Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

The Roles of LncRNAs in Osteogenesis, Adipogenesis and Osteoporosis

Author(s): Bo Guo, Xiaokang Zhu, Xinzhi Li* and C.F. Yuan

Volume 27, Issue 1, 2021

Published on: 07 July, 2020

Page: [91 - 104] Pages: 14

DOI: 10.2174/1381612826666200707130246

Price: $65

Abstract

Background: Osteoporosis (OP) is the most common bone disease, which is listed by the World Health Organization (WHO) as the third major threat to life and health among the elderly. The etiology of OP is multifactorial, and its potential regulatory mechanism remains unclear. Long non-coding RNAs (LncRNAs) are the non-coding RNAs that are over 200 bases in the chain length. Increasing evidence indicates that LncRNAs are the important regulators of osteogenic and adipogenic differentiation, and the occurrence of OP is greatly related to the dysregulation of the bone marrow mesenchymal stem cells (BMSCs) differentiation lineage. Meanwhile, LncRNAs affect the occurrence and development of OP by regulating OP-related biological processes.

Methods: In the review, we summarized and analyzed the latest findings of LncRNAs in the pathogenesis, diagnosis and related biological processes of OP. Relevant studies published in the last five years were retrieved and selected from the PubMed database using the keywords of LncRNA and OP.

Results/Conclusion: The present study aimed to examine the underlying mechanisms and biological roles of LncRNAs in OP, as well as osteogenic and adipogenic differentiation. Our results contributed to providing new clues for the epigenetic regulation of OP, making LncRNAs the new targets for OP therapy.

Keywords: Long non-coding RNA, osteoporosis, osteogenesis, adipogenesis, mesenchymal stem cells, pathogenesis.

[1]
Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet 2011; 377(9773): 1276-87.
[http://dx.doi.org/10.1016/S0140-6736(10)62349-5] [PMID: 21450337]
[2]
Reginster JY, Burlet N. Osteoporosis: A still increasing prevalence. Bone . 200538(2-supp-S1): 0-9.
[http://dx.doi.org/10.1016/j.bone.2005.11.024] [PMID: 16455317]
[3]
Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 2006; 17(12): 1726-33.
[http://dx.doi.org/10.1007/s00198-006-0172-4] [PMID: 16983459]
[4]
Chang YF, Huang CF, Hwang J, et al. Fracture liaison services for osteoporosis in the Asia-Pacific region: current unmet needs and systematic literature review. Osteoporos Int 2018; 29(4): 779-92.
[http://dx.doi.org/10.1007/s00198-017-4347-y] [PMID: 29285627]
[5]
Liu Y, Levack AE, Marty E, et al. Anabolic agents: what is beyond osteoporosis? Osteoporos Int 2018; 29(5): 1009-22.
[http://dx.doi.org/10.1007/s00198-018-4507-8] [PMID: 29627891]
[6]
Phetfong J, Sanvoranart T, Nartprayut K, et al. Osteoporosis: the current status of mesenchymal stem cell-based therapy. Cell Mol Biol Lett 2016; 21: 12.
[http://dx.doi.org/10.1186/s11658-016-0013-1] [PMID: 28536615]
[7]
Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell 2014; 157(1): 77-94.
[http://dx.doi.org/10.1016/j.cell.2014.03.008] [PMID: 24679528]
[8]
Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol 2013; 10(6): 925-33.
[http://dx.doi.org/10.4161/rna.24604] [PMID: 23696037]
[9]
Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell 2011; 43(6): 904-14.
[http://dx.doi.org/10.1016/j.molcel.2011.08.018] [PMID: 21925379]
[10]
Hassan MQ, Tye CE, Stein GS, Lian JB. Non-coding RNAs: Epigenetic regulators of bone development and homeostasis. Bone 2015; 81: 746-56.
[http://dx.doi.org/10.1016/j.bone.2015.05.026] [PMID: 26039869]
[11]
Yang L, Wang H, Shen Q, Feng L, Jin H. Long non-coding RNAs involved in autophagy regulation. Cell Death Dis 2017; 8(10)e3073
[http://dx.doi.org/10.1038/cddis.2017.464] [PMID: 28981093]
[12]
Silva AM, Moura SR, Teixeira JH, Barbosa MA, Santos SG, Almeida MI. Long noncoding RNAs: a missing link in osteoporosis. Bone Res 2019; 7: 10.
[http://dx.doi.org/10.1038/s41413-019-0048-9] [PMID: 30937214]
[13]
MacKnight JM. Osteopenia and osteoporosis in female athletes. Clin Sports Med 2017; 36(4): 687-702.
[http://dx.doi.org/10.1016/j.csm.2017.05.006] [PMID: 28886822]
[14]
Haÿ E, Dieudonné FX, Saidak Z, et al. N-cadherin/wnt interaction controls bone marrow mesenchymal cell fate and bone mass during aging. J Cell Physiol 2014; 229(11): 1765-75.
[http://dx.doi.org/10.1002/jcp.24629] [PMID: 24664975]
[15]
Li CJ, Cheng P, Liang MK, et al. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. J Clin Invest 2015; 125(4): 1509-22.
[http://dx.doi.org/10.1172/JCI77716] [PMID: 25751060]
[16]
Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 2000; 21(2): 115-37.
[http://dx.doi.org/10.1210/edrv.21.2.0395] [PMID: 10782361]
[17]
Wang X, Guo B, Li Q, et al. miR-214 targets ATF4 to inhibit bone formation. Nat Med 2013; 19(1): 93-100.
[http://dx.doi.org/10.1038/nm.3026] [PMID: 23223004]
[18]
Kawai M, de Paula FJA, Rosen CJ. New insights into osteoporosis: the bone-fat connection. J Intern Med 2012; 272(4): 317-29.
[http://dx.doi.org/10.1111/j.1365-2796.2012.02564.x] [PMID: 22702419]
[19]
Hu N, Feng C, Jiang Y, Miao Q, Liu H. Regulative effect of miR-205 on osteogenic differentiation of bone mesenchymal stem cells (BMSCs): Possible role of SATB2/Runx2 and ERK/MAPK pathway. Int J Mol Sci 2015; 16(5): 10491-506.
[http://dx.doi.org/10.3390/ijms160510491] [PMID: 25961955]
[20]
Peng S, Cao L, He S, et al. An overview of long noncoding RNAs involved in bone regeneration from mesenchymal stem cells. Stem Cells Int 2018; 20188273648
[http://dx.doi.org/10.1155/2018/8273648] [PMID: 29535782]
[21]
Zhang W, Dong R, Diao S, Du J, Fan Z, Wang F. Differential long noncoding RNA/mRNA expression profiling and functional network analysis during osteogenic differentiation of human bone marrow mesenchymal stem cells. Stem Cell Res Ther 2017; 8(1): 30.
[http://dx.doi.org/10.1186/s13287-017-0485-6] [PMID: 28173844]
[22]
Zuo C, Wang Z, Lu H, Dai Z, Liu X, Cui L. Expression profiling of lncRNAs in C3H10T1/2 mesenchymal stem cells undergoing early osteoblast differentiation. Mol Med Rep 2013; 8(2): 463-7.
[http://dx.doi.org/10.3892/mmr.2013.1540] [PMID: 23799588]
[23]
Song WQ, Gu WQ, Qian YB, Ma X, Mao YJ, Liu WJ. Identification of long non-coding RNA involved in osteogenic differentiation from mesenchymal stem cells using RNA-Seq data. Genet Mol Res 2015; 14(4): 18268-79.
[http://dx.doi.org/10.4238/2015.December.23.14] [PMID: 26782474]
[24]
Tye CE, Boyd JR, Page NA, et al. Regulation of osteogenesis by long noncoding RNAs: An epigenetic mechanism contributing to bone formation. Connect Tissue Res 2018 Dec; 59(sup1): 35-41.
[http://dx.doi.org/10.1080/03008207.2017.1412432] [PMID: 29745821]
[25]
Chai S, Wan L, Wang JL, Huang JC, Huang HX. Systematic analysis of long non-coding RNA and mRNA profiling using RNA sequencing in the femur and muscle of ovariectomized rats. J Musculoskelet Neuronal Interact 2019; 19(4): 422-34.
[PMID: 31789293]
[26]
Sun X, Jia B, Qiu XL, et al. Potential functions of long noncoding RNAs in the osteogenic differentiation of human bone marrow mesenchymal stem cells. Mol Med Rep 2019; 19(1): 103-14.
[http://dx.doi.org/10.3892/mmr.2018.9674] [PMID: 30483739]
[27]
Tye CE, Gordon JA, Martin-Buley LA, Stein JL, Lian JB, Stein GS. Could lncRNAs be the missing links in control of mesenchymal stem cell differentiation? J Cell Physiol 2015; 230(3): 526-34.
[http://dx.doi.org/10.1002/jcp.24834] [PMID: 25258250]
[28]
Wang L, Wang Y, Li Z, Li Z, Yu B. Differential expression of long noncoding ribonucleic acids during osteogenic differentiation of human bone marrow mesenchymal stem cells. Int Orthop 2015; 39(5): 1013-9.
[http://dx.doi.org/10.1007/s00264-015-2683-0] [PMID: 25634249]
[29]
Yang Q, Jia L, Li X, et al. Long noncoding RNAs: New players in the osteogenic differentiation of bone marrow- and adipose-derived mesenchymal stem cells. Stem Cell Rev Rep 2018; 14(3): 297-308.
[http://dx.doi.org/10.1007/s12015-018-9801-5] [PMID: 29464508]
[30]
McCarthy TL, Centrella M. Novel links among Wnt and TGF-β signaling and Runx2. Mol Endocrinol 2010; 24(3): 587-97.
[http://dx.doi.org/10.1210/me.2009-0379] [PMID: 20093419]
[31]
Gu H, Huang Z, Chen G, et al. Network and pathway-based analyses of genes associated with osteoporosis. Medicine (Baltimore) 2020; 99(8)e19120
[http://dx.doi.org/10.1097/MD.0000000000019120] [PMID: 32080087]
[32]
Sethi JK, Vidal-Puig A. Wnt signalling and the control of cellular metabolism. Biochem J 2010; 427(1): 1-17.
[http://dx.doi.org/10.1042/BJ20091866] [PMID: 20226003]
[33]
Gabory A, Ripoche MA, Le Digarcher A, et al. H19 acts as a trans regulator of the imprinted gene network controlling growth in mice. Development 2009; 136(20): 3413-21.
[http://dx.doi.org/10.1242/dev.036061] [PMID: 19762426]
[34]
Hurst LD, Smith NG. Molecular evolutionary evidence that H19 mRNA is functional. Trends Genet 1999; 15(4): 134-5.
[http://dx.doi.org/10.1016/S0168-9525(99)01696-0] [PMID: 10203817]
[35]
Gong YY, Peng MY, Yin DQ, Yang YF. Long non-coding RNA H19 promotes the osteogenic differentiation of rat ectomesenchymal stem cells via Wnt/β-catenin signaling pathway. Eur Rev Med Pharmacol Sci 2018; 22(24): 8805-13.
[http://dx.doi.org/10.26355/eurrev_201812_16648] [PMID: 30575922]
[36]
Liang WC, Fu WM, Wang YB, et al. H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA. Sci Rep 2016; 6: 20121.
[http://dx.doi.org/10.1038/srep20121] [PMID: 26853553]
[37]
Al-Rugeebah A, Alanazi M, Parine NR. MEG3: an oncogenic long non-coding RNA in different cancers. Pathol Oncol Res 2019; 25(3): 859-74.
[http://dx.doi.org/10.1007/s12253-019-00614-3] [PMID: 30793226]
[38]
Deng L, Hong H, Zhang X, et al. Down-regulated lncRNA MEG3 promotes osteogenic differentiation of human dental follicle stem cells by epigenetically regulating Wnt pathway. Biochem Biophys Res Commun 2018; 503(3): 2061-7.
[http://dx.doi.org/10.1016/j.bbrc.2018.07.160] [PMID: 30103943]
[39]
Ma T, Ma H, Zou Z, et al. The long intergenic noncoding RNA 00707 promotes lung adenocarcinoma cell proliferation and migration by regulating Cdc42. Cell Physiol Biochem 2018; 45(4): 1566-80.
[http://dx.doi.org/10.1159/000487693] [PMID: 29482190]
[40]
Jia B, Wang Z, Sun X, Chen J, Zhao J, Qiu X. Long noncoding RNA LINC00707 sponges miR-370-3p to promote osteogenesis of human bone marrow-derived mesenchymal stem cells through upregulating WNT2B. Stem Cell Res Ther 2019; 10(1): 67.
[http://dx.doi.org/10.1186/s13287-019-1161-9] [PMID: 30795799]
[41]
Reddi AH, Reddi A. Bone morphogenetic proteins (BMPs): from morphogens to metabologens. Cytokine Growth Factor Rev 2009; 20(5-6): 341-2.
[http://dx.doi.org/10.1016/j.cytogfr.2009.10.015] [PMID: 19900831]
[42]
Dituri F, Cossu C, Mancarella S, Giannelli G. The interactivity between TGFβ and BMP signaling in organogenesis, fibrosis, and cancer. Cells 2019; 8(10): 1130.
[http://dx.doi.org/10.3390/cells8101130] [PMID: 31547567]
[43]
Beederman M, Lamplot JD, Nan G, et al. BMP signaling in mesenchymal stem cell differentiation and bone formation. J Biomed Sci Eng 2013; 6(8A): 32-52.
[http://dx.doi.org/10.4236/jbise.2013.68A1004] [PMID: 26819651]
[44]
Huang Y, Zheng Y, Jia L, Li W. Long noncoding RNA H19 promotes osteoblast differentiation via TGF-β1/Smad3/HDAC signaling pathway by deriving miR-675. Stem Cells 2015; 33(12): 3481-92.
[http://dx.doi.org/10.1002/stem.2225] [PMID: 26417995]
[45]
Li Z, Jin C, Chen S, et al. Long non-coding RNA MEG3 inhibits adipogenesis and promotes osteogenesis of human adipose-derived mesenchymal stem cells via miR-140-5p. Mol Cell Biochem 2017; 433(1-2): 51-60.
[http://dx.doi.org/10.1007/s11010-017-3015-z] [PMID: 28382492]
[46]
Zhuang W, Ge X, Yang S, et al. Upregulation of lncRNA MEG3 promotes osteogenic differentiation of mesenchymal stem cells from multiple myeloma patients by targeting BMP4 transcription. Stem Cells 2015; 33(6): 1985-97.
[http://dx.doi.org/10.1002/stem.1989] [PMID: 25753650]
[47]
Wang CG, Liao Z, Xiao H, et al. LncRNA KCNQ1OT1 promoted BMP2 expression to regulate osteogenic differentiation by sponging miRNA-214. Exp Mol Pathol 2019; 107: 77-84.
[http://dx.doi.org/10.1016/j.yexmp.2019.01.012] [PMID: 30703347]
[48]
Zhang Y, Chen B, Li D, Zhou X, Chen Z. LncRNA NEAT1/miR-29b-3p/BMP1 axis promotes osteogenic differentiation in human bone marrow-derived mesenchymal stem cells. Pathol Res Pract 2019; 215(3): 525-31.
[http://dx.doi.org/10.1016/j.prp.2018.12.034] [PMID: 30638953]
[49]
Tang S, Xie Z, Wang P, et al. LncRNA-OG promotes the osteogenic differentiation of bone marrow-derived mesenchymal stem cells under the regulation of hnRNPK: LncRNA-OG Promotes BM-MSC Osteogenesis. Stem Cells 2019; 37(2): 270-83.
[http://dx.doi.org/10.1002/stem.2937] [PMID: 30372559]
[50]
Wei B, Wei W, Zhao B, Guo X, Liu S. Long non-coding RNA HOTAIR inhibits miR-17-5p to regulate osteogenic differentiation and proliferation in non-traumatic osteonecrosis of femoral head. PLoS One 2017; 12(2)e0169097
[http://dx.doi.org/10.1371/journal.pone.0169097] [PMID: 28207735]
[51]
Gutschner T, Hämmerle M, Diederichs S. MALAT1 -- a paradigm for long noncoding RNA function in cancer. J Mol Med (Berl) 2013; 91(7): 791-801.
[http://dx.doi.org/10.1007/s00109-013-1028-y] [PMID: 23529762]
[52]
Gao Y, Xiao F, Wang C, et al. Long noncoding RNA MALAT1 promotes osterix expression to regulate osteogenic differentiation by targeting miRNA-143 in human bone marrow-derived mesenchymal stem cells. J Cell Biochem 2018; 119(8): 6986-96.
[http://dx.doi.org/10.1002/jcb.26907] [PMID: 29741283]
[53]
Xiao X, Zhou T, Guo S, et al. LncRNA MALAT1 sponges miR-204 to promote osteoblast differentiation of human aortic valve interstitial cells through up-regulating Smad4. Int J Cardiol 2017; 243: 404-12.
[http://dx.doi.org/10.1016/j.ijcard.2017.05.037] [PMID: 28522163]
[54]
Shang G, Wang Y, Xu Y, et al. Long non-coding RNA TCONS_00041960 enhances osteogenesis and inhibits adipogenesis of rat bone marrow mesenchymal stem cell by targeting miR-204-5p and miR-125a-3p. J Cell Physiol 2018; 233(8): 6041-51.
[http://dx.doi.org/10.1002/jcp.26424] [PMID: 29319166]
[55]
Yin C, Tian Y, Yu Y, et al. A novel long noncoding RNA AK016739 inhibits osteoblast differentiation and bone formation. J Cell Physiol 2019; 234(7): 11524-36.
[http://dx.doi.org/10.1002/jcp.27815] [PMID: 30656695]
[56]
Liao J, Yu X, Hu X, et al. lncRNA H19 mediates BMP9-induced osteogenic differentiation of mesenchymal stem cells (MSCs) through Notch signaling. Oncotarget 2017; 8(32): 53581-601.
[http://dx.doi.org/10.18632/oncotarget.18655] [PMID: 28881833]
[57]
Wang Y, Liu W, Liu Y, et al. Long noncoding RNA H19 mediates LCoR to impact the osteogenic and adipogenic differentiation of mBMSCs in mice through sponging miR-188. J Cell Physiol 2018; 233(9): 7435-46.
[http://dx.doi.org/10.1002/jcp.26589] [PMID: 29663375]
[58]
Sheik Mohamed J, Gaughwin PM, Lim B, Robson P, Lipovich L. Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. RNA 2010; 16(2): 324-37.
[http://dx.doi.org/10.1261/rna.1441510] [PMID: 20026622]
[59]
Li H, Zhang Z, Chen Z, Zhang D. Osteogenic growth peptide promotes osteogenic differentiation of mesenchymal stem cells mediated by LncRNA AK141205-induced upregulation of CXCL13. Biochem Biophys Res Commun 2015; 466(1): 82-8.
[http://dx.doi.org/10.1016/j.bbrc.2015.08.112] [PMID: 26321662]
[60]
Sun X, Yuan Y, Xiao Y, et al. Long non-coding RNA, Bmcob, regulates osteoblastic differentiation of bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 2018; 506(3): 536-42.
[http://dx.doi.org/10.1016/j.bbrc.2018.09.142] [PMID: 30361096]
[61]
Burmester A, Luthringer B, Willumeit R, Feyerabend F. Comparison of the reaction of bone-derived cells to enhanced MgCl2-salt concentrations. Biomatter 2014; 4e967616
[http://dx.doi.org/10.4161/21592527.2014.967616] [PMID: 25482335]
[62]
Li D, Yu K, Xiao T, et al. LOC103691336/miR-138-5p/BMPR2 axis modulates Mg-mediated osteogenic differentiation in rat femoral fracture model and rat primary bone marrow stromal cells. J Cell Physiol 2019; 234(11): 21316-30.
[http://dx.doi.org/10.1002/jcp.28736] [PMID: 31081160]
[63]
Gao X, Ge J, Li W, Zhou W, Xu L. LncRNA KCNQ1OT1 promotes osteogenic differentiation to relieve osteolysis via Wnt/β-catenin activation. Cell Biosci 2018; 8: 19.
[http://dx.doi.org/10.1186/s13578-018-0216-4] [PMID: 29541443]
[64]
Feng X, Lin T, Liu X, Yang C, Yang S, Fu D. Long non-coding RNA BDNF-AS modulates osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Mol Cell Biochem 2018; 445(1-2): 59-65.
[http://dx.doi.org/10.1007/s11010-017-3251-2] [PMID: 29247276]
[65]
Li B, Han H, Song S, et al. HOXC10 regulates osteogenesis of mesenchymal stromal cells through interaction with its natural antisense transcript lncHOXC-AS3. Stem Cells 2019; 37(2): 247-56.
[http://dx.doi.org/10.1002/stem.2925] [PMID: 30353595]
[66]
Yang L, Li Y, Gong R, et al. The long non-coding RNA-ORLNC1 regulates bone mass by directing mesenchymal stem cell fate. Mol Ther 2019; 27(2): 394-410.
[http://dx.doi.org/10.1016/j.ymthe.2018.11.019] [PMID: 30638773]
[67]
Wang Q, Li Y, Zhang Y, et al. LncRNA MEG3 inhibited osteogenic differentiation of bone marrow mesenchymal stem cells from postmenopausal osteoporosis by targeting miR-133a-3p. Biomed Pharmacother 2017; 89: 1178-86.
[http://dx.doi.org/10.1016/j.biopha.2017.02.090] [PMID: 28320084]
[68]
Luo G, He Y, Yu X. Bone marrow adipocyte: an intimate partner with tumor cells in bone metastasis. Front Endocrinol (Lausanne) 2018; 9: 339.
[http://dx.doi.org/10.3389/fendo.2018.00339] [PMID: 30013512]
[69]
Sun L, Goff LA, Trapnell C, et al. Long noncoding RNAs regulate adipogenesis. Proc Natl Acad Sci USA 2013; 110(9): 3387-92.
[http://dx.doi.org/10.1073/pnas.1222643110] [PMID: 23401553]
[70]
Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 2006; 7(12): 885-96.
[http://dx.doi.org/10.1038/nrm2066] [PMID: 17139329]
[71]
Chen Z. Progress and prospects of long noncoding RNAs in lipid homeostasis. Mol Metab 2015; 5(3): 164-70.
[http://dx.doi.org/10.1016/j.molmet.2015.12.003] [PMID: 26977388]
[72]
Li K, Wu Y, Yang H, Hong P, Fang X, Hu Y. H19/miR-30a/C8orf4 axis modulates the adipogenic differentiation process in human adipose tissue-derived mesenchymal stem cells. J Cell Physiol 2019; 234(11): 20925-34.
[http://dx.doi.org/10.1002/jcp.28697] [PMID: 31026067]
[73]
Yuan H, Xu X, Feng X, et al. A novel long noncoding RNA PGC1β-OT1 regulates adipocyte and osteoblast differentiation through antagonizing miR-148a-3p. Cell Death Differ 2019; 26(10): 2029-45.
[http://dx.doi.org/10.1038/s41418-019-0296-7] [PMID: 30728459]
[74]
Li M, Sun X, Cai H, et al. Long non-coding RNA ADNCR suppresses adipogenic differentiation by targeting miR-204. Biochim Biophys Acta 2016; 1859(7): 871-82.
[http://dx.doi.org/10.1016/j.bbagrm.2016.05.003] [PMID: 27156885]
[75]
Li M, Xie Z, Wang P, et al. The long noncoding RNA GAS5 negatively regulates the adipogenic differentiation of MSCs by modulating the miR-18a/CTGF axis as a ceRNA. Cell Death Dis 2018; 9(5): 554.
[http://dx.doi.org/10.1038/s41419-018-0627-5] [PMID: 29748618]
[76]
Xiao T, Liu L, Li H, et al. Long noncoding RNA ADINR regulates adipogenesis by transcriptionally activating C/EBP-α. Stem Cell Reports 2015; 5(5): 856-65.
[http://dx.doi.org/10.1016/j.stemcr.2015.09.007] [PMID: 26489893]
[77]
Liu Y, Wang Y, He X, et al. LncRNA TINCR/miR-31-5p/C/EBP-α feedback loop modulates the adipogenic differentiation process in human adipose tissue-derived mesenchymal stem cells. Stem Cell Res (Amst) 2018; 32: 35-42.
[http://dx.doi.org/10.1016/j.scr.2018.08.016] [PMID: 30172905]
[78]
Zhu E, Zhang J, Li Y, Yuan H, Zhou J, Wang B. Long noncoding RNA Plnc1 controls adipocyte differentiation by regulating peroxisome proliferator-activated receptor γ. FASEB J 2019; 33(2): 2396-408.
[http://dx.doi.org/10.1096/fj.201800739RRR] [PMID: 30277818]
[79]
Yu Y, Chen Y, Zhang X, et al. Knockdown of lncRNA KCNQ1OT1 suppresses the adipogenic and osteogenic differentiation of tendon stem cell via downregulating miR-138 target genes PPARγ and RUNX2. Cell Cycle 2018; 17(19-20): 2374-85.
[http://dx.doi.org/10.1080/15384101.2018.1534510] [PMID: 30321077]
[80]
Cai R, Tang G, Zhang Q, et al. A Novel lnc-RNA, Named lnc-ORA, is identified by RNA-seq analysis, and its knockdown inhibits adipogenesis by regulating the PI3K/AKT/mTOR signaling pathway. Cells 2019; 8(5): 477.
[http://dx.doi.org/10.3390/cells8050477] [PMID: 31109074]
[81]
Gernapudi R, Wolfson B, Zhang Y, et al. miR-140 Promotes expression of long non-coding RNA NEAT1 in adipogenesis. Mol Cell Biol 2015; 36(1): 30-8.
[http://dx.doi.org/10.1128/MCB.00702-15] [PMID: 26459763]
[82]
Liu S, Huang H, Chai S, Wei H, Huang J, Wan L. Expression profile analysis of long non-coding RNA in skeletal muscle of osteoporosis by microarray and bioinformatics. J Biol Eng 2019; 13: 50.
[http://dx.doi.org/10.1186/s13036-019-0180-5] [PMID: 31164921]
[83]
Huo S, Zhou Y, He X, et al. Insight into the role of long non-coding RNAs during osteogenesis in mesenchymal stem cells. Curr Stem Cell Res Ther 2018; 13(1): 52-9.
[http://dx.doi.org/10.2174/1574888X12666171115124112] [PMID: 29141554]
[84]
Dou C, Cao Z, Yang B, et al. Changing expression profiles of lncRNAs, mRNAs, circRNAs and miRNAs during osteoclastogenesis. Sci Rep 2016; 6: 21499.
[http://dx.doi.org/10.1038/srep21499] [PMID: 26856880]
[85]
Tong X, Gu PC, Xu SZ, Lin XJ. Long non-coding RNA-DANCR in human circulating monocytes: a potential biomarker associated with postmenopausal osteoporosis. Biosci Biotechnol Biochem 2015; 79(5): 732-7.
[http://dx.doi.org/10.1080/09168451.2014.998617] [PMID: 25660720]
[86]
Wang Y, Luo TB, Liu L, Cui ZQ. LncRNA LINC00311 promotes the proliferation and differentiation of osteoclasts in osteoporotic rats through the notch signaling pathway by targeting DLL3. Cell Physiol Biochem 2018; 47(6): 2291-306.
[http://dx.doi.org/10.1159/000491539] [PMID: 29975944]
[87]
Chang Y, Yu D, Chu W, Liu Z, Li H, Zhai Z. LncRNA expression profiles and the negative regulation of lncRNA-NOMMUT037835.2 in osteoclastogenesis. Bone 2020; 130115072
[http://dx.doi.org/10.1016/j.bone.2019.115072] [PMID: 31593824]
[88]
Larsen ER, Mosekilde L, Foldspang A. Vitamin D and calcium supplementation prevents osteoporotic fractures in elderly community dwelling residents: a pragmatic population-based 3-year intervention study. J Bone Miner Res 2004; 19(3): 370-8.
[http://dx.doi.org/10.1359/JBMR.0301240] [PMID: 15040824]
[89]
Chen S, Bu D, Ma Y, et al. H19 Overexpression induces resistance to 1,25(OH)2D3 by targeting VDR through miR-675-5p in colon cancer cells. Neoplasia 2017; 19(3): 226-36.
[http://dx.doi.org/10.1016/j.neo.2016.10.007] [PMID: 28189050]
[90]
Mazdeh M, Zamani M, Eftekharian MM, et al. Expression analysis of vitamin D receptor-associated lncRNAs in epileptic patients. Metab Brain Dis 2019; 34(5): 1457-65.
[http://dx.doi.org/10.1007/s11011-019-00446-9] [PMID: 31187385]
[91]
Jang SY, Park J, Ryu SY, Choi SW. Low muscle mass is associated with osteoporosis: A nationwide population-based study. Maturitas 2020; 133: 54-9.
[http://dx.doi.org/10.1016/j.maturitas.2020.01.003] [PMID: 32005424]
[92]
Butchart LC, Fox A, Shavlakadze T, Grounds MD. The long and short of non-coding RNAs during post-natal growth and differentiation of skeletal muscles: Focus on lncRNA and miRNAs. Differentiation 2016; 92(5): 237-48.
[http://dx.doi.org/10.1016/j.diff.2016.05.003] [PMID: 27292314]
[93]
Gong C, Li Z, Ramanujan K, et al. A long non-coding RNA, LncMyoD, regulates skeletal muscle differentiation by blocking IMP2-mediated mRNA translation. Dev Cell 2015; 34(2): 181-91.
[http://dx.doi.org/10.1016/j.devcel.2015.05.009] [PMID: 26143994]
[94]
Shen L, Gan M, Tang Q, et al. Comprehensive analysis of lncRNAs and circRNAs reveals the metabolic specialization in oxidative and glycolytic skeletal muscles. Int J Mol Sci 2019; 20(12): 2855.
[http://dx.doi.org/10.3390/ijms20122855] [PMID: 31212733]
[95]
Xie Y, Zhang L, Xiong Q, Gao Y, Ge W, Tang P. Bench-to-bedside strategies for osteoporotic fracture: From osteoimmunology to mechanosensation. Bone Res 2019; 7: 25.
[http://dx.doi.org/10.1038/s41413-019-0066-7] [PMID: 31646015]
[96]
Zhi L, Zhao J, Zhao H, et al. Downregulation of LncRNA OIP5-AS1 induced by IL-1β aggravates osteoarthritis via regulating miR-29b-3p/PGRN. Cartilage 2020; 101947603519900801
[http://dx.doi.org/10.1177/1947603519900801] [PMID: 32037864]
[97]
Zhang HJ, Wei QF, Wang SJ, et al. LncRNA HOTAIR alleviates rheumatoid arthritis by targeting miR-138 and inactivating NF-κB pathway. Int Immunopharmacol 2017; 50: 283-90.
[http://dx.doi.org/10.1016/j.intimp.2017.06.021] [PMID: 28732288]
[98]
Obaid M, Udden SMN, Deb P, Shihabeddin N, Zaki MH, Mandal SS. LncRNA HOTAIR regulates lipopolysaccharide-induced cytokine expression and inflammatory response in macrophages. Sci Rep 2018; 8(1): 15670.
[http://dx.doi.org/10.1038/s41598-018-33722-2] [PMID: 30353135]
[99]
Zhu X, Yu J, Du J, Zhong G, Qiao L, Lin J. LncRNA HOXA-AS2 positively regulates osteogenesis of mesenchymal stem cells through inactivating NF-κB signalling. J Cell Mol Med 2019; 23(2): 1325-32.
[http://dx.doi.org/10.1111/jcmm.14034] [PMID: 30536618]
[100]
Jin C, Jia L, Huang Y, et al. Inhibition of lncRNA MIR31HG promotes osteogenic differentiation of human adipose-derived stem cells. Stem Cells 2016; 34(11): 2707-20.
[http://dx.doi.org/10.1002/stem.2439] [PMID: 27334046]
[101]
Huang Y, Jin C, Zheng Y, et al. Knockdown of lncRNA MIR31HG inhibits adipocyte differentiation of human adipose-derived stem cells via histone modification of FABP4. Sci Rep 2017; 7(1): 8080.
[http://dx.doi.org/10.1038/s41598-017-08131-6] [PMID: 28808264]
[102]
Böhm AM, Dirckx N, Maes C. Recruitment of osteogenic cells to bone formation sites during development and fracture repair - German Version. Z Rheumatol 2016; 75(3): 316-21.
[http://dx.doi.org/10.1007/s00393-016-0065-7] [PMID: 27003859]
[103]
Wang C, Qu Y, Wang D, Zhu Y. The proangiogenic roles of long NonCoding RNAs revealed by RNA-sequencing following oxygen-glucose deprivation/re-oxygenation. Cell Physiol Biochem 2019; 52(4): 708-27.
[http://dx.doi.org/10.33594/000000050] [PMID: 30921509]
[104]
Hou J, Wang L, Wu Q, et al. Long noncoding RNA H19 upregulates vascular endothelial growth factor A to enhance mesenchymal stem cells survival and angiogenic capacity by inhibiting miR-199a-5p. Stem Cell Res Ther 2018; 9(1): 109.
[http://dx.doi.org/10.1186/s13287-018-0861-x] [PMID: 29673400]
[105]
Su W, Xie W, Shang Q, Su B. The long noncoding RNA MEG3 is downregulated and inversely associated with VEGF levels in osteoarthritis. BioMed Res Int 2015; 2015356893
[http://dx.doi.org/10.1155/2015/356893] [PMID: 26090403]
[106]
Tsukamoto M, Menuki K, Murai T, et al. Elcatonin prevents bone loss caused by skeletal unloading by inhibiting preosteoclast fusion through the unloading-induced high expression of calcitonin receptors in bone marrow cells. Bone 2016; 85: 70-80.
[http://dx.doi.org/10.1016/j.bone.2016.01.025] [PMID: 26851124]
[107]
Chisati EM, Constantinou D, Lampiao F. Management of reduced bone mineral density in HIV: Pharmacological challenges and the role of exercise. Front Physiol 2018; 9: 1074.
[http://dx.doi.org/10.3389/fphys.2018.01074] [PMID: 30131721]
[108]
Wu J, Zhao J, Sun L, Pan Y, Wang H, Zhang WB. Long non-coding RNA H19 mediates mechanical tension-induced osteogenesis of bone marrow mesenchymal stem cells via FAK by sponging miR-138. Bone 2018; 108: 62-70.
[http://dx.doi.org/10.1016/j.bone.2017.12.013] [PMID: 29253550]
[109]
Silva A, Bullock M, Calin G. The clinical relevance of long non-coding RNAs in cancer. Cancers (Basel) 2015; 7(4): 2169-82.
[http://dx.doi.org/10.3390/cancers7040884] [PMID: 26516918]
[110]
Hao L, Fu J, Tian Y, Wu J. Systematic analysis of lncRNAs, miRNAs and mRNAs for the identification of biomarkers for osteoporosis in the mandible of ovariectomized mice. Int J Mol Med 2017; 40(3): 689-702.
[http://dx.doi.org/10.3892/ijmm.2017.3062] [PMID: 28713971]
[111]
Fei Q, Bai X, Lin J, Meng H, Yang Y, Guo A. Identification of aberrantly expressed long non-coding RNAs in postmenopausal osteoporosis. Int J Mol Med 2018; 41(6): 3537-50.
[http://dx.doi.org/10.3892/ijmm.2018.3575] [PMID: 29568943]
[112]
Jin D, Wu X, Yu H, et al. Systematic analysis of lncRNAs, mRNAs, circRNAs and miRNAs in patients with postmenopausal osteoporosis. Am J Transl Res 2018; 10(5): 1498-510.
[PMID: 29887963]
[113]
Huang S, Zhu X, Xiao D, et al. LncRNA SNHG1 was down-regulated after menopause and participates in postmenopausal osteoporosis. Biosci Rep 2019; 39(11)BSR20190445
[http://dx.doi.org/10.1042/BSR20190445] [PMID: 31693735]
[114]
Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci 1992; 102(Pt 2): 341-51.
[PMID: 1400636]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy