Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Green Synthesis of Copper Oxide Nanoparticles using Cucumis Sativus (Cucumber) Extracts and their Bio-Physical and Biochemical Characterization for Cosmetic and Dermatologic Applications

Author(s): Monika Vats*, Shruti Bhardwaj and Arvind Chhabra*

Volume 21, Issue 4, 2021

Published on: 05 July, 2020

Page: [726 - 733] Pages: 8

DOI: 10.2174/1871530320666200705212107

Price: $65

conference banner
Abstract

Background & Objective: Nanoparticles are used in cosmetic and dermatologic products, due to better skin penetration properties. Incorporation of natural products exhibiting medicinal properties in nano-preparations could significantly improve the efficacy of these products and improve the quality of life without the side effects of synthetic formulations.

Methods: We here report the green synthesis of Copper Oxide nanoparticles, using Cucumber extract, and their detailed bio-physical and bio-chemical characterization.

Results: These Copper Oxide-Cucumber nanoparticles exhibit significant anti-bacterial and anti-fungal properties, Ultra Violet-radiation protection ability and reactive-oxygen species inhibition properties. Importantly, these nanoparticles do not exhibit significant cellular toxicity and, when incorporated in skin cream, exhibit skin rejuvenating properties.

Conclusion: Our findings have implications for nanoparticle-based cosmetics and dermatologic applications.

Keywords: Nanoparticles, nanotechnology, nano-cosmetics, skin cream, copper oxide, cucumis sativus, cucumber.

Graphical Abstract

[1]
Kaul, S.; Gulati, N.; Verma, D.; Mukherjee, S.; Nagaich, U. Role of nanotechnology in cosmeceuticals: a review of recent advances. J. Pharm. (Cairo), 2018, 20183420204
[http://dx.doi.org/10.1016/j.biomaterials.2015.10.044] [PMID: 29785318]
[2]
Ahir, M.; Bhattacharya, S.; Karmakar, S.; Mukhopadhyay, A.; Mukherjee, S.; Ghosh, S.; Chattopadhyay, S.; Patra, P.; Adhikary, A. Tailored-CuO-nanowire decorated with folic acid mediated coupling of the mitochondrial-ROS generation and miR425-PTEN axis in furnishing potent anti-cancer activity in human triple negative breast carcinoma cells. Biomaterials, 2016, 76, 115-132.
[http://dx.doi.org/10.1016/j.biomaterials.2015.10.044] [PMID: 26520043]
[3]
Lazary, A.; Weinberg, I.; Vatine, J.J.; Jefidoff, A.; Bardenstein, R.; Borkow, G.; Ohana, N. Reduction of healthcare-associated infections in a long-term care brain injury ward by replacing regular linens with biocidal copper oxide impregnated linens. Int. J. Infect. Dis., 2014, 24, 23-29.
[http://dx.doi.org/10.1016/j.ijid.2014.01.022] [PMID: 24614137]
[4]
Sarkar, J.; Chakraborty, N.; Chatterjee, A.; Bhattacharjee, A.; Dasgupta, D.; Acharya, K. Green synthesized copper oxide nanoparticles ameliorate defence and antioxidant enzymes in Lens culinaris. Nanomaterials (Basel), 2020, 10(2)E312
[http://dx.doi.org/10.3390/nano10020312] [PMID: 32059367]
[5]
Sukumar, S.; Rudrasenan, A.; Padmanabhan Nambiar, D. Green-synthesized rice-shaped copper oxide nanoparticles using Caesalpinia bonducella seed extract and their applications. ACS Omega, 2020, 5(2), 1040-1051.
[http://dx.doi.org/10.1021/acsomega.9b02857] [PMID: 31984260]
[6]
Dykes, P. Increase in skin surface elasticity in normal volunteer subjects following the use of copper oxide impregnated socks. Skin Res. Technol., 2015, 21(3), 272-277.
[http://dx.doi.org/10.1111/srt.12187] [PMID: 25130918]
[7]
Borkow, G.; Gabbay, J.; Lyakhovitsky, A.; Huszar, M. Improvement of facial skin characteristics using copper oxide containing pillowcases: a double-blind, placebo-controlled, parallel, randomized study. Int. J. Cosmet. Sci., 2009, 31(6), 437-443.
[http://dx.doi.org/10.1111/j.1468-2494.2009.00515.x] [PMID: 19467028]
[8]
Borkow, G. Using copper to improve the well-being of the skin. Curr. Chem. Biol., 2014, 8(2), 89-102.
[http://dx.doi.org/10.2174/2212796809666150227223857] [PMID: 26361585]
[9]
Grigore, M.E.; Biscu, E.R.; Holban, A.M.; Gestal, M.C.; Grumezescu, A.M. Methods of synthesis, properties and biomedical applications of CuO Nanoparticles. Pharmaceuticals (Basel), 2016, 9(4)E75
[http://dx.doi.org/10.3390/ph9040075] [PMID: 27916867]
[10]
Mukherjee, P.K.; Nema, N.K.; Maity, N.; Sarkar, B.K. Phytochemical and therapeutic potential of cucumber. Fitoterapia, 2013, 84, 227-236.
[http://dx.doi.org/10.1016/j.fitote.2012.10.003] [PMID: 23098877]
[11]
Akhtar, N.; Mehmood, A.; Khan, B.A.; Mahmood, T.; Muhammad, H.; Khan, S.; Saeed, T. Exploring cucumber extract for skin rejuvenation. Afr. J. Biotechnol., 2011, 10, 1206-1216.
[12]
Gandía-Herrero, F.; Jiménez, M.; Cabanes, J.; García-Carmona, F.; Escribano, J. Tyrosinase inhibitory activity of cucumber compounds: enzymes responsible for browning in cucumber. J. Agric. Food Chem., 2003, 51(26), 7764-7769.
[http://dx.doi.org/10.1021/jf030131u] [PMID: 14664542]
[13]
Lopes, L.B.; Speretta, F.F.; Bentley, M.V. Enhancement of skin penetration of vitamin K using monoolein-based liquid crystalline systems. Eur. J. Pharm. Sci., 2007, 32(3), 209-215.
[http://dx.doi.org/10.1016/j.ejps.2007.07.006] [PMID: 17900879]
[14]
Song, H.; Chen, J.; Staub, J.; Simon, P. QTL analyses of orange color and carotenoid content and mapping of carotenoid biosynthesis genes in cucumber (Cucumis sativus L.). Acta Hortic., 2010, (871), 607-614.
[http://dx.doi.org/10.17660/ActaHortic.2010.871.83]
[15]
Ruch, R.J.; Cheng, S.J.; Klaunig, J.E. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis, 1989, 10(6), 1003-1008.
[http://dx.doi.org/10.1093/carcin/10.6.1003] [PMID: 2470525]
[16]
Dey, R.K.; Ray, A.R. Synthesis, characterization, and blood compatibility of polyamidoamines copolymers. Biomaterials, 2003, 24(18), 2985-2993.
[http://dx.doi.org/10.1016/S0142-9612(03)00122-4] [PMID: 12895570]
[17]
Ahmed, S.; Beig, S. Ascorbic acid, carotenoids, total phenolic content and antioxidant activity of various genotypes of Brassica Oleracea encephala. J. Med. Biol. Sci., 2009, 3, 1-5.
[18]
Kothapalli, L.; Kamble, P. Formulation and evaluation of seed oils for their antioxidant activity and sun screening effect. Int. Res. J. Pharm., 2018, 9(7), 159-167.
[http://dx.doi.org/10.7897/2230-8407.097142]
[19]
Vogel, R.; Pal, A.K.; Jambhrunkar, S.; Patel, P.; Thakur, S.S.; Reátegui, E.; Parekh, H.S.; Saá, P.; Stassinopoulos, A.; Broom, M.F. High-resolution single particle zeta potential characterisation of biological nanoparticles using tunable resistive pulse sensing. Sci. Rep., 2017, 7(1), 17479.
[http://dx.doi.org/10.1038/s41598-017-14981-x] [PMID: 29234015]
[20]
Suganthi, K.S.; Rajan, K.S. Temperature induced changes in ZnO–water nanofluid: zeta potential, size distribution and viscosity profiles. Int. J. Heat Mass Transf., 2012, 55, 7969-7980.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.08.032]
[21]
Marsalek, R. Particle size and zeta potential of ZnO. APCBEE Procedia, 2014, 9, 13-17.
[http://dx.doi.org/10.1016/j.apcbee.2014.01.003]
[22]
Lambers, H.; Piessens, S.; Bloem, A.; Pronk, H.; Finkel, P. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int. J. Cosmet. Sci., 2006, 28(5), 359-370.
[http://dx.doi.org/10.1111/j.1467-2494.2006.00344.x] [PMID: 18489300]
[23]
Mahapatra, O.; Bhagat, M.; Gopalakrishnan, C.; Arunachalam, K.D. Ultrafine dispersed CuO nanoparticles and their antibacterial activity. J. Exp. Nanosci., 2008, 3(3), 185-193.
[http://dx.doi.org/10.1080/17458080802395460]
[24]
Abdulateef, S.A.; Matzafry, M.Z.; Omar, A.F.; Ahmed, N.M.; Azzez, S.A.; Ibrahim, I.M.; Al-Jumaili, B.E.B. Preparation of CuO nanoparticles by laser ablation in liquid AIP Conference Proceedings. 2016; 1733, pp. (2016)020035-020031..
[http://dx.doi.org/10.1063/1.4948853]
[25]
Yamaguchi, Y.; Brenner, M.; Hearing, V.J. The regulation of skin pigmentation. J. Biol. Chem., 2007, 282(38), 27557-27561.
[http://dx.doi.org/10.1074/jbc.R700026200] [PMID: 17635904]
[26]
Hwang, J.H.; Lee, B.M. Inhibitory effects of plant extracts on tyrosinase, L-DOPA oxidation, and melanin synthesis. J. Toxicol. Environ. Health A, 2007, 70(5), 393-407.
[http://dx.doi.org/10.1080/10937400600882871] [PMID: 17454565]
[27]
Donglikar, M.M.; Deore, S.L. Sunscreens: a review. Pharmacogn. J., 2016, 8(3), 171-175.
[http://dx.doi.org/10.5530/pj.2016.3.1]
[28]
Hamdy, S.; Haddadi, A.; Hung, R.W.; Lavasanifar, A. Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Adv. Drug Deliv. Rev., 2011, 63(10-11), 943-955.
[http://dx.doi.org/10.1016/j.addr.2011.05.021] [PMID: 21679733]
[29]
Lim, S.; Park, J.; Shim, M.K.; Um, W.; Yoon, H.Y.; Ryu, J.H.; Lim, D.K.; Kim, K. Recent advances and challenges of repurposing nanoparticle-based drug delivery systems to enhance cancer immunotherapy. Theranostics, 2019, 9(25), 7906-7923.
[http://dx.doi.org/10.7150/thno.38425] [PMID: 31695807]
[30]
Chhabra, A.; Mehrotra, S.; Chakraborty, N.G.; Mukherji, B.; Dorsky, D.I. Cross-presentation of a human tumor antigen delivered to dendritic cells by HSV VP22-mediated protein translocation. Eur. J. Immunol., 2004, 34(10), 2824-2833.
[http://dx.doi.org/10.1002/eji.200425192] [PMID: 15368298]
[31]
Chhabra, A.; Mukherji, B. Suppression of inducible CD4 regulatory cells by MHC class I-restricted human tumor epitope specific TCR engineered multifunctional CD4 T cells. Hum. Immunol., 2016, 77(10), 905-911.
[http://dx.doi.org/10.1016/j.humimm.2016.06.011] [PMID: 27320826]
[32]
Ray, S.; Chhabra, A.; Chakraborty, N.G.; Hegde, U.; Dorsky, D.I.; Chodon, T.; von Euw, E.; Comin-Anduix, B.; Koya, R.C.; Ribas, A.; Economou, J.S.; Rosenberg, S.A.; Mukherji, B.; Immunity, U-C-C-U-U.C.T.P.E. UCLA-CALTECH-CHLA-USC-UCONN consortium on translational program in engineered immunity. MHC-I-restricted melanoma antigen specific TCR-engineered human CD4+ T cells exhibit multifunctional effector and helper responses, in vitro. Clin. Immunol., 2010, 136(3), 338-347.
[http://dx.doi.org/10.1016/j.clim.2010.04.013] [PMID: 20547105]
[33]
Chhabra, A.; Yang, L.; Wang, P.; Comin-Anduix, B.; Das, R.; Chakraborty, N.G.; Ray, S.; Mehrotra, S.; Yang, H.; Hardee, C.L.; Hollis, R.; Dorsky, D.I.; Koya, R.; Kohn, D.B.; Ribas, A.; Economou, J.S.; Baltimore, D.; Mukherji, B. CD4+CD25- T cells transduced to express MHC class I-restricted epitope-specific TCR synthesize Th1 cytokines and exhibit MHC class I-restricted cytolytic effector function in a human melanoma model. J. Immunol., 2008, 181(2), 1063-1070.
[http://dx.doi.org/10.4049/jimmunol.181.2.1063] [PMID: 18606658]
[34]
Chhabra, A.; Chakraborty, N.G.; Mukherji, B. Silencing of endogenous IL-10 in human dendritic cells leads to the generation of an improved CTL response against human melanoma associated antigenic epitope, MART-1 27-35. Clin. Immunol., 2008, 126(3), 251-259.
[http://dx.doi.org/10.1016/j.clim.2007.11.011] [PMID: 18249038]
[35]
Chhabra, A.; Chen, I.P.; Batra, D. Human dendritic cell-derived induced pluripotent stem cell lines are not immunogenic. J. Immunol., 2017, 198(5), 1875-1886.
[http://dx.doi.org/10.4049/jimmunol.1601676] [PMID: 28115528]
[36]
Zhuang, J.; Holay, M.; Park, J.H.; Fang, R.H.; Zhang, J.; Zhang, L. Nanoparticle delivery of immunostimulatory agents for cancer immunotherapy. Theranostics, 2019, 9(25), 7826-7848.
[http://dx.doi.org/10.7150/thno.37216] [PMID: 31695803]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy