Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Synthesis and Evaluation of Substituted Aryl Thiazoles With Antioxidant Potential as Gastro-sparing Anti-inflammatory Agents

Author(s): Akhil Bansal, Alka Bali* and Ajitesh Balaini

Volume 17, Issue 12, 2020

Page: [1566 - 1578] Pages: 13

DOI: 10.2174/1570180817999200706005247

Price: $65

Abstract

Background: NSAIDs are used as first-line drugs for the treatment of various inflammatory disorders. Chronic use of NSAIDs is known to be associated with gastrointestinal and renal toxicity. Local generation of reactive oxygen species finally resulting in cellular apoptosis is one of the accepted mechanisms for NSAID-induced toxicity.

Objective: The objective of the present study was to design and synthesize a series of 2-methane sulfonamido substituted arylthiazole derivatives by including structural features of combined antiulcer and anti-inflammatory activity utilizing as the structural core, thiazole nucleus with potential for antioxidant effect.

Methods: Compounds were designed based on three dimensional and field similarity studies. The synthesized compounds were evaluated for their anti-inflammatory activity in carrageenan-induced rat paw edema model. Rofecoxib and indomethacin were taken as standard drugs for comparison. The in vitro antioxidant activity was assessed in potassium ferricyanide reducing power (PFRAP) assay employing ascorbic acid as the standard drug.

Results: The compounds 6 and 7 showed good anti-inflammatory activity comparable to the standard group and were also non ulcerogenic at the test doses. Compounds 1-7 displayed varying degrees of reducing power in the PFRAP) assay and the methanesulphonamido derivatives 4-7 showed the highest antioxidant activity (EC50 values 3.7-5.1 μmol/ml vs ascorbic acid 7.4 μmol/ml). Theoretical ADME profiling of the compounds based on selected physicochemical properties showed excellent compliance with Lipinski’s rule.

Conclusion: A series of compounds have been designed and synthesized having dual antioxidant and anti-inflammatory activity with activities comparable to standard drugs.

Keywords: Anti-inflammatory activity, thiazole, Carrageenan-induced paw edema, docking, in silico, methanesulphonamide, antioxidant.

Graphical Abstract

[1]
Wongrakpanich, S.; Wongrakpanich, A.; Melhado, K.; Rangaswami, J. A comprehensive review of non-steroidal anti-inflammatory drug use in the elderly. Aging Dis., 2018, 9(1), 143-150.
[http://dx.doi.org/10.14336/AD.2017.0306] [PMID: 29392089]
[2]
Abdulla, A.; Adams, N.; Bone, M.; Elliott, A.M.; Gaffin, J.; Jones, D.; Knaggs, R.; Martin, D.; Sampson, L.; Schofield, P. British Geriatric Society. Guidance on the management of pain in older people. Age Ageing, 2013, 42(Suppl. 1), i1-i57.
[http://dx.doi.org/10.1093/ageing/afs199] [PMID: 23420266]
[3]
Rainsford, K.D. Anti-inflammatory drugs in the 21st century. Subcell. Biochem., 2007, 42, 3-27.
[http://dx.doi.org/10.1007/1-4020-5688-5_1] [PMID: 17612044]
[4]
Bennett, J.S.; Daugherty, A.; Herrington, D.; Greenland, P.; Roberts, H.; Taubert, K.A. The use of nonsteroidal anti-inflammatory drugs (NSAIDs): A science advisory from the American Heart Association. Circulation, 2005, 111(13), 1713-1716.
[http://dx.doi.org/10.1161/01.CIR.0000160005.90598.41] [PMID: 15781731]
[5]
Funk, C.D. Prostaglandins and leukotrienes: Advances in eicosanoid biology. Science, 2001, 294(5548), 1871-1875.
[http://dx.doi.org/10.1126/science.294.5548.1871] [PMID: 11729303]
[6]
Ricciotti, E.; FitzGerald, G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol., 2011, 31(5), 986-1000.
[http://dx.doi.org/10.1161/ATVBAHA.110.207449] [PMID: 21508345]
[7]
Breyer, R.M.; Bagdassarian, C.K.; Myers, S.A.; Breyer, M.D. Prostanoid receptors: Subtypes and signaling. Annu. Rev. Pharmacol. Toxicol., 2001, 41, 661-690.
[http://dx.doi.org/10.1146/annurev.pharmtox.41.1.661] [PMID: 11264472]
[8]
Matsuoka, T.; Hirata, M.; Tanaka, H.; Takahashi, Y.; Murata, T.; Kabashima, K.; Sugimoto, Y.; Kobayashi, T.; Ushikubi, F.; Aze, Y.; Eguchi, N.; Urade, Y.; Yoshida, N.; Kimura, K.; Mizoguchi, A.; Honda, Y.; Nagai, H.; Narumiya, S. Prostaglandin D2 as a mediator of allergic asthma. Science, 2000, 287(5460), 2013-2017.
[http://dx.doi.org/10.1126/science.287.5460.2013] [PMID: 10720327]
[9]
Blázovics, A.; Hagymási, K.; Prónai, L. [Cytokines, prostaglandins, nutritive and non-nuitritive factors in inflammatory bowel diseases] Orv. Hetil., 2004, 145(50), 2523-2529.
[PMID: 15662752]
[10]
Vonkeman, H.E.; van de Laar, M.A. Nonsteroidal anti-inflammatory drugs: Adverse effects and their prevention. Semin. Arthritis Rheum., 2010, 39(4), 294-312.
[http://dx.doi.org/10.1016/j.semarthrit.2008.08.001] [PMID: 18823646]
[11]
Arroyo, M.; Lanas, A. NSAIDs-induced gastrointestinal damage. Review Minerva Gastroenterol. Dietol., 2006, 52(3), 249-259. [Review]
[PMID: 16971869]
[12]
Eberhart, C.E.; Dubois, R.N. Eicosanoids and the gastrointestinal tract. Gastroenterology, 1995, 109(1), 285-301.
[http://dx.doi.org/10.1016/0016-5085(95)90296-1] [PMID: 7797026]
[13]
Sostres, C.; Gargallo, C.J.; Lanas, A. Nonsteroidal anti-inflammatory drugs and upper and lower gastrointestinal mucosal damage. Arthritis Res. Ther., 2013, 15(Suppl. 3), S3.
[http://dx.doi.org/10.1186/ar4175] [PMID: 24267289]
[14]
Lanas, A.; Sopeña, F. Nonsteroidal anti-inflammatory drugs and lower gastrointestinal complications. Gastroenterol. Clin. North Am., 2009, 38(2), 333-352.
[http://dx.doi.org/10.1016/j.gtc.2009.03.007] [PMID: 19446262]
[15]
Harirforoosh, S.; Asghar, W.; Jamali, F. Adverse effects of nonsteroidal antiinflammatory drugs: An update of gastrointestinal, cardiovascular and renal complications. J. Pharm. Pharm. Sci., 2013, 16(5), 821-847.
[http://dx.doi.org/10.18433/J3VW2F] [PMID: 24393558]
[16]
Yap, P.R.; Goh, K.L. Non-steroidal anti-inflammatory drugs (nsaids) induced dyspepsia. Curr. Pharm. Des., 2015, 21(35), 5073-5081.
[http://dx.doi.org/10.2174/1381612821666150915105738] [PMID: 26369685]
[17]
Ford, A.C.; Marwaha, A.; Sood, R.; Moayyedi, P. Global prevalence of, and risk factors for, uninvestigated dyspepsia: A meta-analysis. Gut, 2015, 64(7), 1049-1057.
[http://dx.doi.org/10.1136/gutjnl-2014-307843] [PMID: 25147201]
[18]
Lee, H.L.; Chua, S.S.; Mahadeva, S. Dyspepsia in non-steroidal anti-inflammatory drug users and the effect of preventive measures. J. Dig. Dis., 2018, 19(6), 342-349.
[http://dx.doi.org/10.1111/1751-2980.12607] [PMID: 29732728]
[19]
Lanas, A.; Hunt, R. Prevention of anti-inflammatory drug-induced gastrointestinal damage: benefits and risks of therapeutic strategies. Ann. Med., 2006, 38(6), 415-428.
[http://dx.doi.org/10.1080/07853890600925843] [PMID: 17008305]
[20]
Wolfe, F.; Anderson, J.; Burke, T.A.; Arguelles, L.M.; Pettitt, D. Gastroprotective therapy and risk of gastrointestinal ulcers: Risk reduction by COX-2 therapy. J. Rheumatol., 2002, 29(3), 467-473.
[PMID: 11908558]
[21]
Kiruthiga, N.; Alagumuthu, M.; Selvinthanuja, C.; Srinivasan, K.; Sivakumar, T. Molecular modelling, synthesis and evaluation of flavone and flavanone scaffolds as anti-inflammatory agents. Antiinflamm. Antiallergy Agents Med. Chem., 2020. Epub ahead of print
[http://dx.doi.org/10.2174/1871523019666200102112017] [PMID: 31899683]
[22]
Zarghi, A.; Kakhki, S. Design, Synthesis, and Biological Evaluation of New 2-Phenyl-4H-chromen-4-one Derivatives as Selective Cyclooxygenase-2 Inhibitors. Sci. Pharm., 2014, 83(1), 15-26.
[http://dx.doi.org/10.3797/scipharm.1407-20] [PMID: 26839798]
[23]
Arefi, H.; Naderi, N.; Shemirani, A.B.I.; Kiani Falavarjani, M.; Azami Movahed, M.; Zarghi, A. Design, synthesis, and biological evaluation of new 1,4-diarylazetidin-2-one derivatives (β-lactams) as selective cyclooxygenase-2 inhibitors. Arch. Pharm. (Weinheim), 2020, 353(3)e1900293
[http://dx.doi.org/10.1002/ardp.201900293] [PMID: 31917485]
[24]
Zarghi, A.; Sabakhi, I.; Topuzyan, V.; Hajimahdi, Z.; Daraie, B. Design, synthesis and biological evaluation of 5-oxo-1,4,5,6,7,8 hexahydroquinoline derivatives as selective cyclooxygenase-2 inhibitors. Iran. J. Pharm. Res., 2014, 13(Suppl.), 61-69.
[PMID: 24711830]
[25]
Gong, Y.; Huang, X.; Chen, M.; Xiong, L. Teprenone improves gastric mucosal injury and dyspeptic symptoms in long-term nonsteroidal anti-inflammatory drug users. J. Gastroenterol. Hepatol., 2019, 34(8), 1344-1350.
[http://dx.doi.org/10.1111/jgh.14614] [PMID: 30681185]
[26]
Umegaki, E.; Kuramoto, T.; Kojima, Y.; Nouda, S.; Ishida, K.; Takeuchi, T.; Inoue, T.; Tokioka, S.; Higuchi, K. Geranylgeranylacetone, a gastromucoprotective drug, protects against NSAID-induced esophageal, gastroduodenal and small intestinal mucosal injury in healthy subjects: A prospective randomized study involving a comparison with famotidine. Intern. Med., 2014, 53(4), 283-290.
[http://dx.doi.org/10.2169/internalmedicine.53.1572] [PMID: 24531083]
[27]
Paliwal, M. Sucheta; Ruchita; Jain, S.; Monika; Himanshu, Sucheta; Ruchita; Jain, S.; Monika; Himanshu. Synthesis and biological evaluation of mutual prodrugs of carboxylic group containing some non-steroidal anti-inflammatory drugs and propyphenazone. Curr. Drug Deliv., 2017, 14(8), 1213-1224.
[http://dx.doi.org/10.2174/1567201814666170213153509] [PMID: 28201966]
[28]
Sehajpal, S.; Prasad, D.N.; Singh, R.K. Prodrugs of non-steroidal anti-inflammatory drugs (NSAIDs): A long march towards synthesis of safer NSAIDs. Mini Rev. Med. Chem., 2018, 18(14), 1199-1219.
[http://dx.doi.org/10.2174/1389557518666180330112416] [PMID: 29600762]
[29]
Lanas, A.; Ferrandez, A. NSAID-induced gastrointestinal damage: Current clinical management and recommendations for prevention. Chin. J. Dig. Dis., 2006, 7(3), 127-133.
[http://dx.doi.org/10.1111/j.1443-9573.2006.00257.x] [PMID: 16808792]
[30]
Scheiman, J.M.; Hindley, C.E. Strategies to optimize treatment with NSAIDs in patients at risk for gastrointestinal and cardiovascular adverse events. Clin. Ther., 2010, 32(4), 667-677.
[http://dx.doi.org/10.1016/j.clinthera.2010.04.009] [PMID: 20435236]
[31]
Targownik, L.E.; Metge, C.J.; Leung, S.; Chateau, D.G. The relative efficacies of gastroprotective strategies in chronic users of nonsteroidal anti-inflammatory drugs. Gastroenterology, 2008, 134(4), 937-944.
[http://dx.doi.org/10.1053/j.gastro.2008.01.010] [PMID: 18294634]
[32]
Melcarne, L.; García-Iglesias, P.; Calvet, X. Management of NSAID-associated peptic ulcer disease. Expert Rev. Gastroenterol. Hepatol., 2016, 10(6), 723-733.
[http://dx.doi.org/10.1586/17474124.2016.1142872] [PMID: 26775657]
[33]
Spiegel, B.M.R.; Farid, M.; Dulai, G.S.; Gralnek, I.M.; Kanwal, F. Comparing rates of dyspepsia with Coxibs vs NSAID+PPI: A meta-analysis. Am. J. Med., 2006, 119(5), 448.e27-448.e36.
[http://dx.doi.org/10.1016/j.amjmed.2005.11.020] [PMID: 16651060]
[34]
Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal., 2014, 20(7), 1126-1167.
[http://dx.doi.org/10.1089/ars.2012.5149] [PMID: 23991888]
[35]
Ott, M.; Gogvadze, V.; Orrenius, S.; Zhivotovsky, B. Mitochondria, oxidative stress and cell death. Apoptosis, 2007, 12(5), 913-922.
[http://dx.doi.org/10.1007/s10495-007-0756-2] [PMID: 17453160]
[36]
Matsui, H.; Shimokawa, O.; Kaneko, T.; Nagano, Y.; Rai, K.; Hyodo, I. The pathophysiology of non-steroidal anti-inflammatory drug (NSAID)-induced mucosal injuries in stomach and small intestine. J. Clin. Biochem. Nutr., 2011, 48(2), 107-111.
[http://dx.doi.org/10.3164/jcbn.10-79] [PMID: 21373261]
[37]
Hickey, E.J.; Raje, R.R.; Reid, V.E.; Gross, S.M.; Ray, S.D. Diclofenac induced in vivo nephrotoxicity may involve oxidative stress-mediated massive genomic DNA fragmentation and apoptotic cell death. Free Radic. Biol. Med., 2001, 31(2), 139-152.
[http://dx.doi.org/10.1016/S0891-5849(01)00560-3] [PMID: 11440826]
[38]
Maity, P.; Bindu, S.; Dey, S.; Goyal, M.; Alam, A.; Pal, C.; Mitra, K.; Bandyopadhyay, U. Indomethacin, a non-steroidal anti-inflammatory drug, develops gastropathy by inducing reactive oxygen species-mediated mitochondrial pathology and associated apoptosis in gastric mucosa: A novel role of mitochondrial aconitase oxidation. J. Biol. Chem., 2009, 284(5), 3058-3068.
[http://dx.doi.org/10.1074/jbc.M805329200] [PMID: 19049974]
[39]
Basivireddy, J.; Jacob, M.; Pulimood, A.B.; Balasubramanian, K.A. Indomethacin-induced renal damage: Role of oxygen free radicals. Biochem. Pharmacol., 2004, 67(3), 587-599.
[http://dx.doi.org/10.1016/j.bcp.2003.09.023] [PMID: 15037210]
[40]
Kwiecien, S.; Jasnos, K.; Magierowski, M.; Sliwowski, Z.; Pajdo, R.; Brzozowski, B.; Mach, T.; Wojcik, D.; Brzozowski, T. Lipid peroxidation, reactive oxygen species and antioxidative factors in the pathogenesis of gastric mucosal lesions and mechanism of protection against oxidative stress - induced gastric injury. J. Physiol. Pharmacol., 2014, 65(5), 613-622.
[PMID: 25371520]
[41]
Yanaka, A. Contribution of NRF2 in gastrointestinal protection from oxidative injury. Curr. Pharm. Des., 2018, 24(18), 2023-2033.
[http://dx.doi.org/10.2174/1381612824666180522103103] [PMID: 29788877]
[42]
Dogné, J.M.; Supuran, C.T.; Pratico, D. Adverse cardiovascular effects of the coxibs. J. Med. Chem., 2005, 48(7), 2251-2257.
[http://dx.doi.org/10.1021/jm0402059] [PMID: 15801815]
[43]
Jiménez, M.D.; Martín, M.J.; Alarcón de la Lastra, C.; Bruseghini, L.; Esteras, A.; Herrerías, J.M.; Motilva, V. Role of L-arginine in ibuprofen-induced oxidative stress and neutrophil infiltration in gastric mucosa. Free Radic. Res., 2004, 38(9), 903-911.
[http://dx.doi.org/10.1080/10715760410001705168] [PMID: 15621707]
[44]
Kwiecień, S.; Brzozowski, T.; Konturek, P.C.; Pawlik, M.W.; Pawlik, W.W.; Kwiecień, N.; Konturek, S.J. Gastroprotection by pentoxyfilline against stress-induced gastric damage. Role of lipid peroxidation, antioxidizing enzymes and proinflammatory cytokines. J. Physiol. Pharmacol., 2004, 55(2), 337-355.
[PMID: 15213357]
[45]
Yanaka, A. Role of sulforaphane in protection of gastrointestinal tract against h. pylori and nsaid-induced oxidative stress. Curr. Pharm. Des., 2017, 23(27), 4066-4075.
[http://dx.doi.org/10.2174/1381612823666170207103943] [PMID: 28176666]
[46]
Kourounakis, P.N.; Tsiakitzis, K.; Kourounakis, A.P.; Galanakis, D. Reduction of gastrointestinal toxicity of NSAIDs via molecular modifications leading to antioxidant anti-inflammatory drugs. Toxicology, 2000, 144(1-3), 205-210.
[http://dx.doi.org/10.1016/S0300-483X(99)00208-5] [PMID: 10781889]
[47]
Sehajpal, S.; Prasad, D.N.; Singh, R.K. Novel ketoprofen-antioxidants mutual codrugs as safer nonsteroidal anti-inflammatory drugs: Synthesis, kinetic and pharmacological evaluation. Arch. Pharm. (Weinheim), 2019, 352(7)e1800339
[http://dx.doi.org/10.1002/ardp.201800339] [PMID: 31231875]
[48]
Ashraf, Z. Alamgeer; Kanwal, M.; Hassan, M.; Abdullah, S.; Waheed, M.; Ahsan, H.; Kim, S.J. Flurbiprofen-antioxidant mutual prodrugs as safer nonsteroidal anti-inflammatory drugs: synthesis, pharmacological investigation, and computational molecular modeling. Drug Des. Devel. Ther., 2016, 10, 2401-2419.
[http://dx.doi.org/10.2147/DDDT.S109318] [PMID: 27555750]
[49]
Barboza, K.R.M.; Coco, L.Z.; Alves, G.M.; Peters, B.; Vasquez, E.C.; Pereira, T.M.C.; Meyrelles, S.S.; Campagnaro, B.P. Gastroprotective effect of oral kefir on indomethacin-induced acute gastric lesions in mice: Impact on oxidative stress. Life Sci., 2018, 209, 370-376.
[http://dx.doi.org/10.1016/j.lfs.2018.08.035] [PMID: 30120965]
[50]
Geronikaki, A.A.; Pitta, E.P.; Liaras, K.S. Thiazoles and thiazolidinones as antioxidants. Curr. Med. Chem., 2013, 20(36), 4460-4480.
[http://dx.doi.org/10.2174/09298673113209990143] [PMID: 23834182]
[51]
Jaishree, V.; Naiknaware, R.S.; Sachin, J.; Ramesh, B. in vitro antioxidant properties of new thiazole derivatives. J. Saudi Chem. Soc., 2012, 16, 371-376.
[http://dx.doi.org/10.1016/j.jscs.2011.02.007]
[52]
Djukic, M.; Fesatidou, M.; Xenikakis, I.; Geronikaki, A.; Angelova, V.T.; Savic, V.; Pasic, M.; Krilovic, B.; Djukic, D.; Gobeljic, B.; Pavlica, M.; Djuric, A.; Stanojevic, I.; Vojvodic, D.; Saso, L. in vitro antioxidant activity of thiazolidinone derivatives of 1,3-thiazole and 1,3,4-thiadiazole. Chem. Biol. Interact., 2018, 286, 119-131.
[http://dx.doi.org/10.1016/j.cbi.2018.03.013] [PMID: 29574026]
[53]
Mohana, K.N.; Kumar, C.B.P. Synthesis and antioxidant activity of 2-amino-5-methylthiazol derivatives containing 1,3,4-oxadiazole-2-thiol moiety. ISRN Org. Chem., 2013.2013620718
[http://dx.doi.org/10.1155/2013/620718] [PMID: 24052865]
[54]
Lozynskyi, A.; Zasidko, V.; Atamanyuk, D.; Kaminskyy, D.; Derkach, H.; Karpenko, O.; Ogurtsov, V.; Kutsyk, R.; Lesyk, R. Synthesis, antioxidant and antimicrobial activities of novel thiopyrano[2,3-d]thiazoles based on aroylacrylic acids. Mol. Divers., 2017, 21(2), 427-436.
[http://dx.doi.org/10.1007/s11030-017-9737-8] [PMID: 28424934]
[55]
Kaddouri, Y.; Abrigach, F.; Yousfi, E.B.; El Kodadi, M.; Touzani, R. New thiazole, pyridine and pyrazole derivatives as antioxidant candidates: Synthesis, DFT calculations and molecular docking study. Heliyon, 2020, 6(1)e03185
[http://dx.doi.org/10.1016/j.heliyon.2020.e03185] [PMID: 31956713]
[56]
Kashid, G.A.; Singh, S.K.; Saravanan, J. Synthesis and QSAR study of novel thiazole moieties having antioxidant activity. Int. J. Pharm. Sci. Res., 2018, 9, 5363-5372.
[57]
Lozynskyi, A.V.; Kaminskyy, D.V.; Romanchyshyn, Kh.B.; Semenciv, N.G.; Ogurtsov, V.V.; Nektegayev, I.O.; Lesyk, R.B. Screening of antioxidant and anti-inflammatory activities among thiopyrano[2,3-d]thiazoles. Biopolymers Cell, 2015, 31, 131-137.
[http://dx.doi.org/10.7124/bc.0008D8]
[58]
Shih, M.H.; Ke, F.Y. Syntheses and evaluation of antioxidant activity of sydnonyl substituted thiazolidinone and thiazoline derivatives. Bioorg. Med. Chem., 2004, 12(17), 4633-4643.
[http://dx.doi.org/10.1016/j.bmc.2004.06.033] [PMID: 15358290]
[59]
Geronikaki, A.; Vicini, P.; Incerti, M.; Hadjipavlou-Litina, D. Thiazolyl and isothiazolyl azomethine derivatives with anti-inflammatory and antioxidant activities. Arzneimittelforschung, 2004, 54(9), 530-537.
[PMID: 15500199]
[60]
Sharma, R.N.; Xavier, F.P.; Vasu, K.K.; Chaturvedi, S.C.; Pancholi, S.S. Synthesis of 4-benzyl-1,3-thiazole derivatives as potential anti-inflammatory agents: an analogue-based drug design approach. J. Enzyme Inhib. Med. Chem., 2009, 24(3), 890-897.
[http://dx.doi.org/10.1080/14756360802519558] [PMID: 19469712]
[61]
Franklin, P.X.; Pillai, A.D.; Rathod, P.D.; Yerande, S.; Nivsarkar, M.; Padh, H.; Vasu, K.K.; Sudarsanam, V. 2-Amino-5-thiazolyl motif: A novel scaffold for designing anti-inflammatory agents of diverse structures. Eur. J. Med. Chem., 2008, 43(1), 129-134.
[http://dx.doi.org/10.1016/j.ejmech.2007.02.008] [PMID: 17467123]
[62]
Liaras, K.; Fesatidou, M.; Geronikaki, A. Thiazoles and thiazolidinones as COX/LOX inhibitors. Molecules, 2018, 23(3)E685
[http://dx.doi.org/10.3390/molecules23030685] [PMID: 29562646]
[63]
Mohareb, R.; Al-Omran, F.; Abdelaziz, M.; Ibrahim, R. Anti-inflammatory and anti-uncer activities of new fused thiazole 3 derivatives derived from 2-(2-oxo-2H-chromen-3-yl)thiazol-4(5H)-one. Acta Chim. Slov., 2017, 64(2), 349-364.
[http://dx.doi.org/10.17344/acsi.2017.3200] [PMID: 28621395]
[64]
Tapkir, A.S.; Chitlange, S.S.; Bhole, R.P. Discovery of thiazole based bis heterocyclic system for anti- inflammatory potential. Antiinflamm. Antiallergy Agents Med. Chem., 2017, 16(3), 175-192.
[http://dx.doi.org/10.2174/1871523016666171114165958] [PMID: 29141567]
[65]
Unsal-Tan, O.; Ozadali, K.; Piskin, K.; Balkan, A. Molecular modeling, synthesis and screening of some new 4-thiazolidinone derivatives with promising selective COX-2 inhibitory activity. Eur. J. Med. Chem., 2012, 57, 59-64.
[http://dx.doi.org/10.1016/j.ejmech.2012.08.046] [PMID: 23047224]
[66]
Omar, Y.M.; Abdu-Allah, H.H.M.; Abdel-Moty, S.G. Synthesis, biological evaluation and docking study of 1,3,4-thiadiazole-thiazolidinone hybrids as anti-inflammatory agents with dual inhibition of COX-2 and 15-LOX. Bioorg. Chem., 2018, 80, 461-471.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.036] [PMID: 29986191]
[67]
Eleftheriou, P.; Geronikaki, A.; Hadjipavlou-Litina, D.; Vicini, P.; Filz, O.; Filimonov, D.; Poroikov, V.; Chaudhaery, S.S.; Roy, K.K.; Saxena, A.K. Fragment-based design, docking, synthesis, biological evaluation and structure-activity relationships of 2-benzo/benzisothiazolimino-5-aryliden-4-thiazolidinones as cycloxygenase/lipoxygenase inhibitors. Eur. J. Med. Chem., 2012, 47(1), 111-124.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.029] [PMID: 22119153]
[68]
Euller-Ziegler, L.; Vélicitat, P.; Bluhmki, E.; Türck, D.; Scheuerer, S.; Combe, B. Meloxicam: A review of its pharmacokinetics, efficacy and tolerability following intramuscular administration. Inflamm. Res., 2001, 50(Suppl. 1), S5-S9.
[PMID: 11339521]
[69]
Ramachandran, S.; Poovi, G.; Dhanaraju, M.D. Evaluation of gastric and duodenal antiulcer activity of famotidine formulation in experimental animals. J. Pharmacol. Toxicol., 2011, 6, 189-195.
[http://dx.doi.org/10.3923/jpt.2011.189.195]
[70]
Abourehab, M.A.S.; Khaled, K.A.; Sarhan, H.A.A.; Ahmed, O.A.A. Evaluation of combined famotidine with quercetin for the treatment of peptic ulcer: In vivo animal study. Drug Des. Devel. Ther., 2015, 9, 2159-2169.
[PMID: 25926722]
[71]
Levine, L.R.; Cloud, M.L.; Enas, N.H. Nizatidine prevents peptic ulceration in high-risk patients taking nonsteroidal anti-inflammatory drugs. Arch. Intern. Med., 1993, 153(21), 2449-2454.
[http://dx.doi.org/10.1001/archinte.1993.00410210073008] [PMID: 8215749]
[72]
Maftei, C.V.; Fodor, E.; Jones, P.G.; Freytag, M.; Franz, M.H.; Kelter, G.; Fiebig, H.H.; Tamm, M.; Neda, I. N-heterocyclic carbenes (NHC) with 1,2,4-oxadiazole-substituents related to natural products: Synthesis, structure and potential antitumor activity of some corresponding gold(I) and silver(I) complexes. Eur. J. Med. Chem., 2015, 101, 431-441.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.053] [PMID: 26185007]
[73]
Maftei, C.V.; Fodor, E.; Jones, P.G.; Daniliuc, C.G.; Franz, M.H.; Kelter, G.; Fiebig, H.; Tamm, M.; Neda, I. Novel 1,2,4-oxadiazoles and trifluoromethylpyridines related to natural products: synthesis, structural analysis and investigation of their antitumor activity. Tetrahedron, 2016, 72, 1185-1199.
[http://dx.doi.org/10.1016/j.tet.2016.01.011]
[74]
Mihorianu, M.; Franz, M.H.; Jones, P.G.; Freytag, M.; Kelter, G.; Fiebig, H.; Tamm, M.; Neda, I. N-Heterocyclic carbenes derived from imidazo-[1,5-a]pyridines related to natural products: Synthesis, structure and potential biological activity of some corresponding gold(I) and silver(I) complexes. Appl. Organomet. Chem., 2016, 30(7), 581-589.
[http://dx.doi.org/10.1002/aoc.3474]
[75]
Cai, H.; Huang, X.; Xu, S.; Shen, H.; Zhang, P.; Huang, Y.; Jiang, J.; Sun, Y.; Jiang, B.; Wu, X.; Yao, H.; Xu, J. Discovery of novel hybrids of diaryl-1,2,4-triazoles and caffeic acid as dual inhibitors of cyclooxygenase-2 and 5-lipoxygenase for cancer therapy. Eur. J. Med. Chem., 2016, 108, 89-103.
[http://dx.doi.org/10.1016/j.ejmech.2015.11.013] [PMID: 26638042]
[76]
Ayati, A.; Emami, S.; Moghimi, S.; Foroumadi, A. Thiazole in the targeted anticancer drug discovery. Future Med. Chem., 2019, 11(15), 1929-1952.
[http://dx.doi.org/10.4155/fmc-2018-0416] [PMID: 31313595]
[77]
Jnaneshwari, S.; Hemshekhar, M.; Thushara, R.M.; Sundaram, M.S.; Santhosh, M.S.; Sunitha, K.; Shankar, R.L.; Kemparaju, K.; Girish, K.S. Sesamol ameliorates cyclophosphamide-induced hepatotoxicity by modulating oxidative stress and inflammatory mediators. Anticancer. Agents Med. Chem., 2014, 14(7), 975-983.
[http://dx.doi.org/10.2174/1871520613666131224123346] [PMID: 24372526]
[78]
Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proc. Soc. Exp. Biol. Med., 1962, 111, 544-547.
[http://dx.doi.org/10.3181/00379727-111-27849] [PMID: 14001233]
[79]
Vogel, H.G., Ed.; Drug Discovery and Evaluation: Pharmacological Assay, 3rd ed; Springer-Verlag: New York, 2008, pp. 1236-1237.
[http://dx.doi.org/10.1007/978-3-540-70995-4]
[80]
Tributino, J.L.M.; Duarte, C.D.; Corrêa, R.S.; Doriguetto, A.C.; Ellena, J.; Romeiro, N.C.; Castro, N.G.; Miranda, A.L.P.; Barreiro, E.J.; Fraga, C.A.M. Novel 6-methanesulfonamide-3,4-methylenedioxyphenyl-N-acylhydrazones: Orally effective anti-inflammatory drug candidates. Bioorg. Med. Chem., 2009, 17(3), 1125-1131.
[http://dx.doi.org/10.1016/j.bmc.2008.12.045] [PMID: 19135376]
[81]
Oyaizu, M. Studies on products of browning reactions: Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr., 1986, 44, 307-315.
[http://dx.doi.org/10.5264/eiyogakuzashi.44.307]
[82]
Bali, A.; Ohri, R.; Deb, P.K. Synthesis, evaluation and docking studies on 3-alkoxy-4-methanesulfonamido acetophenone derivatives as non ulcerogenic anti-inflammatory agents. Eur. J. Med. Chem., 2012, 49, 397-405.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.018] [PMID: 22318166]
[83]
Jawale, D.V.; Lingampalle, D.L.; Pratap, U.R.; Mane, R.A. One-pot synthesis of 2-aminothiazoles in PEG- 400. Chin. Chem. Lett., 2010, 21(4), 412-416.
[http://dx.doi.org/10.1016/j.cclet.2009.11.035]
[84]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy