Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Ethanol-Drop Grinding Approach: Cadmium Oxide Nanoparticles Catalyzed the Synthesis of [1,3]Dioxolo[g][1]benzopyran-6-carboxylic Acids and Pyrido[d]pyrimidine-7-carboxylic Acids

Author(s): Saman Dahi-Azar, Shahrzad Abdolmohammadi* and Javad Mokhtari

Volume 24, Issue 1, 2021

Published on: 12 July, 2020

Page: [139 - 147] Pages: 9

DOI: 10.2174/1386207323666200712145041

Price: $65

Abstract

Aim and Objective: In the last decades, it has extensively been verified that nanostructured transition metal oxides emerge as inexpensive, available and extremely efficient heterogeneous catalysts in chemical transformations. The high electrical conductivity, high carrier concentration, and improved reactivity in cadmium oxide nanoparticles (CdO NPs) make it as a potential candidate for applications in the fields of nanocatalysis. [1]Benzopyran and pyridopyrimidine derivatives compose major classes of heterocyclic compounds, which have a wide spectrum of biological activities.

Materials and Methods: In the present work, we report a facile and highly effective synthesis of 8- aryl-8H-[1,3]dioxolo[4,5-g][1]benzopyran-6-carboxylic acids and 1,3-dimethyl-2,4-dioxo-5- phenyl-1,2,3,4,5,8-hexahydropyrido[2,3-d]pyrimidine-7-carboxylic acids via CdO NPs catalyzed cyclo condensation reaction of 4-substituted phenylmethylidenepyruvic acids with 3,4- methylenedioxyphenol or 6-amino-1,3-dimethyluracil, which was accomplished under ethanoldrop grinding at room temperature. The described catalyst was prepared successfully by a simple precipitation method and characterized by the Fourier transformed infrared absorption (FT-IR) spectroscopy, X-Ray diffraction (XRD) analytical technique, and scanning electron microscopy (SEM).

Results: A number of [1,3]dioxolo[g][1]benzopyran-6-carboxylic acids and pyrido[d]pyrimidine- 7-carboxylic acids were effectively synthesized in high yields (96-98%) within short reaction times (10-15 min). All synthesized compounds were well-characterized by IR, 1H and 13C NMR spectroscopy, and also by elemental analyses.

Conclusion: In summary, we have developed a very simple and impressive procedure for the synthesis of 8-aryl-8H-[1,3]dioxolo[4,5-g][1]benzopyran-6-carboxylic acids and 1,3-dimethyl- 2,4-dioxo-5-phenyl-1,2,3,4,5,8-hexahydropyrido[2,3-d]pyrimidine-7-carboxylic acids as biologically interesting structures in the presence of CdO NPs as an efficient recyclable heterogeneous catalyst. The remarkable advantages for the offered protocol compared with traditional methods are short reaction time, good yields of the products, and the ease of operation with simple work-up procedure.

Keywords: [1]Benzopyrans, cadmium oxide nanoparticles (CdO NPs), ethanol-drop grinding, pyridopyrimidines, reusability of catalyst, 4-substituted phenylmethylidenepyruvic acids.

[1]
Narayan, N.; Meiyazhagan, A.; Vajtai, R. Metal nanoparticles as green catalysts. Materials (Basel), 2019, 12(21), 3602.
[http://dx.doi.org/10.3390/ma12213602] [PMID: 31684023]
[2]
Das, T.K.; Ganguly, S.; Bhawal, P.; Remanan, S.; Mondal, S.; Das, N.C. Mussel inspired green synthesis of silver nanoparticles-decorated halloysite nanotube using dopamine: characterization and evaluation of its catalytic activity. Appl. Nanosci., 2018, 8, 173-186.
[http://dx.doi.org/10.1007/s13204-018-0658-3]
[3]
Das, T.K.; Ganguly, S.; Remanan, S.; Das, N.C. Temperature‐dependent study of catalytic Ag nanoparticles entrapped resin nanocomposite towards reduction of 4‐nitrophenol. ChemistrySelect, 2019, 4(13), 3665-3671.
[http://dx.doi.org/10.1002/slct.201900470]
[4]
Claus, P.; Brückner, A.; Mohr, C.; Hofmeister, H. Supported gold nanoparticles from quantum dot to mesoscopic size scale: Effect of electronic and structural properties on catalytic hydrogenation of conjugated functional groups. J. Am. Chem. Soc., 2000, 122(46), 11430-11439.
[http://dx.doi.org/10.1021/ja0012974]
[5]
Yamaguchi, A.; Uejo, F.; Yoda, T.; Uchida, T.; Tanamura, Y.; Yamashita, T.; Teramae, N. Self-assembly of a silica-surfactant nanocomposite in a porous alumina membrane. Nat. Mater., 2004, 3(5), 337-341.
[http://dx.doi.org/10.1038/nmat1107] [PMID: 15077106]
[6]
Tajbakhsh, M.; Alaee, E.; Alinezhad, H.; Khanian, M.; Jahani, F.; Khaksar, S.; Rezaee, P. Tajbakhsh, M. Titanium dioxide nanoparticles cCatalyzed synthesis of Hantzsch esters and polyhydroquinoline derivatives. Chin. J. Catal., 2012, 33(9), 1517-1522.
[http://dx.doi.org/10.1016/S1872-2067(11)60435-X]
[7]
Safaei-Ghomi, J.; Zahedi, S.; Javid, M.; Ghasemzadeh, M.A. MgO nanoparticles: an efficient, green and reusable catalyst for the Onepot syntheses of 2, 6-dicyanoanilines and 1, 3-diarylpropyl malononitriles under different conditions. J. Nanostruct., 2015, 5(2), 153-160.
[8]
Rostami-Charati, F.; Akbari, R. ZnO-nanoparticles as an Efficient Catalyst for the Synthesis of Functionalized Benzenes: Multicomponent Reactions of Sulfonoketenimides. Comb. Chem. High Throughput Screen., 2017, 20(9), 781-786.
[http://dx.doi.org/10.2174/1386207320666171004163437] [PMID: 28982323]
[9]
Moradi, L.; Ataei, Z. Efficient and green pathway for one-pot synthesis of spirooxindoles in the presence of CuO nanoparticles. Green Chem. Lett. Rev., 2017, 10(4), 380-386.
[http://dx.doi.org/10.1080/17518253.2017.1390611]
[10]
Dawood, D.H.; Abbas, E.M.H.; Farghaly, T.A.; Ali, M.M.; Ibrahim, M.F. ZnO nanoparticles catalyst in the synthesis of bioactive fused pyrimidines as anti-breast cancer agents targeting VEGFR-2. Med. Chem., 2019, 15(3), 277-286.
[http://dx.doi.org/10.2174/1573406414666180912113226] [PMID: 30207239]
[11]
Borhalde, A.V.; Uphalde, B.K.; Gadhave, A.G. Efficient, solvent-free synthesis of acridinediones catalyzed by CdO nanoparticles. Res. Chem. Intermed., 2015, 41(3), 1447-1458.
[http://dx.doi.org/10.1007/s11164-013-1284-z]
[12]
Mazaheriani, M.; Asghari, J.; Lotfi Omiri, R.; Pahlavan, S. Microwave-assisted synthesis of nano-sized cadmium oxide as a new and highly efficient catalyst for solvent free acylation of amines and alcohols. Asian J. Chem., 2010, 22(4), 2554-2564.
[13]
Anandakumar, B.; Reddy, M.M.; Thipperudraiah, K.; Pasha, M.; Chandrappa, G. Combustion-derived CdO nanopowder as a heterogeneous basic catalyst for efficient synthesis of sulfonamides from aromatic amines using p-toluenesulfonyl chloride. Chem. Pap., 2013, 67(2), 135-144.
[http://dx.doi.org/10.2478/s11696-012-0253-0]
[14]
Masoudinia, M.; Bagheri Ghomi, A. Application of CdO nanocatalyst in the acetylation of benzyl alcohols and degradation of sulfathiazole as a green approach. J. Pharm. Sci. Technol., 2018, 4(1), 49-57.
[15]
Pratap, R.; Ram, V.J. Natural and synthetic chromenes, fused chromenes, and versatility of dihydrobenzo[h]chromenes in organic synthesis. Chem. Rev., 2014, 114(20), 10476-10526.
[http://dx.doi.org/10.1021/cr500075s] [PMID: 25303539]
[16]
Ellis, G.P. The Chemistry of Heterocyclic Compounds Chromenes, Chromanes and Chromones; Weissberger, A; Taylor, E.C., Ed.; John Wiley: New York, 1977, pp. 11-139.
[http://dx.doi.org/10.1002/9780470187012]
[17]
Hafez, E.A.A.; Elnagdi, M.H.; Elagamey, A.G.A.; El-Taweel, F.M.A.A. Nitriles in heterocyclic synthesis: novel synthesis of benzo[c]coumarin and of benzo[c]pyrano[3,2-c]quinoline derivatives. Heterocycles, 1987, 26(4), 903-907.
[http://dx.doi.org/10.3987/R-1987-04-0903]
[18]
Khafagy, M.M.; Abd el-Wahab, A.H.; Eid, F.A.; el-Agrody, A.M. Synthesis of halogen derivatives of benzo[h]chromene and benzo[a]anthracene with promising antimicrobial activities. Farmaco, 2002, 57(9), 715-722.
[http://dx.doi.org/10.1016/S0014-827X(02)01263-6] [PMID: 12385521]
[19]
Hiramoto, K.; Nasuhara, A.; Michikoshi, K.; Kato, T.; Kikugawa, K. DNA strand-breaking activity and mutagenicity of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP), a Maillard reaction product of glucose and glycine. Mutat. Res., 1997, 395(1), 47-56.
[http://dx.doi.org/10.1016/S1383-5718(97)00141-1] [PMID: 9465913]
[20]
Smith, P.W.; Sollis, S.L.; Howes, P.D.; Cherry, P.C.; Starkey, I.D.; Cobley, K.N.; Weston, H.; Scicinski, J.; Merritt, A.; Whittington, A.; Wyatt, P.; Taylor, N.; Green, D.; Bethell, R.; Madar, S.; Fenton, R.J.; Morley, P.J.; Pateman, T.; Beresford, A. Dihydropyrancarboxamides related to zanamivir: a new series of inhibitors of influenza virus sialidases. 1. Discovery, synthesis, biological activity, and structure-activity relationships of 4-guanidino- and 4-amino-4H-pyran-6-carboxamides. J. Med. Chem., 1998, 41(6), 787-797.
[http://dx.doi.org/10.1021/jm970374b] [PMID: 9526555]
[21]
Martinez-Grau, A.; Marco, J.L. Friedländer reaction on 2-amino-3-cyano-4H-pyrans: Synthesis of derivatives of 4H-pyran [2,3-b] quinoline, new tacrine analoguesJ. Bioorg. Med. Chem. Lett., 1997, 7(24), 3165-3170.
[http://dx.doi.org/10.1016/S0960-894X(97)10165-2]
[22]
Dell, C.P.; Smith, C.W. Antiproliferative derivatives of 4Hnaphtho[1,2-b]pyran and process for their preparation European Patent Applications EP 537 949 21 Apr1. 993, 1993, 119, 139102d. Chemical Abstracts 1993.
[23]
Bianchi, G.; Tava, A. Synthesis of (2R)(+)-2,3-dihydro-2,6-dimethyl-4H-pyran-4-one, a homologue of pheromones of a species in the hepialidae family. Agric. Biol. Chem., 1987, 51(7), 2001-2002.
[http://dx.doi.org/10.1080/00021369.1987.10868286]
[24]
Mohr, S.J.; Chirigos, M.A.; Fuhrman, F.S.; Pryor, J.W. Pyran copolymer as an effective adjuvant to chemotherapy against a murine leukemia and solid tumor. Cancer Res., 1975, 35(12), 3750-3754.
[PMID: 1192431]
[25]
Eiden, F.; Denk, F. Synthesis and CNS-activity of pyran derivatives: 6,8-dioxabicyclo[3,2,1]octanes. Arch. Pharm. (Weinheim), 1991, 324(6), 353-354.
[http://dx.doi.org/10.1002/ardp.19913240606] [PMID: 1763946]
[26]
Mukai, K.; Okabe, K.; Hosose, H. Synthesis and stopped-flow investigation of antioxidant activity of tocopherols. Finding of new tocopherol derivatives having the highest antioxidant activity among phenolic antioxidants. J. Org. Chem., 1989, 54(3), 557-560.
[http://dx.doi.org/10.1021/jo00264a011]
[27]
Ishikawa, T. Anti HIV-1 active Calophyllum coumarins: distribution, chemistry, and activity. Heterocycles, 2000, 53(2), 453-474.
[http://dx.doi.org/10.3987/REV-99-526]
[28]
Hufford, C.D.; Oguntimein, B.O.; Van Engen, D.; Muthard, D.; Clardy, J. Vafzelin, uvafzelin, novel constituents of Uvaria afzelii. J. Am. Chem. Soc., 1980, 102(24), 7365-7367.
[http://dx.doi.org/10.1021/ja00544a037]
[29]
Fuendjiep, V.; Nkengfack, A.E.; Fomum, Z.T.; Sondengam, B.L.; Bodo, B. Conrauinones A and B, two new isoflavones from stem bark of Millettia conraui. J. Nat. Prod., 1998, 61(3), 380-383.
[http://dx.doi.org/10.1021/np970187g] [PMID: 9548880]
[30]
Jean Wandji, J.; Fomum, Z.T.; Tillequin, F.; Libot, F.; Koch, M. Erysenegalenseins B and C, Two new prenylated isoflavanones from Erythrina senegalensis. J. Nat. Prod., 1995, 58(1), 105-108.
[http://dx.doi.org/10.1021/np50115a013]
[31]
Knoll, J.; Gyires, K.; Hermecz, I. 1,6-Dimethyl-4-oxo-1,6,7,8,9,9a-hexahydro-4H-pyrido(1,2-a)- pyrimidine-3-carboxamide (Ch-127) protects against the intestinal damage in rats caused by two weeks’ daily administration of indomethacin. Drugs Exp. Clin. Res., 1987, 13(5), 253-258.
[PMID: 3500028]
[32]
Kennis, L.E.J.; Bischoff, F.P.; Mertens, C.J.; Love, C.J.; Van den Keybus, F.A.; Pieters, S.; Braeken, M.; Megens, A.A.; Leysen, J.E. New 2-substituted 1,2,3,4-tetrahydrobenzofuro[3,2-c]pyridine having highly active and potent central α 2-antagonistic activity as potential antidepressants. Bioorg. Med. Chem. Lett., 2000, 10(1), 71-74.
[http://dx.doi.org/10.1016/S0960-894X(99)00591-0] [PMID: 10636247]
[33]
Schmidt, B.; Schieffer, B. Angiotensin II AT1 receptor antagonists. Clinical implications of active metabolites. J. Med. Chem., 2003, 46(12), 2261-2270.
[http://dx.doi.org/10.1021/jm0204237] [PMID: 12773029]
[34]
Dickson, M.A. Molecular pathways: CDK4 inhibitors for cancer therapy. Clin. Cancer Res., 2014, 20(13), 3379-3383.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1551] [PMID: 24795392]
[35]
Robak, P.; Robak, T. Novel synthetic drugs currently in clinical development for chronic lymphocytic leukemia. Expert Opin. Investig. Drugs, 2017, 26(11), 1249-1265.
[http://dx.doi.org/10.1080/13543784.2017.1384814] [PMID: 28942659]
[36]
Lu, J. Palbociclib: a first-in-class CDK4/CDK6 inhibitor for the treatment of hormone-receptor positive advanced breast cancer. J. Hematol. Oncol., 2015, 8(98), 98.
[http://dx.doi.org/10.1186/s13045-015-0194-5] [PMID: 26264704]
[37]
Abdolmohammadi, S. TiO2 NPs-coated carbone nanotubes as a green and efficient catalyst for the synthesis of [1]benzopyrano[b][1]benzopyranones and xanthenols in water. Comb. Chem. High Throughput Screen., 2018, 21(8), 594-601.
[http://dx.doi.org/10.2174/1386207321666181018164739] [PMID: 30338732]
[38]
Abdolmohammadi, S.; Hossaini, Z. Fe3O4 MNPs as a green catalyst for syntheses of functionalized [1,3]-oxazole and 1H-pyrrolo-[1,3]-oxazole derivatives and evaluation of their antioxidant activity. Mol. Divers., 2019, 23(4), 885-896.
[http://dx.doi.org/10.1007/s11030-019-09916-9] [PMID: 30656505]
[39]
Janitabar-Darzi, S.; Abdolmohammadi, S. TiO2-SiO2 nanocomposite as a highly efficient catalyst for the solvent-free cyclocondensation reaction of isatins, cyclohexanones, and urea. Z. Naturforsch. B, 2019, 74(7-8), 559-564.
[http://dx.doi.org/10.1515/znb-2019-0059]
[40]
Abdolmohammadi, S.; Mirza, B.; Vessally, E. Immobilized TiO2 nanoparticles on carbon nanotubes: An efficient heterogeneous catalyst for the synthesis of chromeno[b]pyridine derivatives under ultrasonic irradiation. RSC Advances, 2019, 9(71), 41868-41876.
[http://dx.doi.org/10.1039/C9RA09031B]
[41]
Ebrahimi, M.; Abdolmohammadi, S.; Kia-Kojoori, R. Ultrasonic accelerated efficient synthesis of aminobenzochromenes using Ag2Cr2O7 nanoparticles as a reusable heterogeneous catalyst. J. Heterocycl. Chem., 2020, 57(4), 1875-1881.
[http://dx.doi.org/10.1002/jhet.3915]
[42]
Chaghari-Farahani, F.; Abdolmohammadi, S.; Kia-Kojoori, R. PANI-Fe3O4@ZnO nanocomposite: a magnetically separable and applicable catalyst for the synthesis of chromeno-pyrido[d]pyrimidine derivatives. RSC Advances, 2020, 10(26), 15614-15621.
[http://dx.doi.org/10.1039/D0RA01978J]
[43]
Anna, N.; Paris, R.; Jordan, F. (E)-4-(-halo-p-tolyl)-2-oxo-3-butenoic acids inhibit yeast pyruvate decarboxylase by a diversity of mechanisms: multiple fate for the thiamin-bond enamine intermediate. J. Am. Chem. Soc., 1999, 111(24), 8895-8901.
[http://dx.doi.org/10.1021/ja00206a019]
[44]
Santos-Cruz, J.; Torres-Delgado, G.; Castanedo-Perez, R.; Jiménez-Sandoval, S.; Jiménez-Sandoval, O.; Zúñiga-Romero, C.I.; Márquez Marín, J.; Zelaya-Angel, O. Dependence of electrical and optical properties of sol–gel prepared undoped cadmium oxide thin films on annealing temperature. Thin Solid Films, 2005, 493(1-2), 83-87.
[http://dx.doi.org/10.1016/j.tsf.2005.07.237]
[45]
Gujar, T.P.; Shinde, V.R.; Kim, W.Y.; Jung, K.D.; Lokhande, C.D.; Joo, O.S. Formation of CdO films from chemically deposited Cd (OH)2 films as a precursor. Appl. Surf. Sci., 2008, 254(13), 3813-3818.
[http://dx.doi.org/10.1016/j.apsusc.2007.12.015]
[46]
Abdolmohammadi, S.; Nasrabadi, S.R.R.; Seif, A.; Fard, N.E. Rasouli Nasrabadi, S.R.; Seif, A.; Elmi Fard, N. Ag/CdS nanocomposite: An efficient recyclable catalyst for the synthesis of novel 8-aryl-8H-[1,3]dioxolo[4,5-g]chromene-6-carboxylic acids under mild reaction conditions. Comb. Chem. High Throughput Screen., 2018, 21(5), 323-328.
[http://dx.doi.org/10.2174/1386207321666180604104456] [PMID: 29866001]
[47]
Sadegh-Samiei, S.; Abdolmohammadi, S. Efficient synthesis of pyrido[2,3-d]pyrimidine-7-carboxylic acids catalyzed by a TiO2-SiO2 nanocomposite in aqueous media at room temperature. Z. Naturforsch., 2018, 73(9b), 641-645.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy