Abstract
Stem cells are undifferentiated cells with self-renewal property and varying differentiation potential that allow the regeneration of tissue cells of an organism throughout adult life beginning from embryonic development. Through the asymmetric cell divisions, each stem cell replicates itself and produces an offspring identical with the mother cell, and a daughter cell that possesses the characteristics of a progenitor cell and commits to a specific lineage to differentiate into tissue cells to maintain homeostasis. To maintain a pool of stem cells to ensure tissue regeneration and homeostasis, it is important to regulate the metabolic functioning of stem cells, progenitor cells and adult tissue stem cells that will meet their internal and external needs. Upon fertilization, the zygote transforms metabolic reprogramming while implantation, embryonic development, organogenesis processes and after birth through adult life. Metabolism in stem cells is a concept that is relatively new to be enlightened. There are no adequate and comprehensive in vitro studies on the comparative analysis of the effects of one-carbon (1-C) metabolism on fetal and adult stem cells compared to embryonic and cancer stem cells’ studies that have been reported recently. Since 1-C metabolism is linking parental environmental/ dietary factors and fetal development, investigating the epigenetic, genetic, metabolic and developmental effects on adult period is necessary. Several mutations and abnormalities in 1-C metabolism have been noted in disease changing from diabetes, cancer, pregnancy-related outcomes such as pre-eclampsia, spontaneous abortion, placental abruption, premature delivery, and cardiovascular diseases. In this review, the effects of 1-C metabolism, mainly the methionine and folate metabolism, in stem cells that exist in different developmental stages will be discussed.
Keywords: Stem cells, one-carbon metabolism, methionine, folic acid, transsulfuration, methylation.
Current Stem Cell Research & Therapy
Title:From Embryo to Adult: One Carbon Metabolism in Stem Cells
Volume: 16 Issue: 2
Author(s): Özlem Altundag and Betül Çelebi-Saltik*
Affiliation:
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Sihhiye, Ankara,Turkey
Keywords: Stem cells, one-carbon metabolism, methionine, folic acid, transsulfuration, methylation.
Abstract: Stem cells are undifferentiated cells with self-renewal property and varying differentiation potential that allow the regeneration of tissue cells of an organism throughout adult life beginning from embryonic development. Through the asymmetric cell divisions, each stem cell replicates itself and produces an offspring identical with the mother cell, and a daughter cell that possesses the characteristics of a progenitor cell and commits to a specific lineage to differentiate into tissue cells to maintain homeostasis. To maintain a pool of stem cells to ensure tissue regeneration and homeostasis, it is important to regulate the metabolic functioning of stem cells, progenitor cells and adult tissue stem cells that will meet their internal and external needs. Upon fertilization, the zygote transforms metabolic reprogramming while implantation, embryonic development, organogenesis processes and after birth through adult life. Metabolism in stem cells is a concept that is relatively new to be enlightened. There are no adequate and comprehensive in vitro studies on the comparative analysis of the effects of one-carbon (1-C) metabolism on fetal and adult stem cells compared to embryonic and cancer stem cells’ studies that have been reported recently. Since 1-C metabolism is linking parental environmental/ dietary factors and fetal development, investigating the epigenetic, genetic, metabolic and developmental effects on adult period is necessary. Several mutations and abnormalities in 1-C metabolism have been noted in disease changing from diabetes, cancer, pregnancy-related outcomes such as pre-eclampsia, spontaneous abortion, placental abruption, premature delivery, and cardiovascular diseases. In this review, the effects of 1-C metabolism, mainly the methionine and folate metabolism, in stem cells that exist in different developmental stages will be discussed.
Export Options
About this article
Cite this article as:
Altundag Özlem and Çelebi-Saltik Betül *, From Embryo to Adult: One Carbon Metabolism in Stem Cells, Current Stem Cell Research & Therapy 2021; 16 (2) . https://dx.doi.org/10.2174/1574888X15666200712191308
DOI https://dx.doi.org/10.2174/1574888X15666200712191308 |
Print ISSN 1574-888X |
Publisher Name Bentham Science Publisher |
Online ISSN 2212-3946 |

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements