Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Review Article

Introduction of Advanced Methods for Structure-based Drug Discovery

Author(s): Bilal Shaker, Kha Mong Tran, Chanjin Jung and Dokyun Na*

Volume 16, Issue 3, 2021

Published on: 03 July, 2020

Page: [351 - 363] Pages: 13

DOI: 10.2174/1574893615999200703113200

Price: $65

Abstract

Structure-based drug discovery has become a promising and efficient approach for identifying novel and potent drug candidates with less time and cost than conventional drug discovery approaches. It has been widely used in the pharmaceutical industry since it uses the 3D structure of biological protein targets and thereby allows us to understand the molecular basis of diseases. For the virtual identification of drug candidates based on structure, there are a few steps for protein and compound preparations to obtain accurate results. In this review, the software and webtools for the preparation and structure-based simulation are introduced. In addition, recent improvements in structure-based virtual screening, target library designing for virtual screening, docking, scoring, and post-processing of top hits are also introduced.

Keywords: Structure-based drug discovery, virtual screening, protein preparation, binding site identification, compound library preparation, docking and scoring.

Next »
Graphical Abstract

[1]
Myers S, Baker A. Drug discovery--an operating model for a new era. Nat Biotechnol 2001; 19(8): 727-30.
[http://dx.doi.org/10.1038/90765] [PMID: 11479559]
[2]
DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econ 2003; 22(2): 151-85.
[http://dx.doi.org/10.1016/S0167-6296(02)00126-1] [PMID: 12606142]
[3]
Lahana R. How many leads from HTS? Drug Discov Today 1999; 4(10): 447-8.
[http://dx.doi.org/10.1016/S1359-6446(99)01393-8] [PMID: 10481138]
[4]
Lobanov V. Using artificial neural networks to drive virtual screening of combinatorial libraries. Drug Discov Today Biosilico 2004; 2(4): 149-56.
[http://dx.doi.org/10.1016/S1741-8364(04)02402-3]
[5]
Burbidge R, Trotter M, Buxton B, Holden S. Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput Chem 2001; 26(1): 5-14.
[http://dx.doi.org/10.1016/S0097-8485(01)00094-8] [PMID: 11765851]
[6]
Lavecchia A, Di Giovanni C. Virtual screening strategies in drug discovery: a critical review. Curr Med Chem 2013; 20(23): 2839-60.
[http://dx.doi.org/10.2174/09298673113209990001] [PMID: 23651302]
[7]
Jorgensen WL. The many roles of computation in drug discovery. Science 2004; 303(5665): 1813-8.
[http://dx.doi.org/10.1126/science.1096361] [PMID: 15031495]
[8]
Blundell TL. Structure-based drug design. Nature 1996; 384(6604)(Suppl.): 23-6.
[PMID: 8895597]
[9]
Rizzo RC, Wang D-P, Tirado-Rives J, Jorgensen WL. Validation of a model for the complex of HIV-1 reverse transcriptase with sustiva through computation of resistance profiles. J Am Chem Soc 2000; 122(51): 12898-900.
[http://dx.doi.org/10.1021/ja003113r]
[10]
Rosenfeld RJ, Goodsell DS, Musah RA, Morris GM, Goodin DB, Olson AJ. Automated docking of ligands to an artificial active site: augmenting crystallographic analysis with computer modeling. J Comput Aided Mol Des 2003; 17(8): 525-36.
[http://dx.doi.org/10.1023/B:JCAM.0000004604.87558.02] [PMID: 14703123]
[11]
Benod C, Carlsson J, Uthayaruban R, et al. Structure-based discovery of antagonists of nuclear receptor LRH-1. J Biol Chem 2013; 288(27): 19830-44.
[http://dx.doi.org/10.1074/jbc.M112.411686] [PMID: 23667258]
[12]
Cheng T, Li Q, Zhou Z, Wang Y, Bryant SH. Structure-based virtual screening for drug discovery: a problem-centric review. AAPS J 2012; 14(1): 133-41.
[http://dx.doi.org/10.1208/s12248-012-9322-0] [PMID: 22281989]
[13]
Grover S, Apushkin MA, Fishman GA. Topical dorzolamide for the treatment of cystoid macular edema in patients with retinitis pigmentosa. Am J Ophthalmol 2006; 141(5): 850-8.
[http://dx.doi.org/10.1016/j.ajo.2005.12.030] [PMID: 16546110]
[14]
Von Itzstein M, Wu WY, Kok GB, et al. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 1993; 363(6428): 418-23.
[http://dx.doi.org/10.1038/363418a0] [PMID: 8502295]
[15]
Terrett NK, Bell AS, Brown D, Ellis P. Sildenafil (VIAGRATM), a potent and selective inhibitor of type 5 cGMP phosphodiesterase with utility for the treatment of male erectile dysfunction. Bioorg Med Chem Lett 1996; 6(15): 1819-24.
[http://dx.doi.org/10.1016/0960-894X(96)00323-X]
[16]
Goodgame JC, Pottage JC, Jablonowski H, et al. Amprenavir in combination with lamivudine and zidovudine versus lamivudine and zidovudine alone in HIV- infected antiretroviral-naive adults. Antivir Ther 2000; 5(3): 215-26.
[PMID: 11075942 ]
[17]
Cavasotto CN, Orry AJ, Andrew J. Ligand docking and structure-based virtual screening in drug discovery. Curr Top Med Chem 2007; 7(10): 1006-14.
[http://dx.doi.org/10.2174/156802607780906753] [PMID: 17508934]
[18]
Jalaie M, Shanmugasundaram V. Virtual screening: are we there yet? Mini Rev Med Chem 2006; 6(10): 1159-67.
[http://dx.doi.org/10.2174/138955706778560157] [PMID: 17073716]
[19]
Zhong S, Macias AT, MacKerell AD Jr. Computational identification of inhibitors of protein-protein interactions. Curr Top Med Chem 2007; 7(1): 63-82.
[http://dx.doi.org/10.2174/156802607779318334] [PMID: 17266596]
[20]
Cavasotto CN, Ortiz MA, Abagyan RA, Piedrafita FJ. In silico identification of novel EGFR inhibitors with antiproliferative activity against cancer cells. Bioorg Med Chem Lett 2006; 16(7): 1969-74.
[http://dx.doi.org/10.1016/j.bmcl.2005.12.067] [PMID: 16413185]
[21]
Cozza G, Bonvini P, Zorzi E, et al. Identification of ellagic acid as potent inhibitor of protein kinase CK2: a successful example of a virtual screening application. J Med Chem 2006; 49(8): 2363-6.
[http://dx.doi.org/10.1021/jm060112m] [PMID: 16610779]
[22]
Aradi I, Érdi P. Computational neuropharmacology: dynamical approaches in drug discovery. Trends Pharmacol Sci 2006; 27(5): 240-3.
[http://dx.doi.org/10.1016/j.tips.2006.03.004] [PMID: 16600388]
[23]
Klebe G. Virtual ligand screening: strategies, perspectives and limitations. Drug Discov Today 2006; 11(13-14): 580-94.
[http://dx.doi.org/10.1016/j.drudis.2006.05.012] [PMID: 16793526]
[24]
Reddy AS, Pati SP, Kumar PP, Pradeep HN, Sastry GN. Virtual screening in drug discovery -- a computational perspective. Curr Protein Pept Sci 2007; 8(4): 329-51.
[http://dx.doi.org/10.2174/138920307781369427] [PMID: 17696867]
[25]
Koeppen H. Virtual screening-what does it give us? Curr Opin Drug Discov Devel 2009; 12(3): 397-407.
[PMID: 19396741]
[26]
Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 2013; 27(3): 221-34.
[http://dx.doi.org/10.1007/s10822-013-9644-8] [PMID: 23579614]
[27]
Pitt WR, Calmiano MD. Kroeplien, et al Structure-based virtual screening for novel ligands Protein-Ligand Interactions. Springer 2013; pp. 501-19.
[http://dx.doi.org/10.1007/978-1-62703-398-5_19]
[28]
Olsson MH, Søndergaard CR, Rostkowski M, Jensen JH. PROPKA3: consistent treatment of internal and surface residues in empirical pK(a) predictions. J Chem Theory Comput 2011; 7(2): 525-37.
[http://dx.doi.org/10.1021/ct100578z] [PMID: 26596171]
[29]
Shelley JC, Cholleti A, Frye LL, Greenwood JR, Timlin MR, Uchimaya M. Epik: a software program for pK(a) prediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des 2007; 21(12): 681-91.
[http://dx.doi.org/10.1007/s10822-007-9133-z] [PMID: 17899391]
[30]
Anandakrishnan R, Aguilar B, Onufriev A V . . H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res 2012; 40(Web Server issue): W537-41..
[http://dx.doi.org/10.1093/nar/gks375] [PMID: 22570416]
[31]
Bietz S, Urbaczek S, Schulz B, Rarey M. Protoss: a holistic approach to predict tautomers and protonation states in protein-ligand complexes. J Cheminform 2014; 6(1): 1-12.
[http://dx.doi.org/10.1186/1758-2946-6-12] [PMID: 24694216]
[32]
Ten Brink T, Exner TE. pK(a) based protonation states and microspecies for protein-ligand docking. J Comput Aided Mol Des 2010; 24(11): 935-42.
[http://dx.doi.org/10.1007/s10822-010-9385-x] [PMID: 20882397]
[33]
Bhattacharya D, Nowotny J, Cao R, Cheng J. 3Drefine: an interactive web server for efficient protein structure refinement. Nucleic Acids Res 2016; 44(W1)W406-9
[http://dx.doi.org/10.1093/nar/gkw336] [PMID: 2713137]
[34]
Dolinsky TJ, Czodrowski P, Li H, et al. PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations Nucleic Acids Res 2007; 35(Web Server issue)(Suppl. 2): W522-5..
[http://dx.doi.org/10.1093/nar/gkm276 ] [PMID: 17488841]
[35]
Fusani L, Wall I, Palmer D, Cortes A. Optimal water networks in protein cavities with GAsol and 3D-RISM. Bioinformatics 2018; 34(11): 1947-8.
[http://dx.doi.org/10.1093/bioinformatics/bty024] [PMID: 29346514]
[36]
Hu B, Lill MA. WATsite: hydration site prediction program with PyMOL interface. J Comput Chem 2014; 35(16): 1255-60.
[http://dx.doi.org/10.1002/jcc.23616] [PMID: 24752524]
[37]
Rashin AA, Bukatin MA. Continuum based calculations of hydration entropies and the hydrophobic effect. J Phys Chem 1991; 95(8): 2942-4.
[http://dx.doi.org/10.1021/j100161a002]
[38]
Morozenko A, Stuchebrukhov AA. Dowser++, a new method of hydrating protein structures. Proteins 2016; 84(10): 1347-57.
[http://dx.doi.org/10.1002/prot.25081] [PMID: 27273373]
[39]
Sridhar A, Ross GA, Biggin PC. Waterdock 2.0: Water placement prediction for Holo-structures with a pymol plugin. PLoS One 2017; 12(2): 1347-57.
[http://dx.doi.org/10.1371/journal.pone.0172743] [PMID: 28235019]
[40]
Maestro PPW. Schrödinger LLC. New York 2012.
[41]
Robillard DE, Mpangase PT, Hazelhurst S, Dehne F. SpeeDB: fast structural protein searches. Bioinformatics 2015; 31(18): 3027-34.
[http://dx.doi.org/10.1093/bioinformatics/btv274] [PMID: 25979473]
[42]
Schaduangrat N, Lampa S, Simeon S, et al. Towards reproducible computational drug discovery. J Cheminform 2020; 12(1): 1-9.
[http://dx.doi.org/10.1186/s13321-020-0408-x]
[43]
Sharmar S, Garg I, Kumar B, Ashraf MZ. Comparative analysis of blind docking reproducibility. Res J Life Sci Bioinfor Pharm Chem Sci 2018; 4(3): 211-22.
[44]
Capra JA, Singh M. Predicting functionally important residues from sequence conservation. Bioinformatics 2007; 23(15): 1875-82.
[http://dx.doi.org/10.1093/bioinformatics/btm270] [PMID: 17519246]
[45]
Ghersi D, Sanchez R. Beyond structural genomics: computational approaches for the identification of ligand binding sites in protein structures. J Struct Funct Genomics 2011; 12(2): 109-17.
[http://dx.doi.org/10.1007/s10969-011-9110-6] [PMID: 21537951]
[46]
Halgren TA. Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model 2009; 49(2): 377-89.
[http://dx.doi.org/10.1021/ci800324m] [PMID: 19434839]
[47]
Ngan CH, Bohnuud T, Mottarella SE, et al. FTMAP: extended protein mapping with user-selected probe molecules Nucleic Acids Res 2012; 40(Web Server issue): W271-5
[http://dx.doi.org/10.1093/nar/gks441] [PMID: 22589414]
[48]
Schmidtke P, Bidon-Chanal A, Luque FJ, Barril X. MDpocket: open-source cavity detection and characterization on molecular dynamics trajectories. Bioinformatics 2011; 27(23): 3276-85.
[http://dx.doi.org/10.1093/bioinformatics/btr550] [PMID: 21967761]
[49]
Laurie AT, Jackson RM. Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 2005; 21(9): 1908-16.
[http://dx.doi.org/10.1093/bioinformatics/bti315] [PMID: 15701681]
[50]
Doppelt-Azeroual O, Delfaud F, Moriaud F, de Brevern AG. Fast and automated functional classification with MED-SuMo: an application on purine-binding proteins. Protein Sci 2010; 19(4): 847-67.
[http://dx.doi.org/10.1002/pro.364] [PMID: 20162627]
[51]
Hernandez M, Ghersi D, Sanchez R. SITEHOUND-web: a server for ligand binding site identification in protein structures. Nucleic Acids Res 2009; 37(Web Server issue)(Suppl. 2): W413-16..
[http://dx.doi.org/10.1093/nar/gkp281] [PMID: 19398430]
[52]
Truszkowski A, Jayaseelan KV, Neumann S, Willighagen EL, Zielesny A, Steinbeck C. New developments on the cheminformatics open workflow environment CDK-Taverna. J Cheminform 2011; 3(1): 1-10.
[http://dx.doi.org/10.1186/1758-2946-3-54] [PMID: 22166170]
[53]
Lazaridis T. Inhomogeneous fluid approach to solvation thermodynamics. 2. applications to simple fluids. J Phys Chem B 1998; 102(18): 3542-50.
[http://dx.doi.org/10.1021/jp972358w]
[54]
Michel J, Tirado-Rives J, Jorgensen WL. Prediction of the water content in protein binding sites. J Phys Chem B 2009; 113(40): 13337-46.
[http://dx.doi.org/10.1021/jp9047456] [PMID: 19754086]
[55]
WaterMap. New York: S., LLC . 2014.
[56]
Kovalenko A. Three-dimensional RISM theory for molecular liquids and solid-liquid interfaces Molecular theory of solvation. Springer 2004; pp. 169-75.
[http://dx.doi.org/10.1007/1-4020-2590-4_4]
[57]
Grove LE, Hall DR, Beglov D, Vajda S, Kozakov D. FTFlex: accounting for binding site flexibility to improve fragment-based identification of druggable hot spots. Bioinformatics 2013; 29(9): 1218-9.
[http://dx.doi.org/10.1093/bioinformatics/btt102] [PMID: 23476022]
[58]
Seco J, Luque FJ, Barril X. Binding site detection and druggability index from first principles. J Med Chem 2009; 52(8): 2363-71.
[http://dx.doi.org/10.1021/jm801385d]] [PMID: 19296650]
[59]
Le Guilloux V, Schmidtke P, Tuffery P. Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics 2009; 10(1): 1-11.
[http://dx.doi.org/10.1186/1471-2105-10-168] [PMID: 19486540]
[60]
Song CM, Bernardo PH, Chai CL, Tong JC. CLEVER: pipeline for designing in silico chemical libraries. J Mol Graph Model 2009; 27(5): 578-83.
[http://dx.doi.org/10.1016/j.jmgm.2008.09.009] [PMID: 18986817]
[61]
Douguet D. e-LEA3D: a computational-aided drug design web server. Nucleic Acids Res 2010; 38(Web Server issue)(Suppl. 2): W615-21..
[http://dx.doi.org/10.1093/nar/gkq322 ] [PMID: 20444867]
[62]
Lagorce D, Bouslama L, Becot J, Miteva MA, Villoutreix BO. FAF-Drugs4: free ADME-tox filtering computations for chemical biology and early stages drug discovery. Bioinformatics 2017; 33(22): 3658-60.
[http://dx.doi.org/10.1093/bioinformatics/btx491] [PMID: 28961788]
[63]
Athanasiadis E, Cournia Z, Spyrou G. ChemBioServer: a web- based pipeline for filtering, clustering and visualization of chemical compounds used in drug discovery. Bioinformatics 2012; 28(22): 3002-3.
[http://dx.doi.org/10.1093/bioinformatics/bts551] [PMID: 22962344]
[64]
Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 2009; 30(16): 2785-91.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[65]
Vlachakis D, Tsagrasoulis D, Megalooikonomou V, Kossida S. Introducing Drugster: a comprehensive and fully integrated drug design, lead and structure optimization toolkit. Bioinformatics 2013; 29(1): 126-8.
[http://dx.doi.org/10.1093/bioinformatics/bts637] [PMID: 23104887]
[66]
Ewing TJ, Makino S, Skillman AG, Kuntz ID. DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des 2001; 15(5): 411-28.
[http://dx.doi.org/10.1023/A:1011115820450] [PMID: 11394736]
[67]
Zavodszky MI, Sanschagrin PC, Korde RS, Kuhn LA. Distilling the essential features of a protein surface for improving protein-ligand docking, scoring, and virtual screening. J Comput Aided Mol Des 2002; 16(12): 883-902.
[http://dx.doi.org/10.1023/A:1023866311551] [PMID: 12825621]
[68]
Lyskov S, Chou FC, Conchúir SÓ, et al. Serverification of molecular modeling applications: the Rosetta Online Server that Includes Everyone (ROSIE). PLoS One 2013; 8(5)e63906
[http://dx.doi.org/10.1371/journal.pone.0063906] [PMID: 23717507]
[69]
Ouyang X, Zhou S, Su CT, Ge Z, Li R, Kwoh CK. CovalentDock: automated covalent docking with parameterized covalent linkage energy estimation and molecular geometry constraints. J Comput Chem 2013; 34(4): 326-36.
[http://dx.doi.org/10.1002/jcc.23136] [PMID: 23034731]
[70]
Lill MA, Danielson ML. Computer-aided drug design platform using PyMOL. J Comput Aided Mol Des 2011; 25(1): 13-9.
[http://dx.doi.org/10.1007/s10822-010-9395-8] [PMID: 21053052]
[71]
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001; 46(1-3): 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[72]
Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 2002; 45(12): 2615-23.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[73]
Congreve M, Carr R, Murray C, Jhoti HA. ‘rule of three’ for fragment-based lead discovery? Drug Discov Today 2003; 8(19): 876-7.
[http://dx.doi.org/10.1016/S1359-6446(03)02831-9] [PMID: 14554012]
[74]
Hughes JD, Blagg J, Price DA, et al. Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg Med Chem Lett 2008; 18(17): 4872-5.
[http://dx.doi.org/10.1016/j.bmcl.2008.07.071] [PMID: 18691886]
[75]
Di L, Kerns EH. Drug-like properties: concepts, structure design and methods from ADME to toxicity optimization. Academic press 2015.
[76]
Blagg J. Structure–activity relationships for in vitro and in vivo toxicity. Annu Rep Med Chem 2006; 41: 353-68.
[http://dx.doi.org/10.1016/S0065-7743(06)41024-1]
[77]
Baell JB, Nissink JWM. Seven Year Itch: Pan-Assay Interference Compounds (PAINS) in 2017-Utility and Limitations. ACS Chem Biol 2018; 13(1): 36-44.
[http://dx.doi.org/10.1021/acschembio.7b00903] [PMID: 29202222]
[78]
Metz JT, Huth JR, Hajduk PJ. Enhancement of chemical rules for predicting compound reactivity towards protein thiol groups. J Comput Aided Mol Des 2007; 21(1-3): 139-44.
[http://dx.doi.org/10.1007/s10822-007-9109-z] [PMID: 17340041]
[79]
Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017; 7(1): 1-13.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[80]
Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res 2018; 46(W1)W257-63
[http://dx.doi.org/10.1093/nar/gky318] [PMID: 29718510]
[81]
Gola J, Obrezanova O, Champness E, Segall M. ADMET property prediction: the state of the art and current challenges. QSAR Comb Sci 2006; 25(12): 1172-80.
[http://dx.doi.org/10.1002/qsar.200610093]
[82]
Lee SK, Chang GS, Lee IH, et al. The PreADME: Pc-based program for batch prediction of adme properties. EuroQSAR 2004; 9: 5-10.
[83]
Lagorce D, Sperandio O, Galons H, Miteva MA, Villoutreix BO. FAF-Drugs2: free ADME/tox filtering tool to assist drug discovery and chemical biology projects. BMC Bioinformatics 2008; 9(1): 1-9.
[http://dx.doi.org/10.1186/1471-2105-9-396] [PMID: 18816385]
[84]
Lagorce D, Maupetit J, Baell J, et al. The FAF-Drugs2 server: a multistep engine to prepare electronic chemical compound collections. Bioinformatics 2011; 27(14): 2018-20.
[http://dx.doi.org/10.1093/bioinformatics/btr333] [PMID: 21636592]
[85]
Kalliokoski T, Salo HS, Lahtela-Kakkonen M, Poso A. The effect of ligand-based tautomer and protomer prediction on structure-based virtual screening. J Chem Inf Model 2009; 49(12): 2742-8.
[http://dx.doi.org/10.1021/ci900364w] [PMID: 19928753]
[86]
Sadowski J, Rudolph C, Gasteiger J. The generation of 3D models of host-guest complexes. Anal Chim Acta 1992; 265(2): 233-41.
[http://dx.doi.org/10.1016/0003-2670(92)85029-6]
[87]
LigPrep. New York, NY: S., LLC 2013.
[88]
CCGI. M Molecular Operating Environment (MOE), 201308. Montreal: Chemical Computing Group Inc. 2016.
[89]
BIOVIA. DS BIOVIA Workbook, BIOVIA Pipeline Pilot, Release 2017. San Diego, CA, USA: Dassault Systèmes 2017.
[90]
Laxmi D, Priyadarshy S. HyperChem 6.03. Biotechnol Softw Internet Rep 2002; 3(1): 5-9.
[http://dx.doi.org/10.1089/152791602317250351]
[91]
Truchon J-F, Bayly CI. GLARE: a new approach for filtering large reagent lists in combinatorial library design using product properties. J Chem Inf Model 2006; 46(4): 1536-48.
[http://dx.doi.org/10.1021/ci0504871] [PMID: 16859286]
[92]
Wirth M, Zoete V, Michielin O, Sauer WH. SwissBioisostere: a database of molecular replacements for ligand design. Nucleic Acids Res 2013; 41(Database issue): D1137-43.
[http://dx.doi.org/10.1093/nar/gks1059] [PMID: 23161688]
[93]
Weber J, Achenbach J, Moser D, Proschak E. VAMMPIRE: a matched molecular pairs database for structure-based drug design and optimization. J Med Chem 2013; 56(12): 5203-7.
[94]
Tiwari A, Sekhar AK. Workflow based framework for life science informatics. Comput Biol Chem 2007; 31(5-6): 305-19.
[http://dx.doi.org/10.1016/j.compbiolchem.2007.08.000] [PMID: 17931570]
[95]
Vilar S, Cozza G, Moro S. Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular docking to drug discovery. Curr Top Med Chem 2008; 8(18): 1555-72.
[http://dx.doi.org/10.2174/156802608786786624] [PMID: 19075767]
[96]
Baell JB. Broad coverage of commercially available lead-like screening space with fewer than 350,000 compounds. J Chem Inf Model 2013; 53(1): 39-55.
[http://dx.doi.org/10.1021/ci300461a] [PMID: 23198812]
[97]
Moustakas DT, Lang PT, Pegg S, et al. Development and validation of a modular, extensible docking program: DOCK 5. J Comput Aided Mol Des 2006; 20(10-11): 601-19.
[http://dx.doi.org/10.1007/s10822-006-9060-4] [PMID: 17149653]
[98]
Vavra O, Filipovic J, Plhak J, et al. CaverDock: a molecular docking-based tool to analyse ligand transport through protein tunnels and channels. Bioinformatics 2019; 35(23): 4986-93.
[http://dx.doi.org/10.1093/bioinformatics/btz386] [PMID: 31077297]
[99]
Rarey M, Kramer B, Lengauer T, Klebe G. A fast flexible docking method using an incremental construction algorithm. J Mol Biol 1996; 261(3): 470-89.
[http://dx.doi.org/10.1006/jmbi.1996.0477] [PMID: 8780787]
[100]
Friesner RA, Banks JL, Murphy RB, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 2004; 47(7): 1739-49.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]
[101]
Jain AN. Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem 2003; 46(4): 499-511.
[http://dx.doi.org/10.1021/jm020406h] [PMID: 12570372]
[102]
Abagyan R, Totrov M, Kuznetsov D. ICM-a new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. J Comput Chem 1994; 15(5): 488-506.
[http://dx.doi.org/10.1002/jcc.540150503]
[103]
Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking. J Mol Biol 1997; 267(3): 727-48.
[http://dx.doi.org/10.1006/jmbi.1996.0897] [PMID: 9126849]
[104]
Gkeka P, Eleftheratos S, Kolocouris A, Cournia Z. Free energy calculations reveal the origin of binding preference for aminoadamantane blockers of influenza A/M2TM pore. J Chem Theory Comput 2013; 9(2): 1272-81.
[http://dx.doi.org/10.1021/ct300899n] [PMID: 26588768]
[105]
Zilian D, Sotriffer CA. SFCscore(RF): a random forest-based scoring function for improved affinity prediction of protein-ligand complexes. J Chem Inf Model 2013; 53(8): 1923-33.
[http://dx.doi.org/10.1021/ci400120b] [PMID: 23705795]
[106]
Schneider N, Hindle S, Lange G, et al. Substantial improvements in large-scale redocking and screening using the novel HYDE scoring function. J Comput Aided Mol Des 2012; 26(6): 701-23.
[http://dx.doi.org/10.1007/s10822-011-9531-0] [PMID: 22203423]
[107]
Cross JB, Thompson DC, Rai BK, et al. Comparison of several molecular docking programs: pose prediction and virtual screening accuracy. J Chem Inf Model 2009; 49(6): 1455-74.
[http://dx.doi.org/10.1021/ci900056c] [PMID: 19476350]
[108]
Liebeschuetz JW, Cole JC, Korb O. Pose prediction and virtual screening performance of GOLD scoring functions in a standardized test. J Comput Aided Mol Des 2012; 26(6): 737-48.
[http://dx.doi.org/10.1007/s10822-012-9551-4] [PMID: 22371207]
[109]
Waszkowycz B. Towards improving compound selection in structure-based virtual screening . Drug Discov Today 2008; 13(5-6): 219-26..
[http://dx.doi.org/10.1016/j.drudis.2007.12.002] [PMID: 18342797]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy