Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Association between ABCC8 Ala1369Ser Polymorphism (rs757110 T/G) and Type 2 Diabetes Risk in an Iranian Population: A Case-Control Study

Author(s): Amin Bakhtiyari, Karimeh Haghani, Salar Bakhtiyari*, Mohammad A. Zaimy, Ali Noori-Zadeh, Ali Gheysarzadeh, Shahram Darabi, Ali Seidkhani-Nahal, Mansour Amraei and Iraj Alipourfard

Volume 21, Issue 3, 2021

Published on: 13 July, 2020

Page: [441 - 447] Pages: 7

DOI: 10.2174/1871530320666200713091827

Price: $65

Abstract

Objective: Glucose metabolism increases ATP/ADP ratio within the β-cells and causes ATP-sensitive K+ (KATP) channel closure and consequently insulin secretion. The enhanced activity of the channel may be a mechanism contributing to the reduced first-phase of insulin secretion observed in T2DM. There is no study to date in the Kurdish ethnic group regarding the relationship between SNP Ala1369Ser (rs757110 T/G) of SUR1 gene and T2DM, and additionally, the results of this association in other populations are inconsistent. Therefore, our aim in this study was to explore the possible association between SNP Ala1369Ser and type 2 diabetes in an Iranian Kurdish ethnic group.

Methods: In this study, we checked out the frequency of alleles and genotypes of SNP Ala1369Ser in T2DM individuals (207 patients; men/women: 106/101) and non-T2DM subjects (201 controls; men/women: 97/104), and their effects on anthropometric, clinical, and biochemical parameters. Genomic DNA was extracted from the leukocytes of blood specimens using a standard method. We amplified the ABCC8 rs757110 polymorphic site (T/G) using a polymerase chain reaction (PCR) method and a designed primer pair. To perform the PCR-RFLP method, the amplicons were subjected to restriction enzymes and the resulting fragments separated by gel electrophoresis.

Results: The frequency of the G-allele of Ala1369Ser polymorphism was significantly (0.01) higher in the case group than the control group (19% vs. 9%, respectively). In the dominant model (TT vs. TG+GG), there was a significant relationship between this SNP and an increased risk of T2DM (P = 0.00). T2DM patients with TG+GG genotypes had significantly higher fasting plasma insulin and HOMA-IR than those who had the TT genotype (P = 0.02 and 0.01, respectively).

Conclusion: Our study is the first study to investigate the association between Ala1369Ser ABCC8 genetic variation and T2DM in the Kurdish population of western Iran. The obtained results clearly show that Ala1369Ser polymorphism of ABCC8 is associated with an increased risk of T2DM in this population.

Keywords: ABCC8, SNP rs757110, T2DM, KATP channel, SUR1, diabetes.

Erratum In:
Association between ABCC8 Ala1369Ser Polymorphism (rs757110 T/G) and Type 2 Diabetes Risk in an Iranian Population: A Case-Control Study

Graphical Abstract

[1]
Alhyas, L.; McKay, A.; Majeed, A. Prevalence of type 2 diabetes in the states of the co-operation council for the Arab States of the Gulf: a systematic review. PLoS One, 2012, 7(8)e40948
[http://dx.doi.org/10.1371/journal.pone.0040948] [PMID: 22905094]
[2]
Shikata, K.; Ninomiya, T.; Kiyohara, Y. Diabetes mellitus and cancer risk: review of the epidemiological evidence. Cancer Sci., 2013, 104(1), 9-14.
[http://dx.doi.org/10.1111/cas.12043] [PMID: 23066889]
[3]
Wang, J.; Hu, F.; Feng, T.; Zhao, J.; Yin, L.; Li, L.; Wang, Y.; Wang, Q.; Hu, D. Meta-analysis of associations between TCF7L2 polymorphisms and risk of type 2 diabetes mellitus in the Chinese population. BMC Med. Genet., 2013, 14, 8.
[http://dx.doi.org/10.1186/1471-2350-14-8] [PMID: 23311683]
[4]
O’Rahilly, S.; Barroso, I.; Wareham, N.J. Genetic factors in type 2 diabetes: the end of the beginning? Science, 2005, 307(5708), 370-373.
[http://dx.doi.org/10.1126/science.1104346] [PMID: 15662000]
[5]
Flores-Martínez, S.E.; Islas-Andrade, S.; Machorro-Lazo, M.V.; Revilla, M.C.; Juárez, R.E.; Mújica-López, K.Ie.; Morán-Moguel, M.C.; López-Cardona, M.G.; Sánchez-Corona, J. DNA polymorphism analysis of candidate genes for type 2 diabetes mellitus in a Mexican ethnic group. Ann. Genet., 2004, 47(4), 339-348.
[http://dx.doi.org/10.1016/j.anngen.2004.05.004] [PMID: 15581831]
[6]
Radha, V.; Mohan, V. Genetic predisposition to type 2 diabetes among Asian Indians. Indian J. Med. Res., 2007, 125(3), 259-274.
[PMID: 17496355]
[7]
Ashcroft, F.M.; Gribble, F.M. ATP-sensitive K+ channels and insulin secretion: their role in health and disease. Diabetologia, 1999, 42(8), 903-919.
[http://dx.doi.org/10.1007/s001250051247] [PMID: 10491749]
[8]
Nichols, C.G. KATP channels as molecular sensors of cellular metabolism. Nature, 2006, 440(7083), 470-476.
[http://dx.doi.org/10.1038/nature04711] [PMID: 16554807]
[9]
Nichols, C.G.; Shyng, S.L.; Nestorowicz, A.; Glaser, B.; Clement, J.P., IV; Gonzalez, G.; Aguilar-Bryan, L.; Permutt, M.A.; Bryan, J. Adenosine diphosphate as an intracellular regulator of insulin secretion. Science, 1996, 272(5269), 1785-1787.
[http://dx.doi.org/10.1126/science.272.5269.1785] [PMID: 8650576]
[10]
Terzic, A.; Jahangir, A.; Kurachi, Y. Cardiac ATP-sensitive K+ channels: regulation by intracellular nucleotides and K+ channel-opening drugs. Am. J. Physiol., 1995, 269(3 Pt 1), C525-C545.
[http://dx.doi.org/10.1152/ajpcell.1995.269.3.C525] [PMID: 7573382]
[11]
Straub, S.G.; Sharp, G.W. Glucose-stimulated signaling pathways in biphasic insulin secretion. Diabetes Metab. Res. Rev., 2002, 18(6), 451-463.
[http://dx.doi.org/10.1002/dmrr.329] [PMID: 12469359]
[12]
Del Guerra, S.; Lupi, R.; Marselli, L.; Masini, M.; Bugliani, M.; Sbrana, S.; Torri, S.; Pollera, M.; Boggi, U.; Mosca, F.; Del Prato, S.; Marchetti, P. Functional and molecular defects of pancreatic islets in human type 2 diabetes. Diabetes, 2005, 54(3), 727-735.
[http://dx.doi.org/10.2337/diabetes.54.3.727] [PMID: 15734849]
[13]
Aittoniemi, J.; Fotinou, C.; Craig, T.J.; de Wet, H.; Proks, P.; Ashcroft, F.M. Review. SUR1: a unique ATP-binding cassette protein that functions as an ion channel regulator. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2009, 364(1514), 257-267.
[http://dx.doi.org/10.1098/rstb.2008.0142] [PMID: 18990670]
[14]
Haghani, K.; Bakhtiyari, S. The study on the relationship between IRS-1 Gly972Arg and IRS-2 Gly1057Asp polymorphisms and type 2 diabetes in the Kurdish ethnic group in West Iran. Genet. Test. Mol. Biomarkers, 2012, 16(11), 1270-1276.
[http://dx.doi.org/10.1089/gtmb.2012.0160] [PMID: 22994406]
[15]
Golshani, H.; Haghani, K.; Dousti, M.; Bakhtiyari, S. Association of TNF-α 308 G/A polymorphism with type 2 diabetes: a case-control study in the Iranian Kurdish Ethnic Group. Osong Public Health Res. Perspect., 2015, 6(2), 94-99.
[http://dx.doi.org/10.1016/j.phrp.2015.01.003] [PMID: 25938018]
[16]
Laukkanen, O.; Pihlajamäki, J.; Lindström, J.; Eriksson, J.; Valle, T.T.; Hämäläinen, H.; Ilanne-Parikka, P.; Keinänen-Kiukaanniemi, S.; Tuomilehto, J.; Uusitupa, M.; Laakso, M. Finnish Diabetes Prevention Study Group. Polymorphisms of the SUR1 (ABCC8) and Kir6.2 (KCNJ11) genes predict the conversion from impaired glucose tolerance to type 2 diabetes. The Finnish Diabetes Prevention Study. J. Clin. Endocrinol. Metab., 2004, 89(12), 6286-6290.
[http://dx.doi.org/10.1210/jc.2004-1204] [PMID: 15579791]
[17]
Rissanen, J.; Markkanen, A.; Kärkkäinen, P.; Pihlajamäki, J.; Kekäläinen, P.; Mykkänen, L.; Kuusisto, J.; Karhapää, P.; Niskanen, L.; Laakso, M. Sulfonylurea receptor 1 gene variants are associated with gestational diabetes and type 2 diabetes but not with altered secretion of insulin. Diabetes Care, 2000, 23(1), 70-73.
[http://dx.doi.org/10.2337/diacare.23.1.70] [PMID: 10857971]
[18]
Barroso, I.; Luan, J.; Middelberg, R.P.; Harding, A.H.; Franks, P.W.; Jakes, R.W.; Clayton, D.; Schafer, A.J.; O’Rahilly, S.; Wareham, N.J. Candidate gene association study in type 2 diabetes indicates a role for genes involved in β-cell function as well as insulin action. PLoS Biol., 2003, 1(1)E20
[http://dx.doi.org/10.1371/journal.pbio.0000020] [PMID: 14551916]
[19]
Florez, J.C.; Burtt, N.; de Bakker, P.I.; Almgren, P.; Tuomi, T.; Holmkvist, J.; Gaudet, D.; Hudson, T.J.; Schaffner, S.F.; Daly, M.J.; Hirschhorn, J.N.; Groop, L.; Altshuler, D. Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes, 2004, 53(5), 1360-1368.
[http://dx.doi.org/10.2337/diabetes.53.5.1360] [PMID: 15111507]
[20]
Sakamoto, Y.; Inoue, H.; Keshavarz, P.; Miyawaki, K.; Yamaguchi, Y.; Moritani, M.; Kunika, K.; Nakamura, N.; Yoshikawa, T.; Yasui, N.; Shiota, H.; Tanahashi, T.; Itakura, M. SNPs in the KCNJ11-ABCC8 gene locus are associated with type 2 diabetes and blood pressure levels in the Japanese population. J. Hum. Genet., 2007, 52(10), 781-793.
[http://dx.doi.org/10.1007/s10038-007-0190-x] [PMID: 17823772]
[21]
Gonen, M.S.; Arikoglu, H.; Erkoc Kaya, D.; Ozdemir, H.; Ipekci, S.H.; Arslan, A.; Kayis, S.A.; Gogebakan, B. Effects of single nucleotide polymorphisms in K(ATP) channel genes on type 2 diabetes in a Turkish population. Arch. Med. Res., 2012, 43(4), 317-323.
[http://dx.doi.org/10.1016/j.arcmed.2012.06.001] [PMID: 22704848]
[22]
Nikolac, N.; Simundic, A.M.; Katalinic, D.; Topic, E.; Cipak, A.; Zjacic Rotkvic, V. Metabolic control in type 2 diabetes is associated with sulfonylurea receptor-1 (SUR-1) but not with KCNJ11 polymorphisms. Arch. Med. Res., 2009, 40(5), 387-392.
[http://dx.doi.org/10.1016/j.arcmed.2009.06.006] [PMID: 19766903]
[23]
Nikolac, N.; Simundic, A.M.; Saracevic, A.; Katalinic, D. ABCC8 polymorphisms are associated with triglyceride concentration in type 2 diabetics on sulfonylurea therapy. Genet. Test. Mol. Biomarkers, 2012, 16(8), 924-930.
[http://dx.doi.org/10.1089/gtmb.2011.0337] [PMID: 22533711]
[24]
Odgerel, Z.; Lee, H.S.; Erdenebileg, N.; Gandbold, S.; Luvsanjamba, M.; Sambuughin, N.; Sonomtseren, S.; Sharavdorj, P.; Jodov, E.; Altaisaikhan, K.; Goldfarb, L.G. Genetic variants in potassium channels are associated with type 2 diabetes in a Mongolian population. J. Diabetes, 2012, 4(3), 238-242.
[http://dx.doi.org/10.1111/j.1753-0407.2011.00177.x] [PMID: 22151254]
[25]
Sharma, N.; Crane, A.; Gonzalez, G.; Bryan, J.; Aguilar-Bryan, L. Familial hyperinsulinism and pancreatic beta-cell ATP-sensitive potassium channels. Kidney Int., 2000, 57(3), 803-808.
[http://dx.doi.org/10.1046/j.1523-1755.2000.00918.x] [PMID: 10720932]
[26]
Gloyn, A.L.; Hashim, Y.; Ashcroft, S.J.; Ashfield, R.; Wiltshire, S.; Turner, R.C. UK Prospective Diabetes Study (UKPDS 53). Association studies of variants in promoter and coding regions of beta-cell ATP-sensitive K-channel genes SUR1 and Kir6.2 with Type 2 diabetes mellitus (UKPDS 53). Diabet. Med., 2001, 18(3), 206-212.
[http://dx.doi.org/10.1046/j.1464-5491.2001.00449.x] [PMID: 11318841]
[27]
Hansen, T.; Echwald, S.M.; Hansen, L.; Møller, A.M.; Almind, K.; Clausen, J.O.; Urhammer, S.A.; Inoue, H.; Ferrer, J.; Bryan, J.; Aguilar-Bryan, L.; Permutt, M.A.; Pedersen, O. Decreased tolbutamide-stimulated insulin secretion in healthy subjects with sequence variants in the high-affinity sulfonylurea receptor gene. Diabetes, 1998, 47(4), 598-605.
[http://dx.doi.org/10.2337/diabetes.47.4.598] [PMID: 9568693]
[28]
Hart, L.M.; de Knijff, P.; Dekker, J.M.; Stolk, R.P.; Nijpels, G.; van der Does, F.E.; Ruige, J.B.; Grobbee, D.E.; Heine, R.J.; Maassen, J.A. Variants in the sulphonylurea receptor gene: association of the exon 16-3t variant with Type II diabetes mellitus in Dutch Caucasians. Diabetologia, 1999, 42(5), 617-620.
[http://dx.doi.org/10.1007/s001250051203] [PMID: 10333056]
[29]
van Tilburg, J.H.; Rozeman, L.B.; van Someren, H.; Rigters-Aris, C.A.; Freriks, J.P.; Pearson, P.L.; Sandkuijl, L.A.; van Haeften, T.W.; Wijmenga, C. The exon 16-3t variant of the sulphonylurea receptor gene is not a risk factor for Type II diabetes mellitus in the Dutch Breda cohort. Diabetologia, 2000, 43(5), 681-682.
[http://dx.doi.org/10.1007/s001250051358] [PMID: 10855544]
[30]
Florez, J.C.; Jablonski, K.A.; Kahn, S.E.; Franks, P.W.; Dabelea, D.; Hamman, R.F.; Knowler, W.C.; Nathan, D.M.; Altshuler, D. Type 2 diabetes-associated missense polymorphisms KCNJ11 E23K and ABCC8 A1369S influence progression to diabetes and response to interventions in the Diabetes Prevention Program. Diabetes, 2007, 56(2), 531-536.
[http://dx.doi.org/10.2337/db06-0966] [PMID: 17259403]
[31]
Aher, T.; Roy, A.; Kumar, P.J.I.J.V.M. Molecular detection of virulence genes associated with pathogenicity of Klebsiella spp. isolated from the respiratory tract of apparently healthy as well as sick goats. Clin. Lab., 2012, 67(4), 249-252.
[32]
Maleki, F.; Haghani, K.; Shokouhi, S.; Mahmoodi, K.; Sayehmiri, K.; Mahdieh, N.; Bakhtiyari, S. A case-control study on the association of common variants of CAPN10 gene and the risk of type 2 diabetes in an Iranian population. Clin. Lab., 2014, 60(4), 663-670.
[http://dx.doi.org/10.7754/Clin.Lab.2013.130630] [PMID: 24779302]
[33]
Saberi, H.; Mohammadtaghvaei, N.; Gulkho, S.; Bakhtiyari, S.; Mohammadi, M.; Hanachi, P.; Gerayesh-Nejad, S.; Zargari, M.; Ataei, F.; Parvaneh, L.; Larijani, B.; Meshkani, R. The ENPP1 K121Q polymorphism is not associated with type 2 diabetes and related metabolic traits in an Iranian population. Mol. Cell. Biochem., 2011, 350(1-2), 113-118.
[http://dx.doi.org/10.1007/s11010-010-0687-z] [PMID: 21153685]
[34]
Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 1985, 28(7), 412-419.
[http://dx.doi.org/10.1007/BF00280883] [PMID: 3899825]
[35]
Sasieni, P.D. From genotypes to genes: doubling the sample size. Biometrics, 1997, 53(4), 1253-1261.
[http://dx.doi.org/10.2307/2533494] [PMID: 9423247]
[36]
Whittemore, A.S. Genome scanning for linkage: an overview. Am. J. Hum. Genet., 1996, 59(3), 704-716.
[PMID: 8751872]
[37]
Kwon, J.M.; Goate, A.M. The candidate gene approach. Alcohol Res. Health, 2000, 24(3), 164-168.
[PMID: 11199286]
[38]
Zhu, M.; Zhao, S. Candidate gene identification approach: progress and challenges. Int. J. Biol. Sci., 2007, 3(7), 420-427.
[http://dx.doi.org/10.7150/ijbs.3.420] [PMID: 17998950]
[39]
Bennett, K.; James, C.; Hussain, K. Pancreatic β-cell KATP channels: Hypoglycaemia and hyperglycaemia. Rev. Endocr. Metab. Disord., 2010, 11(3), 157-163.
[http://dx.doi.org/10.1007/s11154-010-9144-2] [PMID: 20878482]
[40]
Gloyn, A.L.; Weedon, M.N.; Owen, K.R.; Turner, M.J.; Knight, B.A.; Hitman, G.; Walker, M.; Levy, J.C.; Sampson, M.; Halford, S.; McCarthy, M.I.; Hattersley, A.T.; Frayling, T.M. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes, 2003, 52(2), 568-572.
[http://dx.doi.org/10.2337/diabetes.52.2.568] [PMID: 12540637]
[41]
Feng, Y.; Mao, G.; Ren, X.; Xing, H.; Tang, G.; Li, Q.; Li, X.; Sun, L.; Yang, J.; Ma, W.; Wang, X.; Xu, X. Ser1369Ala variant in sulfonylurea receptor gene ABCC8 is associated with antidiabetic efficacy of gliclazide in Chinese type 2 diabetic patients. Diabetes Care, 2008, 31(10), 1939-1944.
[http://dx.doi.org/10.2337/dc07-2248] [PMID: 18599530]
[42]
Park, S.E.; Flanagan, S.E.; Hussain, K.; Ellard, S.; Shin, C.H.; Yang, S.W. Characterization of ABCC8 and KCNJ11 gene mutations and phenotypes in Korean patients with congenital hyperinsulinism. Eur. J. Endocrinol., 2011, 164(6), 919-926.
[http://dx.doi.org/10.1530/EJE-11-0160] [PMID: 21422196]
[43]
Fatehi, M.; Raja, M.; Carter, C.; Soliman, D.; Holt, A.; Light, P.E. The ATP-sensitive K(+) channel ABCC8 S1369A type 2 diabetes risk variant increases MgATPase activity. Diabetes, 2012, 61(1), 241-249.
[http://dx.doi.org/10.2337/db11-0371] [PMID: 22187380]
[44]
Feng, R.N.; Zhao, C.; Sun, C.H.; Li, Y. Meta-analysis of TNF 308 G/A polymorphism and type 2 diabetes mellitus. PLoS One, 2011, 6(4)e18480
[http://dx.doi.org/10.1371/journal.pone.0018480] [PMID: 21494616]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy