016/j.bbmt.2014.12.017] [PMID: 25543094]
[99]
Paolicchi E, Gemignani F, Krstic-Demonacos M, Dedhar S, Mutti L, Landi S. Targeting hypoxic response for cancer therapy. Oncotarget 2016; 7(12): 13464-78.
[http://dx.doi.org/10.18632/oncotarget.7229] [PMID: 26859576]
[100]
Pleyer L, Valent P, Greil R. Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis-Masters of Survival and Clonality? Int J Mol Sci 2016; 17(7): E1009.
[http://dx.doi.org/10.3390/ijms17071009] [PMID: 27355944]
[101]
Regel I, Hausmann S, Benitz S, Esposito I, Kleeff J. Pathobiology of pancreatic cancer: Implications on therapy. Expert Rev Anticancer Ther 2016; 16(2): 219-27.
[http://dx.doi.org/10.1586/14737140.2016.1129276] [PMID: 26652651]
[102]
Kurtzberg J, Prockop S, Teira P, et al. Allogeneic human mesenchymal stem cell therapy (remestemcel-L, Prochymal) as a rescue agent for severe refractory acute graft-versus-host disease in pediatric patients. Biol Blood Marrow Transplant 2014; 20(2): 229-35.
[http://dx.doi.org/10.1016/j.bbmt.2013.11.001] [PMID: 24216185]
[103]
Birru B, Durthi CP, Kacham S, et al. Stem cells in tumour microenvironment aid in prolonged survival rate of cancer cells and developed drug resistance: Major challenge in osteosarcoma treatment. Curr Drug Metab 2020; 21(1): 44-52.
[http://dx.doi.org/10.2174/1389200221666200214120226] [PMID: 32056519]
[104]
Jeng KS, Chang CF, Lin SS. Sonic hedgehog signaling in organogenesis, tumors, and tumor microenvironments. Int J Mol Sci 2020; 21(3): E758.
[http://dx.doi.org/10.3390/ijms21030758] [PMID: 31979397]
[105]
Kyriakou G, Melachrinou M. Cancer stem cells, epigenetics, tumor microenvironment and future therapeutics in cutaneous malignant melanoma: A review. Future Oncol 2020.
[http://dx.doi.org/10.2217/fon-2020-0151] [PMID: 32484008]
[106]
Osman A, Afify SM, Hassan G, Fu X, Seno A, Seno M. Revisiting cancer stem cells as the origin of cancer-associated cells in the tumor microenvironment: A hypothetical view from the potential of iPSCs. Cancers (Basel) 2020; 12(4): E879.
[http://dx.doi.org/10.3390/cancers12040879] [PMID: 32260363]
[107]
Spinelli FM, Vitale DL, Sevic I, Alaniz L. hyaluronan in the tumor microenvironment. Adv Exp Med Biol 2020; 1245: 67-83.
[http://dx.doi.org/10.1007/978-3-030-40146-7_3] [PMID: 32266653]
[108]
Xiong Q, Liu B, Ding M, Zhou J, Yang C, Chen Y. Hypoxia and cancer related pathology. Cancer Lett 2020; 486: 1-7.
[http://dx.doi.org/10.1016/j.canlet.2020.05.002] [PMID: 32439418]
[109]
Belmonte M, Hoofd C, Weng AP, Giambra V. Targeting leukemia stem cells: Which pathways drive self-renewal activity in T-cell acute lymphoblastic leukemia? Curr Oncol 2016; 23(1): 34-41.
[http://dx.doi.org/10.3747/co.23.2806] [PMID: 26966402]
[110]
Manoranjan B, Garg N, Bakhshinyan D, Singh SK. The role of stem cells in pediatric central nervous system malignancies. Adv Exp Med Biol 2015; 853: 49-68.
[http://dx.doi.org/10.1007/978-3-319-16537-0_4] [PMID: 25895707]
[111]
Johnston C, Harrington R, Jain R, Schiffer J, Kiem HP, Woolfrey A. Safety and efficacy of combination antiretroviral therapy in human immunodeficiency virus-infected adults undergoing autologous or allogeneic hematopoietic cell transplantation for hematologic malignancies. Biol Blood Marrow Transplant 2016; 22(1): 149-56.
[http://dx.doi.org/10.1016/j.bbmt.2015.08.006] [PMID: 26265463]
[112]
Antoniadou E, David AL. Placental stem cells. Best Pract Res Clin Obstet Gynaecol 2016; 31: 13-29.
[http://dx.doi.org/10.1016/j.bpobgyn.2015.08.014] [PMID: 26547389]
[113]
Batlevi CL, Matsuki E, Brentjens RJ, Younes A. Novel immunotherapies in lymphoid malignancies. Nat Rev Clin Oncol 2016; 13(1): 25-40.
[http://dx.doi.org/10.1038/nrclinonc.2015.187] [PMID: 26525683]
[114]
Zielins ER, Luan A, Brett EA, Longaker MT, Wan DC. Therapeutic applications of human adipose-derived stromal cells for soft tissue reconstruction. Discov Med 2015; 19(105): 245-53.
[115]
Newell LF, Deans RJ, Maziarz RT. Adult adherent stromal cells in the management of graft-versus-host disease. Expert Opin Biol Ther 2014; 14(2): 231-46.
[http://dx.doi.org/10.1517/14712598.2014.866648] [PMID: 24397853]
[116]
Graf T. Differentiation plasticity of hematopoietic cells. Blood 2002; 99(9): 3089-101.
[http://dx.doi.org/10.1182/blood.V99.9.3089]
[117]
Song LL, Miele L. Cancer stem cells-an old idea that’s new again: Implications for the diagnosis and treatment of breast cancer. Expert Opin Biol Ther 2007; 7(4): 431-8.
[http://dx.doi.org/10.1517/14712598.7.4.431] [PMID: 17373895]
[118]
Katoh M. Networking of WNT, FGF, Notch, BMP, and Hedgehog signaling pathways during carcinogenesis. Stem Cell Rev 2007; 3(1): 30-8.
[119]
Fan X, Matsui W, Khaki L, et al. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 2006; 66(15): 7445-52.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0858] [PMID: 16885340]
[120]
Jain M, Arvanitis C, Chu K, et al. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science 2002; 297(5578): 102-4.
[http://dx.doi.org/10.1126/science.1071489] [PMID: 12098700]
[121]
Lou H, Dean M. Targeted therapy for cancer stem cells: The patched pathway and ABC transporters. Oncogene 2007; 26(9): 1357-60.
[http://dx.doi.org/10.1038/sj.onc.1210200] [PMID: 17322922]
[122]
Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer 2005; 5(4): 275-84.
[http://dx.doi.org/10.1038/nrc1590] [PMID: 15803154]
[123]
Bolis M, Paroni G, Fratelli M, et al. All-trans retinoic acid stimulates viral mimicry, interferon responses and antigen presentation in breast-cancer cells. Cancers (Basel) 2020; 12(5): E1169.
[http://dx.doi.org/10.3390/cancers12051169] [PMID: 32384653]
[124]
Reid P, Marcu LG, Olver I, Moghaddasi L, Staudacher AH, Bezak E. Diversity of cancer stem cells in head and neck carcinomas: The role of HPV in cancer stem cell heterogeneity, plasticity and treatment response. Radiother Oncol 2019; 135: 1-12.
[http://dx.doi.org/10.1016/j.radonc.2019.02.016] [PMID: 31015153]
[125]
Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 2003; 3(12): 895-902.
[http://dx.doi.org/10.1038/nrc1232] [PMID: 14737120]
[126]
Guzman ML, Swiderski CF, Howard DS, et al. Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci USA 2002; 99(25): 16220-5.
[http://dx.doi.org/10.1073/pnas.252462599] [PMID: 12451177]
[127]
Nawaz M, Fatima F, Vallabhaneni KC, et al. Extracellular vesicles: Evolving factors in stem cell biology. Stem Cells Int 2016; 2016: 1073140.
[http://dx.doi.org/10.1155/2016/1073140] [PMID: 26649044]
[128]
Shen S, Xia JX, Wang J. Nanomedicine-mediated cancer stem cell therapy. Biomaterials 2016; 74: 1-18.
[http://dx.doi.org/10.1016/j.biomaterials.2015.09.037] [PMID: 26433488]
[129]
Sun Y. Tumor microenvironment and cancer therapy resistance. Cancer Lett 2016; 380(1): 205-15.
[http://dx.doi.org/10.1016/j.canlet.2015.07.044] [PMID: 26272180]
[130]
Lee KJ, Chow V, Weissman A, Tulpule S, Aldoss I, Akhtari M. Clinical use of blinatumomab for B-cell acute lymphoblastic leukemia in adults. Ther Clin Risk Manag 2016; 12: 1301-10.
[http://dx.doi.org/10.2147/TCRM.S84261] [PMID: 27601914]
[131]
Bhalla S, Tremblay D, Mascarenhas J. Discontinuing tyrosine kinase inhibitor therapy in chronic myelogenous leukemia: Current understanding and future directions. Clin Lymphoma Myeloma Leuk 2016; 16(9): 488-94.
[http://dx.doi.org/10.1016/j.clml.2016.06.012] [PMID: 27406834]
[132]
Ferreri AJ, Illerhaus G. The role of autologous stem cell transplantation in primary central nervous system lymphoma. Blood 2016; 127(13): 1642-9.
[http://dx.doi.org/10.1182/blood-2015-10-636340] [PMID: 26834241]
[133]
Mittal V, El Rayes T, Narula N, McGraw TE, Altorki NK, Barcellos-Hoff MH. The microenvironment of lung cancer and therapeutic implications. Adv Exp Med Biol 2016; 890: 75-110.
[http://dx.doi.org/10.1007/978-3-319-24932-2_5] [PMID: 26703800]
[134]
Lee HW, Lee K, Kim DG, Yang H, Nam DH. Facilitating tailored therapeutic strategies for glioblastoma through an orthotopic patient-derived xenograft platform. Histol Histopathol 2016; 31(3): 269-83.
[http://dx.doi.org/10.14670/HH-11-695] [PMID: 26578300]
[135]
Lee CH, Yu CC, Wang BY, Chang WW. Tumorsphere as an effective in vitro platform for screening anti-cancer stem cell drugs. Oncotarget 2016; 7(2): 1215-26.
[http://dx.doi.org/10.18632/oncotarget.6261] [PMID: 26527320]
[136]
Li F, Zheng YY. Preparation method of lung cancer and tumor stem cells and application patent. CN109554347, 2019.
[137]
Jang YK, Kim MS. A pharmaceutical composition for inhibiting a growth of cancer stem cells comprising pyridine-based compound. KR20190001365, 2019.
[138]
Birkle S, Cochonneau D. Tartgeting O-acetylated GD2 gangliosides as a new therapeutic and diagnostic strategy for cancer stem cells. US2019023808, 2019.
[139]
Eavarone DA, Behrens J. Compositions and methods for targeting cancer stem cells. US2019031780, 2019.
[140]
Jin S, Mi L. Pharmaceutical composition for removing residual liver cancer stem cells with combined use of arsenic trioxide and all- transretinoic acid and application thereof. CN109288862, 2019.
[141]
Jabbari E. Drug delivery system and method for targeting cancer stem cells. US2019054034, 2019.
[142]
Tsunetomi R, Nagano H. Agents for reducing drug resistance in cancer stem cells, inhibitors of metastatic potency in cancer stem cells and methods for predicting metastatic recurrence risk of cancers. JP2019034940, 2019.
[143]
Hoque MO, Sidransky D. Pharmaceutical agents targeting cancer stem cells. US2019091202, 2019.
[144]
Замулаева ИА, Чурюкина КА. Method for reducing clonogenic activity of lacteal gland cancer stem cells. RU2019105663, 2019.
[145]
Lisanti M, Sotgia F. Mitoflavoscins: Targeting flavin-containing enzymes eliminates Cancer Stem Cells (CSCS) by inhibiting mitochondrial respiration. WO2019083997, 2019.
[146]
Yang R, Tang Q. A photosensitive nano-liposome targeting triple-negative breast cancer stem cells. CN109700765, 2019.
[147]
Soon SP, Niazi K. IL8 blocking EMT pathway and overcoming cancer stem cells. TW201922772, 2019.
[148]
Burzio ELO, Burzio MVA. Antisense oligonucleotides for treatment of cancer stem cells. HUE042738, 2019.
[149]
Kang SG, Chang JH. Pharmaceutical composition for inhibiting growth of cancer stem cells, containing aldehyde inhibitor and biguanide-based compound. US2019254995, 2019.
[150]
Cheresh D, Wettersten H. Compositions and methods for targeting and killing Alpha-V Beta-3-positive cancer stem cells (CSCs) and treating drug resistant cancers. AU2018243670, 2019.
[151]
Lisanti MS. "Energetic" Cancer Stem Cells (E-CSCS): A new hyper-metabolic and proliferative tumor cell phenotype, driven by mitochondrial energy. WO2019246173, 2019.
[152]
Smith R, Linda M, Huso D. Methods of inhibiting cancer stem cells with HMGA1 inhibitors. US2020009177, 2020.
[153]
Lisanti MP, Sotgia F. Antimitoscins: Targeted inhibitors of mitochondrial biogenesis for eradicating cancer stem cells. AU2018270129, 2020.
[154]
Quinones HA, Green JCT. Nanoparticle modification of human adipose-derived mesenchymal stem cells for treating brain cancer and other neurological diseases. US2020038452, 2020.
[155]
Mehrpour M, Rodriguez R. Nitrogen-containing analogs of salinomycin, synthesis and use against cancer stem cells and malaria. PL3191493, 2020.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy