Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Matrix Metalloproteinase Inspired Therapeutic Strategies for Bone Diseases

Author(s): Longfa Kou, Xinyu Jiang, Xinlu Lin, Huirong Huang, Jun Wang, Qing Yao* and Ruijie Chen*

Volume 22, Issue 4, 2021

Published on: 30 June, 2020

Page: [451 - 467] Pages: 17

DOI: 10.2174/1389201021666200630140735

Price: $65

conference banner
Abstract

Matrix Metalloproteinases (MMPs), as a family of zinc-containing enzymes, show the function of decomposing Extracellular Matrix (ECM) and participate in the physiological processes of cell migration, growth, inflammation, and metabolism. Clinical and experimental studies have indicated that MMPs play an essential role in tissue injury and repair as well as tumor diagnosis, metastasis, and prognosis. An increasing number of researchers have paid attention to their functions and mechanisms in bone health and diseases. The present review focuses on MMPs-inspired therapeutic strategies for the treatment of bone-related diseases. We introduce the role of MMPs in bone diseases, highlight the MMPs-inspired therapeutic options, and posit MMPs as a trigger for smart cell/drug delivery.

Keywords: Matrix metalloproteinase, bone disease, drug delivery, hydrogel, nanomedicine, MMP-responsive.

Graphical Abstract

[1]
Piperigkou, Z.; Manou, D.; Karamanou, K.; Theocharis, A.D. Strategies to Target Matrix Metalloproteinases as Therapeutic Approach in Cancer. Methods Mol. Biol., 2018, 1731, 325-348.
[http://dx.doi.org/10.1007/978-1-4939-7595-2_27] [PMID: 29318564]
[2]
Agata, J.-T.; Marzena, M.; Stanisław, R. 2016.
[3]
Liang, H.P.H.; Xu, J.; Xue, M.; Jackson, C. Matrix metalloproteinases in bone development and pathology: current knowledge and potential clinical utility. Metalloproteinases Med., 2016, 3, 93-102.
[http://dx.doi.org/10.2147/MNM.S92187]
[4]
Yao, Q.; Zheng, Y.W.; Lan, Q.H.; Kou, L.; Xu, H.L.; Zhao, Y.Z. Recent development and biomedical applications of decellularized extracellular matrix biomaterials. Mater. Sci. Eng. C, 2019, •••104109942
[http://dx.doi.org/10.1016/j.msec.2019.109942] [PMID: 31499951]
[5]
Tüter, G.; Kurtiş, B.; Serdar, M.; Yücel, A.; Ayhan, E.; Karaduman, B.; Özcan, G. Effects of phase I periodontal treatment on gingival crevicular fluid levels of matrix metalloproteinase-3 and tissue inhibitor of metalloproteinase-1. J. Clin. Periodontol., 2005, 32(9), 1011-1015.
[http://dx.doi.org/10.1111/j.1600-051X.2005.00816.x] [PMID: 16104967]
[6]
An, F.; Du, J.; Cao, Y.; Shi, J.; Guo, Y.; Jin, T.; Li, J.; Chen, J.; Li, P.; Dong, M.; Wang, G.; Wang, J. MMP8 polymorphism is associated with susceptibility to osteonecrosis of the femoral head in a Chinese Han population. Oncotarget, 2017, 8(13), 21561-21566.
[http://dx.doi.org/10.18632/oncotarget.15371] [PMID: 28423488]
[7]
Takaishi, H.; Kimura, T.; Dalal, S.; Okada, Y.; D’Armiento, J. Joint diseases and matrix metalloproteinases: a role for MMP-13. Curr. Pharm. Biotechnol., 2008, 9(1), 47-54.
[http://dx.doi.org/10.2174/138920108783497659] [PMID: 18289056]
[8]
Gordon, J.A.R.; Tye, C.E.; Sampaio, A.V.; Underhill, T.M.; Hunter, G.K.; Goldberg, H.A. Bone sialoprotein expression enhances osteoblast differentiation and matrix mineralization in vitro. Bone, 2007, 41(3), 462-473.
[http://dx.doi.org/10.1016/j.bone.2007.04.191] [PMID: 17572166]
[9]
Shapses, S.A.; Cifuentes, M.; Spevak, L.; Chowdhury, H.; Brittingham, J.; Boskey, A.L.; Denhardt, D.T. Osteopontin facilitates bone resorption, decreasing bone mineral crystallinity and content during calcium deficiency. Calcif. Tissue Int., 2003, 73(1), 86-92.
[http://dx.doi.org/10.1007/s00223-002-1090-x] [PMID: 14506959]
[10]
Vu, T.H.; Shipley, J.M.; Bergers, G.; Berger, J.E.; Helms, J.A.; Hanahan, D.; Shapiro, S.D.; Senior, R.M.; Werb, Z. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell, 1998, 93(3), 411-422.
[http://dx.doi.org/10.1016/S0092-8674(00)81169-1] [PMID: 9590175]
[11]
Lerner, A.; Neidhöfer, S.; Reuter, S.; Matthias, T. MMP3 is a reliable marker for disease activity, radiological monitoring, disease outcome predictability, and therapeutic response in rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol., 2018, 32(4), 550-562.
[http://dx.doi.org/10.1016/j.berh.2019.01.006] [PMID: 31174824]
[12]
Reyes, R.; Rodríguez, J.A.; Orbe, J.; Arnau, M.R.; Évora, C.; Delgado, A. Combined sustained release of BMP2 and MMP10 accelerates bone formation and mineralization of calvaria critical size defect in mice. Drug Deliv., 2018, 25(1), 750-756.
[http://dx.doi.org/10.1080/10717544.2018.1446473] [PMID: 29516759]
[13]
Lam, D.K.; Schmidt, B.L. Molecular Biology of Head and Neck Cancer: Therapeutic Implications.Current Therapy.Oral and Maxillofacial Surgery; Bagheri, S.C.; Bell, R.B.; Khan, H.A., Eds.; W.B. Saunders: Saint Louis, 2012, pp. 92-101.
[http://dx.doi.org/10.1016/B978-1-4160-2527-6.00010-4]
[14]
Aisenbrey, E.A.; Bryant, S.J.A. MMP7-sensitive photoclickable biomimetic hydrogel for MSC encapsulation towards engineering human cartilage. J. Biomed. Mater. Res. A, 2018, 106(8), 2344-2355.
[http://dx.doi.org/10.1002/jbm.a.36412] [PMID: 29577606]
[15]
Gruber, H.E.; Hoelscher, G.L.; Ingram, J.A.; Hanley, E.N. Jr Matrix metalloproteinase-26, a novel MMP, is constitutively expressed in the human intervertebral disc in vivo and in vitro. Exp. Mol. Pathol., 2012, 92(1), 59-63.
[http://dx.doi.org/10.1016/j.yexmp.2011.09.008] [PMID: 21945733]
[16]
Szabova, L.; Yamada, S.S.; Wimer, H.; Chrysovergis, K.; Ingvarsen, S.; Behrendt, N.; Engelholm, L.H.; Holmbeck, K. MT1-MMP and type II collagen specify skeletal stem cells and their bone and cartilage progeny. J. Bone Miner. Res., 2009, 24(11), 1905-1916.
[http://dx.doi.org/10.1359/jbmr.090510] [PMID: 19419317]
[17]
Yamanaka, H.; Makino, K.; Takizawa, M.; Nakamura, H.; Fujimoto, N.; Moriya, H.; Nemori, R.; Sato, H.; Seiki, M.; Okada, Y. Expression and tissue localization of membrane-types 1, 2, and 3 matrix metalloproteinases in rheumatoid synovium. Lab. Invest., 2000, 80(5), 677-687.
[http://dx.doi.org/10.1038/labinvest.3780071] [PMID: 10830778]
[18]
Shi, J.; Son, M-Y.; Yamada, S.; Szabova, L.; Kahan, S.; Chrysovergis, K.; Wolf, L.; Surmak, A.; Holmbeck, K. Membrane-type MMPs enable extracellular matrix permissiveness and mesenchymal cell proliferation during embryogenesis. Dev. Biol., 2008, 313(1), 196-209.
[http://dx.doi.org/10.1016/j.ydbio.2007.10.017] [PMID: 18022611]
[19]
Clements, K.M.; Flannelly, J.K.; Tart, J.; Brockbank, S.M.; Wardale, J.; Freeth, J.; Parker, A.E.; Newham, P. Matrix metalloproteinase 17 is necessary for cartilage aggrecan degradation in an inflammatory environment. Ann. Rheum. Dis., 2011, 70(4), 683-689.
[http://dx.doi.org/10.1136/ard.2010.130757] [PMID: 21216815]
[20]
Okimoto, R.A.; Breitenbuecher, F.; Olivas, V.R.; Wu, W.; Gini, B.; Hofree, M.; Asthana, S.; Hrustanovic, G.; Flanagan, J.; Tulpule, A.; Blakely, C.M.; Haringsma, H.J.; Simmons, A.D.; Gowen, K.; Suh, J.; Miller, V.A.; Ali, S.; Schuler, M.; Bivona, T.G. Inactivation of Capicua drives cancer metastasis. Nat. Genet., 2017, 49(1), 87-96.
[http://dx.doi.org/10.1038/ng.3728] [PMID: 27869830]
[21]
Kumar, S.; Cieplak, P. Role of N-glycosylation in activation of proMMP-9. A molecular dynamics simulations study. PLoS One, 2018, 13(1)e0191157
[http://dx.doi.org/10.1371/journal.pone.0191157] [PMID: 29329315]
[22]
Distler, J.H.; Pisetsky, D.S.; Huber, L.C.; Kalden, J.R.; Gay, S.; Distler, O. Microparticles as regulators of inflammation: novel players of cellular crosstalk in the rheumatic diseases. Arthritis Rheum., 2005, 52(11), 3337-3348.
[http://dx.doi.org/10.1002/art.21350] [PMID: 16255015]
[23]
Shimoda, M. Chapter Two - Extracellular vesicle-associated MMPs: A modulator of the tissue microenvironment.Advances in Clinical Chemistry; Makowski, G.S., Ed.; Elsevier, 2019, Vol. 88, pp. 35-66.
[24]
You, Y.; Shan, Y.; Chen, J.; Yue, H.; You, B.; Shi, S.; Li, X.; Cao, X. Matrix metalloproteinase 13-containing exosomes promote nasopharyngeal carcinoma metastasis. Cancer Sci., 2015, 106(12), 1669-1677.
[http://dx.doi.org/10.1111/cas.12818] [PMID: 26362844]
[25]
Brew, K. Reflections on the evolution of the vertebrate tissue inhibitors of metalloproteinases. FASEB J., 2019, 33(1), 71-87.
[http://dx.doi.org/10.1096/fj.201801262R] [PMID: 30125136]
[26]
Shon, S.M.; Jang, H.J.; Schellingerhout, D.; Kim, J.Y.; Ryu, W.S.; Lee, S.K.; Kim, J.; Park, J.Y.; Oh, J.H.; Kang, J.W.; Je, K.H.; Park, J.E.; Kim, K.; Kwon, I.C.; Lee, J.; Nahrendorf, M.; Park, J.H.; Kim, D.E. Cytokine Response to Diet and Exercise Affects Atheromatous Matrix Metalloproteinase-2/9 Activity in Mice. Circ. J., 2017, 81(10), 1528-1536.
[http://dx.doi.org/10.1253/circj.CJ-16-1196] [PMID: 28883215]
[27]
Kim, E.S.; Sohn, Y.W.; Moon, A. TGF-beta-induced transcriptional activation of MMP-2 is mediated by activating transcription factor (ATF)2 in human breast epithelial cells. Cancer Lett., 2007, 252(1), 147-156.
[http://dx.doi.org/10.1016/j.canlet.2006.12.016] [PMID: 17258390]
[28]
Nakashima, A.; Tamura, M. Regulation of matrix metalloproteinase-13 and tissue inhibitor of matrix metalloproteinase-1 gene expression by WNT3A and bone morphogenetic protein-2 in osteoblastic differentiation. Front. Biosci., 2006, 11, 1667-1678.
[http://dx.doi.org/10.2741/1912] [PMID: 16368545]
[29]
Ma, Y.; Zhu, B.; Liu, X.; Yu, H.; Yong, L.; Liu, X.; Shao, J.; Liu, Z. Inhibition of oleandrin on the proliferation show and invasion of osteosarcoma cells in vitro by suppressing Wnt/β-catenin signaling pathway. J. Exp. Clin. Cancer Res., 2015, 34, 115.
[http://dx.doi.org/10.1186/s13046-015-0232-8] [PMID: 26444270]
[30]
Jackson, M.T.; Moradi, B.; Smith, M.M.; Jackson, C.J.; Little, C.B. Activation of matrix metalloproteinases 2, 9, and 13 by activated protein C in human osteoarthritic cartilage chondrocytes. Arthritis Rheumatol., 2014, 66(6), 1525-1536.
[http://dx.doi.org/10.1002/art.38401] [PMID: 24574263]
[31]
Pratap, J.; Javed, A.; Languino, L.R.; van Wijnen, A.J.; Stein, J.L.; Stein, G.S.; Lian, J.B. The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Mol. Cell. Biol., 2005, 25(19), 8581-8591.
[http://dx.doi.org/10.1128/MCB.25.19.8581-8591.2005] [PMID: 16166639]
[32]
Laulan, N.B.; St-Pierre, Y. Bone morphogenetic protein 4 (BMP-4) and epidermal growth factor (EGF) inhibit metalloproteinase-9 (MMP-9) expression in cancer cells. Oncoscience, 2015, 2(3), 309-316.
[http://dx.doi.org/10.18632/oncoscience.144] [PMID: 25897433]
[33]
Papathanasiou, I.; Malizos, K.N.; Tsezou, A. Bone morphogenetic protein-2-induced Wnt/β-catenin signaling pathway activation through enhanced low-density-lipoprotein receptor-related protein 5 catabolic activity contributes to hypertrophy in osteoarthritic chondrocytes. Arthritis Res. Ther., 2012, 14(2), R82.
[http://dx.doi.org/10.1186/ar3805] [PMID: 22513174]
[34]
Rocha, C.A.; Cestari, T.M.; Vidotti, H.A.; de Assis, G.F.; Garlet, G.P.; Taga, R. Sintered anorganic bone graft increases autocrine expression of VEGF, MMP-2 and MMP-9 during repair of critical-size bone defects. J. Mol. Histol., 2014, 45(4), 447-461.
[http://dx.doi.org/10.1007/s10735-014-9565-4] [PMID: 24482159]
[35]
Catalfamo, D.L.; Calderon, N.L.; Harden, S.W.; Sorenson, H.L.; Neiva, K.G.; Wallet, S.M. Augmented LPS responsiveness in type 1 diabetes-derived osteoclasts. J. Cell. Physiol., 2013, 228(2), 349-361.
[http://dx.doi.org/10.1002/jcp.24138] [PMID: 22718269]
[36]
Kominsky, S.L.; Doucet, M.; Thorpe, M.; Weber, K.L. MMP-13 is over-expressed in renal cell carcinoma bone metastasis and is induced by TGF-beta1. Clin. Exp. Metastasis, 2008, 25(8), 865-870.
[http://dx.doi.org/10.1007/s10585-008-9202-2] [PMID: 18709334]
[37]
Han, X.F.; Zhang, X.X.; Liu, K.M.; Zhang, Q. Apelin-13 deficiency alters cortical bone geometry, organic bone matrix, and inhibits Wnt/β-catenin signaling. Gen. Comp. Endocrinol., 2018, 267, 29-35.
[http://dx.doi.org/10.1016/j.ygcen.2018.05.024] [PMID: 29857005]
[38]
Tobar, N.; Avalos, M.C.; Méndez, N.; Smith, P.C.; Bernabeu, C.; Quintanilla, M.; Martínez, J. Soluble MMP-14 produced by bone marrow-derived stromal cells sheds epithelial endoglin modulating the migratory properties of human breast cancer cells. Carcinogenesis, 2014, 35(8), 1770-1779.
[http://dx.doi.org/10.1093/carcin/bgu061] [PMID: 24618373]
[39]
Uchida, M.; Shima, M.; Shimoaka, T.; Fujieda, A.; Obara, K.; Suzuki, H.; Nagai, Y.; Ikeda, T.; Yamato, H.; Kawaguchi, H. Regulation of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) by bone resorptive factors in osteoblastic cells. J. Cell. Physiol., 2000, 185(2), 207-214.
[http://dx.doi.org/10.1002/1097-4652(200011)185:2<207:AID-JCP5>3.0.CO;2-J] [PMID: 11025442]
[40]
Lazarus, S.; Tseng, H.W.; Lawrence, F.; Woodruff, M.A.; Duncan, E.L.; Pettit, A.R. Characterization of Normal Murine Carpal Bone Development Prompts Re-Evaluation of Pathologic Osteolysis as the Cause of Human Carpal-Tarsal Osteolysis Disorders. Am. J. Pathol., 2017, 187(9), 1923-1934.
[http://dx.doi.org/10.1016/j.ajpath.2017.05.007] [PMID: 28675805]
[41]
Qian, Z.; Bin, C.; Fuhua, Y.; Jianbin, G.; Xiaofeng, Z.; Shouzhi, M.; Wenrong, Y. Interleukin-10 inhibits bone resorption: a potential therapeutic strategy in periodontitis and other bone loss diseases., 2014.
[42]
Long, T.; Yang, J.; Shi, S.S.; Guo, Y.P.; Ke, Q.F.; Zhu, Z.A. Fabrication of three-dimensional porous scaffold based on collagen fiber and bioglass for bone tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater., 2015, 103(7), 1455-1464.
[http://dx.doi.org/10.1002/jbm.b.33328] [PMID: 25430707]
[43]
Freitas-Rodríguez, S.; Folgueras, A.R.; López-Otín, C. The role of matrix metalloproteinases in aging: Tissue remodeling and beyond. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(11 Pt A), 2015-2025.
[http://dx.doi.org/10.1016/j.bbamcr.2017.05.007] [PMID: 28499917]
[44]
Paiva, K.B.S.; Granjeiro, J.M. Matrix Metalloproteinases in Bone Resorption, Remodeling, and Repair. Prog. Mol. Biol. Transl. Sci., 2017, 148, 203-303.
[http://dx.doi.org/10.1016/bs.pmbts.2017.05.001] [PMID: 28662823]
[45]
Van Valckenborgh, E.; Bakkus, M.; Munaut, C.; Noël, A.; St Pierre, Y.; Asosingh, K.; Van Riet, I.; Van Camp, B.; Vanderkerken, K. Upregulation of matrix metalloproteinase-9 in murine 5T33 multiple myeloma cells by interaction with bone marrow endothelial cells. Int. J. Cancer, 2002, 101(6), 512-518.
[http://dx.doi.org/10.1002/ijc.10642] [PMID: 12237890]
[46]
Zhang, J.F.; Wang, G.L.; Zhou, Z.J.; Fang, X.Q.; Chen, S.; Fan, S.W. Expression of Matrix Metalloproteinases, Tissue Inhibitors of Metalloproteinases, and Interleukins in Vertebral Cartilage Endplate. Orthop. Surg., 2018, 10(4), 306-311.
[http://dx.doi.org/10.1111/os.12409] [PMID: 30474324]
[47]
Deng, B.; Ren, J.Z.; Meng, X.Q.; Pang, C.G.; Duan, G.Q.; Zhang, J.X.; Zou, H.; Yang, H.Z.; Ji, J.J. Expression profiles of MMP-1 and TIMP-1 in lumbar intervertebral disc degeneration. Genet. Mol. Res., 2015, 14(4), 19080-19086.
[http://dx.doi.org/10.4238/2015.December.29.16] [PMID: 26782559]
[48]
Basaran, R.; Senol, M.; Ozkanli, S.; Efendioglu, M.; Kaner, T. Correlation of matrix metalloproteinase (MMP)-1, -2, -3, and -9 expressions with demographic and radiological features in primary lumbar intervertebral disc disease. J. Clin. Neurosci., 2017, 41, 46-49.
[http://dx.doi.org/10.1016/j.jocn.2017.03.001] [PMID: 28343922]
[49]
Baillet, A.; Grange, L.; Trocmé, C.; Caudroy, S.; Juvin, R.; Birembaut, P.; Morel, F.; Gaudin, P. Differences in MMPs and TIMP-1 expression between intervertebral disc and disc herniation. Joint Bone Spine, 2013, 80(3), 341-342.
[http://dx.doi.org/10.1016/j.jbspin.2012.08.011] [PMID: 23043898]
[50]
Xu, H.; Mei, Q.; He, J.; Liu, G.; Zhao, J.; Xu, B. Correlation of matrix metalloproteinases-1 and tissue inhibitor of metalloproteinases-1 with patient age and grade of lumbar disk herniation. Cell Biochem. Biophys., 2014, 69(3), 439-444.
[http://dx.doi.org/10.1007/s12013-014-9815-9] [PMID: 24442990]
[51]
Sen, L.; Si-Dong, Y.; Xi-Wei, H.; Da-Long, Y.; Lei, M.; Wen-Yuan, D. 2018.
[52]
Zhang, W. L.; Chen, Y. F.; Meng, H. Z.; Du, J. J.; Luan, G. N.; Wang, H. Q.; Yang, M. W.; Luo, Z. J. 2017.
[53]
Herz, B.; Albrecht, A.; Englbrecht, M.; Welsch, G.H.; Uder, M.; Renner, N.; Schlechtweg, P.; Paul, D.; Lauer, L.; Engelke, K.; Janka, R.; Rech, J.; Schett, G.; Finzel, S. Osteitis and synovitis, but not bone erosion, is associated with proteoglycan loss and microstructure damage in the cartilage of patients with rheumatoid arthritis. Ann. Rheum. Dis., 2014, 73(6), 1101-1106.
[http://dx.doi.org/10.1136/annrheumdis-2012-202850] [PMID: 23625980]
[54]
Tuncer, T.; Kaya, A.; Gulkesen, A.; Kal, G.A.; Kaman, D.; Akgol, G. Matrix metalloproteinase-3 levels in relation to disease activity and radiological progression in rheumatoid arthritis. Adv. Clin. Exp. Med., 2019, 28(5), 665-670.
[http://dx.doi.org/10.17219/acem/94065] [PMID: 30740946]
[55]
Pierce, D.M.; Trobin, W.; Trattnig, S.; Bischof, H.; Holzapfel, G.A. A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking. J. Biomech. Eng., 2009, 131(9)091006
[http://dx.doi.org/10.1115/1.3148471] [PMID: 19725695]
[56]
Li, Z.; Yuan, B.; Pei, Z.; Zhang, K.; Ding, Z.; Zhu, S.; Wang, Y.; Guan, Z.; Cao, Y. Circ_0136474 and MMP-13 suppressed cell proliferation by competitive binding to miR-127-5p in osteoarthritis. J. Cell. Mol. Med., 2019, 23(10), 6554-6564.
[http://dx.doi.org/10.1111/jcmm.14400] [PMID: 31402547]
[57]
Yoshihara, Y.; Nakamura, H.; Obata, K.; Yamada, H.; Hayakawa, T.; Fujikawa, K.; Okada, Y. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis. Ann. Rheum. Dis., 2000, 59(6), 455-461.
[http://dx.doi.org/10.1136/ard.59.6.455] [PMID: 10834863]
[58]
Bruschi, F.; Bianchi, C.; Fornaro, M.; Naccarato, G.; Menicagli, M.; Gomez-Morales, M.A.; Pozio, E.; Pinto, B. Matrix metalloproteinase (MMP)-2 and MMP-9 as inflammation markers of Trichinella spiralis and Trichinella pseudospiralis infections in mice. Parasite Immunol., 2014, 36(10), 540-549.
[http://dx.doi.org/10.1111/pim.12138] [PMID: 25124689]
[59]
Sultana, S.; Adhikary, R.; Nandi, A.; Bishayi, B. Neutralization of MMP-2 protects Staphylococcus aureus infection induced septic arthritis in mice and regulates the levels of cytokines. Microb. Pathog., 2016, 99, 148-161.
[http://dx.doi.org/10.1016/j.micpath.2016.08.021] [PMID: 27554276]
[60]
Giambartolomei, G.H.; Arriola Benitez, P.C.; Delpino, M.V. Brucella and Osteoarticular Cell Activation: Partners in Crime. Front. Microbiol., 2017, 8, 256.
[http://dx.doi.org/10.3389/fmicb.2017.00256] [PMID: 28265268]
[61]
Pesce Viglietti, A.I.; Gentilini, M.V.; Arriola Benitez, P.C.; Giambartolomei, G.H.; Delpino, M.V.B. Abortus Modulates Osteoblast Function Through the Induction of Autophagy. Front. Cell. Infect. Microbiol., 2018, 8, 425.
[http://dx.doi.org/10.3389/fcimb.2018.00425] [PMID: 30564561]
[62]
Vandooren, J.; Van den Steen, P.E.; Opdenakker, G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): the next decade. Crit. Rev. Biochem. Mol. Biol., 2013, 48(3), 222-272.
[http://dx.doi.org/10.3109/10409238.2013.770819] [PMID: 23547785]
[63]
Vandooren, J.; Swinnen, W.; Ugarte-Berzal, E.; Boon, L.; Dorst, D.; Martens, E.; Opdenakker, G. Endotoxemia shifts neutrophils with TIMP-free gelatinase B/MMP-9 from bone marrow to the periphery and induces systematic upregulation of TIMP-1. Haematologica, 2017, 102(10), 1671-1682.
[http://dx.doi.org/10.3324/haematol.2017.168799] [PMID: 28775117]
[64]
Kim, Y.; Kim, J.; Lee, H.; Shin, W.R.; Lee, S.; Lee, J.; Park, J.I.; Jhun, B.H.; Kim, Y.H.; Yi, S.J.; Kim, K. Tetracycline Analogs Inhibit Osteoclast Differentiation by Suppressing MMP-9-Mediated Histone H3 Cleavage. Int. J. Mol. Sci., 2019, 20(16)E4038
[http://dx.doi.org/10.3390/ijms20164038] [PMID: 31430857]
[65]
Pego, E.R.; Fernández, I.; Núñez, M.J. Molecular basis of the effect of MMP-9 on the prostate bone metastasis: A review. Urol. Oncol., 2018, 36(6), 272-282.
[http://dx.doi.org/10.1016/j.urolonc.2018.03.009] [PMID: 29650324]
[66]
Gilcy, G.K.; Kuttan, G. Evaluation of Antiangiogenic Efficacy of Emilia sonchifolia (L.) DC on Tumor-Specific Neovessel Formation by Regulating MMPs, VEGF, and Proinflammatory Cytokines. Integr. Cancer Ther., 2016, 15(4), NP1-NP12.
[http://dx.doi.org/10.1177/1534735416630807] [PMID: 27146127]
[67]
Crowley, J.T.; Strle, K.; Drouin, E.E.; Pianta, A.; Arvikar, S.L.; Wang, Q.; Costello, C.E.; Steere, A.C. Matrix metalloproteinase-10 is a target of T and B cell responses that correlate with synovial pathology in patients with antibiotic-refractory Lyme arthritis. J. Autoimmun., 2016, 69, 24-37.
[http://dx.doi.org/10.1016/j.jaut.2016.02.005] [PMID: 26922382]
[68]
Jing, W.; Sun, W.; Zhang, N.; Zhao, C.; Yan, X. The protective effects of the GPR39 agonist TC-G 1008 against TNF-α-induced inflammation in human fibroblast-like synoviocytes (FLSs). Eur. J. Pharmacol., 2019, •••865172663
[http://dx.doi.org/10.1016/j.ejphar.2019.172663] [PMID: 31539553]
[69]
van Bilsen, J.H.; Wagenaar-Hilbers, J.P.; Grosfeld-Stulemeijer, M.C.; van der Cammen, M.J.; van Dijk, M.E.; van Eden, W.; Wauben, M.H. Matrix metalloproteinases as targets for the immune system during experimental arthritis. J. Immunol., 2004, 172(8), 5063-5068.
[http://dx.doi.org/10.4049/jimmunol.172.8.5063] [PMID: 15067089]
[70]
Wang, P.E.; Zhang, L.; Ying, J.; Jin, X.; Luo, C.; Xu, S.; Dong, R.; Xiao, L.; Tong, P.; Jin, H. Bushenhuoxue formula attenuates cartilage degeneration in an osteoarthritic mouse model through TGF-β/MMP13 signaling. J. Transl. Med., 2018, 16(1), 72.
[http://dx.doi.org/10.1186/s12967-018-1437-3] [PMID: 29554973]
[71]
Ma, C.H.; Wu, C.H.; Jou, I.M.; Tu, Y.K.; Hung, C.H.; Hsieh, P.L.; Tsai, K.L. PKR activation causes inflammation and MMP-13 secretion in human degenerated articular chondrocytes. Redox Biol., 2018, 14, 72-81.
[http://dx.doi.org/10.1016/j.redox.2017.08.011] [PMID: 28869834]
[72]
Zhou, Z.B.; Yang, B.; Li, X.; Liu, H.; Lei, G. Lysophosphatidic Acid Promotes Expression and Activation of Matrix Metalloproteinase 9 (MMP9) in THP-1 Cells via Toll-Like Receptor 4/Nuclear Factor-κB (TLR4/NF-κB) Signaling Pathway. Med. Sci. Monit., 2018, 24, 4861-4868.
[http://dx.doi.org/10.12659/MSM.906450] [PMID: 30005060]
[73]
Le Maitre, C.L.; Freemont, A.J.; Hoyland, J.A. The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res. Ther., 2005, 7(4), R732-R745.
[http://dx.doi.org/10.1186/ar1732] [PMID: 15987475]
[74]
Su, X.; Liu, B.; Gong, F.; Yin, J.; Sun, Q.; Gao, Y.; Lv, Z.; Wang, X. Isofraxidin attenuates IL-1β-induced inflammatory response in human nucleus pulposus cells. J. Cell. Biochem., 2019, 120(8), 13302-13309.
[http://dx.doi.org/10.1002/jcb.28604] [PMID: 30891836]
[75]
Tauro, M.; Shay, G.; Sansil, S.S.; Laghezza, A.; Tortorella, P.; Neuger, A.M.; Soliman, H.; Lynch, C.C. Bone-Seeking Matrix Metalloproteinase-2 Inhibitors Prevent Bone Metastatic Breast Cancer Growth. Mol. Cancer Ther., 2017, 16(3), 494-505.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0315-T] [PMID: 28069877]
[76]
Shay, G.; Tauro, M.; Loiodice, F.; Tortorella, P.; Sullivan, D.M.; Hazlehurst, L.A.; Lynch, C.C. Selective inhibition of matrix metalloproteinase-2 in the multiple myeloma-bone microenvironment. Oncotarget, 2017, 8(26), 41827-41840.
[http://dx.doi.org/10.18632/oncotarget.18103] [PMID: 28611279]
[77]
Tauro, M.; Laghezza, A.; Loiodice, F.; Agamennone, M.; Campestre, C.; Tortorella, P. Arylamino methylene bisphosphonate derivatives as bone seeking matrix metalloproteinase inhibitors. Bioorg. Med. Chem., 2013, 21(21), 6456-6465.
[http://dx.doi.org/10.1016/j.bmc.2013.08.054] [PMID: 24071448]
[78]
Cheng, G.; Gao, F.; Sun, X.; Bi, H.; Zhu, Y. Paris saponin VII suppresses osteosarcoma cell migration and invasion by inhibiting MMP-2/9 production via the p38 MAPK signaling pathway. Mol. Med. Rep., 2016, 14(4), 3199-3205.
[http://dx.doi.org/10.3892/mmr.2016.5663] [PMID: 27572907]
[79]
Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell, 2010, 141(1), 52-67.
[http://dx.doi.org/10.1016/j.cell.2010.03.015] [PMID: 20371345]
[80]
Hua, W.B.; Wu, X.H.; Zhang, Y.K.; Song, Y.; Tu, J.; Kang, L.; Zhao, K.C.; Li, S.; Wang, K.; Liu, W.; Shao, Z.W.; Yang, S.H.; Yang, C. Dysregulated miR-127-5p contributes to type II collagen degradation by targeting matrix metalloproteinase-13 in human intervertebral disc degeneration. Biochimie, 2017, 139, 74-80.
[http://dx.doi.org/10.1016/j.biochi.2017.05.018] [PMID: 28559201]
[81]
Wang, H.Q.; Yu, X.D.; Liu, Z.H.; Cheng, X.; Samartzis, D.; Jia, L.T.; Wu, S.X.; Huang, J.; Chen, J.; Luo, Z.J. Deregulated miR-155 promotes Fas-mediated apoptosis in human intervertebral disc degeneration by targeting FADD and caspase-3. J. Pathol., 2011, 225(2), 232-242.
[http://dx.doi.org/10.1002/path.2931] [PMID: 21706480]
[82]
Li, Y.; Lu, Y.; Zhao, Z.; Wang, J.; Li, J.; Wang, W.; Li, S.; Song, L. Relationships of MMP-9 and TIMP-1 proteins with chronic obstructive pulmonary disease risk: A systematic review and meta-analysis. J. Res. Med. Sci., 2016, 21, 12.
[http://dx.doi.org/10.4103/1735-1995.178737] [PMID: 27904558]
[83]
Patil, T.; Garg, R.K.; Jain, A.; Goel, M.M.; Malhotra, H.S.; Verma, R.; Singh, G.P.; Sharma, P.K. Serum and CSF cytokines and matrix metalloproteinases in spinal tuberculosis. Inflamm. Res., 2015, 64(2), 97-106.
[http://dx.doi.org/10.1007/s00011-014-0786-5] [PMID: 25503789]
[84]
Wang, X.W.; Liu, J.J.; Wu, Q.N.; Wu, S.F.; Hao, D.J. The in vitro and in vivo effects of microRNA-133a on intervertebral disc destruction by targeting MMP9 in spinal tuberculosis. Life Sci., 2017, 188, 198-205.
[http://dx.doi.org/10.1016/j.lfs.2017.07.022] [PMID: 28739306]
[85]
Allen, J.L.; Cooke, M.E.; Alliston, T. ECM stiffness primes the TGFβ pathway to promote chondrocyte differentiation. Mol. Biol. Cell, 2012, 23(18), 3731-3742.
[http://dx.doi.org/10.1091/mbc.e12-03-0172] [PMID: 22833566]
[86]
Shi, C.; Wu, L.; Lin, W.; Cai, Y.; Zhang, Y.; Hu, B.; Gao, R. Im, H.J.; Yuan, W.; Ye, X.; van Wijnen, A.J. MiR-202-3p regulates interleukin-1β-induced expression of matrix metalloproteinase 1 in human nucleus pulposus. Gene, 2019, 687, 156-165.
[http://dx.doi.org/10.1016/j.gene.2018.11.056] [PMID: 30458287]
[87]
Shetty, D.; Skorjanc, T.; Olson, M.A.; Trabolsi, A. Self-assembly of stimuli-responsive imine-linked calix[4]arene nanocapsules for targeted camptothecin delivery. Chem. Commun. (Camb.), 2019, 55(60), 8876-8879.
[http://dx.doi.org/10.1039/C9CC02214G] [PMID: 31286121]
[88]
Yao, Q.; Kou, L.; Tu, Y.; Zhu, L. MMP-Responsive ‘Smart’ Drug Delivery and Tumor Targeting. Trends Pharmacol. Sci., 2018, 39(8), 766-781.
[http://dx.doi.org/10.1016/j.tips.2018.06.003] [PMID: 30032745]
[89]
Kou, L.; Sun, R.; Xiao, S.; Zheng, Y.; Chen, Z.; Cai, A.; Zheng, H.; Yao, Q.; Ganapathy, V.; Chen, R. Ambidextrous Approach To Disrupt Redox Balance in Tumor Cells with Increased ROS Production and Decreased GSH Synthesis for Cancer Therapy. ACS Appl. Mater. Interfaces, 2019, 11(30), 26722-26730.
[http://dx.doi.org/10.1021/acsami.9b09784] [PMID: 31276364]
[90]
Kou, L.; Sun, R.; Bhutia, Y.D.; Yao, Q.; Chen, R. Emerging advances in P-glycoprotein inhibitory nanomaterials for drug delivery. Expert Opin. Drug Deliv., 2018, 15(9), 869-879.
[http://dx.doi.org/10.1080/17425247.2018.1517749] [PMID: 30169976]
[91]
Kou, L.; Sun, R.; Ganapathy, V.; Yao, Q.; Chen, R. Recent advances in drug delivery via the organic cation/carnitine transporter 2 (OCTN2/SLC22A5). Expert Opin. Ther. Targets, 2018, 22(8), 715-726.
[http://dx.doi.org/10.1080/14728222.2018.1502273] [PMID: 30016594]
[92]
Kou, L.; Bhutia, Y.D.; Yao, Q.; He, Z.; Sun, J.; Ganapathy, V. Transporter-Guided Delivery of Nanoparticles to Improve Drug Permeation across Cellular Barriers and Drug Exposure to Selective Cell Types. Front. Pharmacol., 2018, 9, 27.
[http://dx.doi.org/10.3389/fphar.2018.00027] [PMID: 29434548]
[93]
Yao, Q.; Dai, Z.; Hoon Choi, J.; Kim, D.; Zhu, L. Building Stable MMP2-Responsive Multifunctional Polymeric Micelles by an All-in-One Polymer-Lipid Conjugate for Tumor-Targeted Intracellular Drug Delivery. ACS Appl. Mater. Interfaces, 2017, 9(38), 32520-32533.
[http://dx.doi.org/10.1021/acsami.7b09511] [PMID: 28870072]
[94]
Yao, Q.; Choi, J.H.; Dai, Z.; Wang, J.; Kim, D.; Tang, X.; Zhu, L. Improving Tumor Specificity and Anticancer Activity of Dasatinib by Dual-Targeted Polymeric Micelles. ACS Appl. Mater. Interfaces, 2017, 9(42), 36642-36654.
[http://dx.doi.org/10.1021/acsami.7b12233] [PMID: 28960955]
[95]
Yao, Q.; Liu, Y.; Kou, L.; Tu, Y.; Tang, X.; Zhu, L. Tumor-targeted drug delivery and sensitization by MMP2-responsive polymeric micelles. Nanomedicine (Lond.), 2019, 19, 71-80.
[http://dx.doi.org/10.1016/j.nano.2019.03.012] [PMID: 31004812]
[96]
Zhang, X.; Wang, X.; Zhong, W.; Ren, X.; Sha, X.; Fang, X. Matrix metalloproteinases-2/9-sensitive peptide-conjugated polymer micelles for site-specific release of drugs and enhancing tumor accumulation: preparation and in vitro and in vivo evaluation. Int. J. Nanomedicine, 2016, 11, 1643-1661.
[97]
Nádia de Cássia, N.; Amanda, M.; Carolina, C-O.; Juçara Gastaldi, C.; José Lucas, M.R.; Dimas Tadeu, C.; Kamilla, S.; Kelen, C.R.M. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res. Ther., 2019, 10(1)
[98]
Fonseca, K.B.; Gomes, D.B.; Lee, K.; Santos, S.G.; Sousa, A.; Silva, E.A.; Mooney, D.J.; Granja, P.L.; Barrias, C.C. Injectable MMP-sensitive alginate hydrogels as hMSC delivery systems. Biomacromolecules, 2014, 15(1), 380-390.
[http://dx.doi.org/10.1021/bm4016495] [PMID: 24345197]
[99]
Kim, J.; Kim, I.S.; Cho, T.H.; Kim, H.C.; Yoon, S.J.; Choi, J.; Park, Y.; Sun, K.; Hwang, S.J. In vivo evaluation of MMP sensitive high-molecular weight HA-based hydrogels for bone tissue engineering. J. Biomed. Mater. Res. A, 2010, 95(3), 673-681.
[http://dx.doi.org/10.1002/jbm.a.32884] [PMID: 20725983]
[100]
Sridhar, B.V.; Brock, J.L.; Silver, J.S.; Leight, J.L.; Randolph, M.A.; Anseth, K.S. Development of a cellularly degradable PEG hydrogel to promote articular cartilage extracellular matrix deposition. Adv. Healthc. Mater., 2015, 4(5), 702-713.
[http://dx.doi.org/10.1002/adhm.201400695] [PMID: 25607633]
[101]
Xu, L.; Huang, S.; Hou, Y.; Liu, Y.; Ni, M.; Meng, F.; Wang, K.; Rui, Y.; Jiang, X.; Li, G. Sox11-modified mesenchymal stem cells (MSCs) accelerate bone fracture healing: Sox11 regulates differentiation and migration of MSCs. FASEB J., 2015, 29(4), 1143-1152.
[http://dx.doi.org/10.1096/fj.14-254169] [PMID: 25466891]
[102]
Dahlin, R.L.; Kinard, L.A.; Lam, J.; Needham, C.J.; Lu, S.; Kasper, F.K.; Mikos, A.G. Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model. Biomaterials, 2014, 35(26), 7460-7469.
[http://dx.doi.org/10.1016/j.biomaterials.2014.05.055] [PMID: 24927682]
[103]
Wang, Y.; Yin, Y.; Jiang, F.; Chen, N. Human amnion mesenchymal stem cells promote proliferation and osteogenic differentiation in human bone marrow mesenchymal stem cells. J. Mol. Histol., 2015, 46(1), 13-20.
[http://dx.doi.org/10.1007/s10735-014-9600-5] [PMID: 25432786]
[104]
Li, J.; Leung, C.W.T.; Wong, D.S.H.; Xu, J.; Li, R.; Zhao, Y.; Yung, C.Y.Y.; Zhao, E.; Tang, B.Z.; Bian, L. Photocontrolled SiRNA Delivery and Biomarker-Triggered Luminogens of Aggregation-Induced Emission by Up-Conversion NaYF4:Yb3+Tm3+@SiO2 Nanoparticles for Inducing and Monitoring Stem-Cell Differentiation. ACS Appl. Mater. Interfaces, 2019, 11(25), 22074-22084.
[http://dx.doi.org/10.1021/acsami.7b00845] [PMID: 28350958]
[105]
Yau, W.W.; Rujitanaroj, P.O.; Lam, L.; Chew, S.Y. Directing stem cell fate by controlled RNA interference. Biomaterials, 2012, 33(9), 2608-2628.
[http://dx.doi.org/10.1016/j.biomaterials.2011.12.021] [PMID: 22209557]
[106]
Kim, S.; Lee, S.; Kim, K. Bone Tissue Engineering Strategies in Co-Delivery of Bone Morphogenetic Protein-2 and Biochemical Signaling Factors. Adv. Exp. Med. Biol., 2018, 1078, 233-244.
[http://dx.doi.org/10.1007/978-981-13-0950-2_12] [PMID: 30357626]
[107]
Holloway, J.L.; Ma, H.; Rai, R.; Burdick, J.A. Modulating hydrogel crosslink density and degradation to control bone morphogenetic protein delivery and in vivo bone formation. J. Control. Release, 2014, 191, 63-70.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.053] [PMID: 24905414]
[108]
Holloway, J.L.; Ma, H.; Rai, R.; Hankenson, K.D.; Burdick, J.A. Synergistic Effects of SDF-1α and BMP-2 Delivery from Proteolytically Degradable Hyaluronic Acid Hydrogels for Bone Repair. Macromol. Biosci., 2015, 15(9), 1218-1223.
[http://dx.doi.org/10.1002/mabi.201500178] [PMID: 26059079]
[109]
Anjum, F.; Lienemann, P.S.; Metzger, S.; Biernaskie, J.; Kallos, M.S.; Ehrbar, M. Enzyme responsive GAG-based natural-synthetic hybrid hydrogel for tunable growth factor delivery and stem cell differentiation. Biomaterials, 2016, 87, 104-117.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.050] [PMID: 26914701]
[110]
Raeber, G.P.; Lutolf, M.P.; Hubbell, J.A. Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration. Biophys. J., 2005, 89(2), 1374-1388.
[http://dx.doi.org/10.1529/biophysj.104.050682] [PMID: 15923238]
[111]
Chen, K.; Feng, Y.; Zhang, Y.; Yu, L.; Hao, X.; Shao, F.; Dou, Z.; An, C.; Zhuang, Z.; Luo, Y.; Wang, Y.; Wu, J.; Ji, P.; Chen, T.; Wang, H. Entanglement-Driven Adhesion, Self-Healing, and High Stretchability of Double-Network PEG-Based Hydrogels. ACS Appl. Mater. Interfaces, 2019, 11(40), 36458-36468.
[http://dx.doi.org/10.1021/acsami.9b14348] [PMID: 31509371]
[112]
Lutolf, M.P.; Lauer-Fields, J.L.; Schmoekel, H.G.; Metters, A.T.; Weber, F.E.; Fields, G.B.; Hubbell, J.A. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc. Natl. Acad. Sci. USA, 2003, 100(9), 5413-5418.
[http://dx.doi.org/10.1073/pnas.0737381100] [PMID: 12686696]
[113]
Spiller, K.L.; Maher, S.A.; Lowman, A.M. Hydrogels for the repair of articular cartilage defects. Tissue Eng. Part B Rev., 2011, 17(4), 281-299.
[http://dx.doi.org/10.1089/ten.teb.2011.0077] [PMID: 21510824]
[114]
Park, Y.; Lutolf, M.P.; Hubbell, J.A.; Hunziker, E.B.; Wong, M. Bovine primary chondrocyte culture in synthetic matrix metalloproteinase-sensitive poly(ethylene glycol)-based hydrogels as a scaffold for cartilage repair. Tissue Eng., 2004, 10(3-4), 515-522.
[http://dx.doi.org/10.1089/107632704323061870] [PMID: 15165468]
[115]
Carles-Carner, M.; Saleh, L.S.; Bryant, S.J. The effects of hydroxyapatite nanoparticles embedded in a MMP-sensitive photoclickable PEG hydrogel on encapsulated MC3T3-E1 pre-osteoblasts. Biomed. Mater., 2018, 13(4)045009
[http://dx.doi.org/10.1088/1748-605X/aabb31] [PMID: 29611815]
[116]
Karsdal, M.A.; Andersen, T.A.; Bonewald, L.; Christiansen, C. Matrix metalloproteinases (MMPs) safeguard osteoblasts from apoptosis during transdifferentiation into osteocytes: MT1-MMP maintains osteocyte viability. DNA Cell Biol., 2004, 23(3), 155-165.
[http://dx.doi.org/10.1089/104454904322964751] [PMID: 15068585]
[117]
Nam, E.J.; Sa, K.H.; You, D.W.; Cho, J.H.; Seo, J.S.; Han, S.W.; Park, J.Y.; Kim, S.I.; Kyung, H.S.; Kim, I.S.; Kang, Y.M. Up-regulated transforming growth factor beta-inducible gene h3 in rheumatoid arthritis mediates adhesion and migration of synoviocytes through alpha v beta3 integrin: Regulation by cytokines. Arthritis Rheum., 2006, 54(9), 2734-2744.
[http://dx.doi.org/10.1002/art.22076] [PMID: 16947382]
[118]
Nam, E.J.; Kang, J.H.; Sung, S.; Sa, K.H.; Kim, K.H.; Seo, J.S.; Kim, J.H.; Han, S.W.; Kim, I.S.; Kang, Y.M. A matrix metalloproteinase 1-cleavable composite peptide derived from transforming growth factor β-inducible gene h3 potently inhibits collagen-induced arthritis. Arthritis Rheum., 2013, 65(7), 1753-1763.
[http://dx.doi.org/10.1002/art.37932] [PMID: 23508298]
[119]
Malemud, C.J. Matrix metalloproteinases (MMPs) in health and disease: an overview. Front. Biosci., 2006, 11, 1696-1701.
[http://dx.doi.org/10.2741/1915] [PMID: 16368548]
[120]
Rannou, F.; François, M.; Corvol, M.T.; Berenbaum, F. Cartilage breakdown in rheumatoid arthritis. Joint Bone Spine, 2006, 73(1), 29-36.
[http://dx.doi.org/10.1016/j.jbspin.2004.12.013] [PMID: 16087381]
[121]
Green, M.J.; Gough, A.K.S.; Devlin, J.; Smith, J.; Astin, P.; Taylor, D.; Emery, P. Serum MMP-3 and MMP-1 and progression of joint damage in early rheumatoid arthritis. Rheumatology (Oxford), 2003, 42(1), 83-88.
[http://dx.doi.org/10.1093/rheumatology/keg037] [PMID: 12509618]
[122]
O’Brien, M.S.; McDougall, J.J. Age and frailty as risk factors for the development of osteoarthritis. Mech. Ageing Dev., 2019, 180, 21-28.
[http://dx.doi.org/10.1016/j.mad.2019.03.003] [PMID: 30898635]
[123]
Evans, C.H.; Kraus, V.B.; Setton, L.A. Progress in intra-articular therapy. Nat. Rev. Rheumatol., 2014, 10(1), 11-22.
[http://dx.doi.org/10.1038/nrrheum.2013.159] [PMID: 24189839]
[124]
Kou, L.; Xiao, S.; Sun, R.; Bao, S.; Yao, Q.; Chen, R. Biomaterial-engineered intra-articular drug delivery systems for osteoarthritis therapy. Drug Deliv., 2019, 26(1), 870-885.
[http://dx.doi.org/10.1080/10717544.2019.1660434] [PMID: 31524006]
[125]
Luo, Q.; Gong, P.; Sun, M.; Kou, L.; Ganapathy, V.; Jing, Y.; He, Z.; Sun, J. 2016.
[126]
Kou, L.; Huang, H.; Lin, X.; Jiang, X.; Wang, Y.; Luo, Q.; Sun, J.; Yao, Q.; Ganapathy, V.; Chen, R. Endocytosis of ATB0,+(SLC6A14)-targeted liposomes for drug delivery and its therapeutic application for pancreatic cancer. Expert Opin. Drug Deliv., 2020, 17(3), 395-405.
[http://dx.doi.org/10.1080/17425247.2020.1723544] [PMID: 31990587]
[127]
Thakkar, H.; Kumar Sharma, R.; Murthy, R.S.R. Enhanced retention of celecoxib-loaded solid lipid nanoparticles after intra-articular administration. Drugs R D., 2007, 8(5), 275-285.
[http://dx.doi.org/10.2165/00126839-200708050-00002] [PMID: 17767393]
[128]
Kou, L.; Yao, Q.; Sun, M.; Wu, C.; Wang, J.; Luo, Q.; Wang, G.; Du, Y.; Fu, Q.; Wang, J.; He, Z.; Ganapathy, V.; Sun, J. Cotransporting Ion is a Trigger for Cellular Endocytosis of Transporter-Targeting Nanoparticles: A Case Study of High-Efficiency SLC22A5 (OCTN2)-Mediated Carnitine-Conjugated Nanoparticles for Oral Delivery of Therapeutic Drugs. Adv. Healthc. Mater., 2017, 6(17)
[http://dx.doi.org/10.1002/adhm.201700165] [PMID: 28661032]
[129]
Kou, L.; Sun, R.; Xiao, S.; Cui, X.; Sun, J.; Ganapathy, V.; Yao, Q.; Chen, R. OCTN2-targeted nanoparticles for oral delivery of paclitaxel: differential impact of the polyethylene glycol linker size on drug delivery in vitro, in situ, and in vivo. Drug Deliv., 2020, 27(1), 170-179.
[http://dx.doi.org/10.1080/10717544.2019.1710623] [PMID: 31913724]
[130]
Zhang, J.X.; Yan, M.Q.; Li, X.H.; Qiu, L.Y.; Li, X.D.; Li, X.J.; Jin, Y.; Zhu, K.J. Local delivery of indomethacin to arthritis-bearing rats through polymeric micelles based on amphiphilic polyphosphazenes. Pharm. Res., 2007, 24(10), 1944-1953.
[http://dx.doi.org/10.1007/s11095-007-9322-4] [PMID: 17530389]
[131]
Xiaole, Q.; Xiaoxue, Q.; Rong, Y.; Jiayi, Q.; Wenyan, L.; Kun, L.; Zhenghong, W.; Li, S. Intra-articular Administration of Chitosan Thermosensitive In Situ Hydrogels Combined With Diclofenac Sodium-Loaded Alginate Microspheres. J. Pharm. Sci., 2016, 105(1), 122-130.
[http://dx.doi.org/10.1016/j.xphs.2015.11.019] [PMID: 26852847]
[132]
Yao, Q.; Huang, Z.W.; Zhai, Y.Y.; Yue, M.; Luo, L.Z.; Xue, P.P.; Han, Y.H.; Xu, H.L.; Kou, L.; Zhao, Y.Z. Localized Controlled Release of Bilirubin from β-Cyclodextrin-Conjugated ε-Polylysine To Attenuate Oxidative Stress and Inflammation in Transplanted Islets. ACS Appl. Mater. Interfaces, 2020, 12(5), 5462-5475.
[http://dx.doi.org/10.1021/acsami.9b18986] [PMID: 31927945]
[133]
Kou, L.; Jiang, X.; Xiao, S.; Zhao, Y. Z.; Yao, Q.; Chen, R. Therapeutic options and drug delivery strategies for the prevention of intrauterine adhesions., 2019.
[134]
Nitin, J.; Jing, Y.; Seth, L.; Sachin, B.; Kai, V.S.; Nicholas, E.S.; Julian, A.; Yufeng, W.; Logan, R.; Xueyin, H.; Shi, T.R.; Michael, V.; Praveen, K.V.; Oscar, R.M.; Oren, L.; Ellen, M.G.; Antonios, O.A.; Joerg, E.; Jeffrey, M.K. Towards an arthritis flare-responsive drug delivery system. Nat. Commun., 2018, 9(1)
[135]
Purcell, B.P.; Lobb, D.; Charati, M.B.; Dorsey, S.M.; Wade, R.J.; Zellars, K.N.; Doviak, H.; Pettaway, S.; Logdon, C.B.; Shuman, J.A.; Freels, P.D.; Gorman, J.H., III; Gorman, R.C.; Spinale, F.G.; Burdick, J.A. Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition. Nat. Mater., 2014, 13(6), 653-661.
[http://dx.doi.org/10.1038/nmat3922] [PMID: 24681647]
[136]
Loewenstein, W.R.; Kanno, Y. Intercellular communication and tissue growth. I. Cancerous growth. J. Cell Biol., 1967, 33(2), 225-234.
[http://dx.doi.org/10.1083/jcb.33.2.225] [PMID: 6039367]
[137]
Liu, T.W.; Akens, M.K.; Chen, J.; Wilson, B.C.; Zheng, G. Matrix metalloproteinase-based photodynamic molecular beacons for targeted destruction of bone metastases in vivo. Photochem. Photobiol. Sci., 2016, 15(3), 375-381.
[http://dx.doi.org/10.1039/C5PP00414D] [PMID: 26880165]
[138]
Zheng, G.; Chen, J.; Stefflova, K.; Jarvi, M.; Li, H.; Wilson, B.C. Photodynamic molecular beacon as an activatable photosensitizer based on protease-controlled singlet oxygen quenching and activation. Proc. Natl. Acad. Sci. USA, 2007, 104(21), 8989-8994.
[http://dx.doi.org/10.1073/pnas.0611142104] [PMID: 17502620]
[139]
Liu, T.W.; Akens, M.K.; Chen, J.; Wise-Milestone, L.; Wilson, B.C.; Zheng, G. Imaging of specific activation of photodynamic molecular beacons in breast cancer vertebral metastases. Bioconjug. Chem., 2011, 22(6), 1021-1030.
[http://dx.doi.org/10.1021/bc200169x] [PMID: 21585206]
[140]
Feril, L.B., Jr; Ogawa, R.; Tachibana, K.; Kondo, T. Optimized ultrasound-mediated gene transfection in cancer cells. Cancer Sci., 2006, 97(10), 1111-1114.
[http://dx.doi.org/10.1111/j.1349-7006.2006.00286.x] [PMID: 16925580]
[141]
Nahire, R.; Paul, S.; Scott, M.D.; Singh, R.K.; Muhonen, W.W.; Shabb, J.; Gange, K.N.; Srivastava, D.K.; Sarkar, K.; Mallik, S. Ultrasound enhanced matrix metalloproteinase-9 triggered release of contents from echogenic liposomes. Mol. Pharm., 2012, 9(9), 2554-2564.
[http://dx.doi.org/10.1021/mp300165s] [PMID: 22849291]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy