General Review Article

The Epitome of Novel Techniques and Targeting Approaches in Drug Delivery for Treating Lymphatic Filariasis

Author(s): Saurabh Shrivastava*, Anshita Gupta and Chanchal Deep Kaur*

Volume 21, Issue 12, 2020

Page: [1250 - 1263] Pages: 14

DOI: 10.2174/1389450121666200630111250

Price: $65

conference banner
Abstract

Background: Lymphatic filariasis is a pervasive and life-threatening disease for human beings. Currently, 893 million people in 49 countries worldwide affected by lymphatic filariasis as per WHO statistics. The concealed aspects of lymphatic diseases such as delayed disease detection, inappropriate disease imaging, the geographical outbreak of infection, and lack of preventive chemotherapy have brought this epidemic to the edge of Neglected Tropical Diseases. Many medications and natural bioactive substances have seen to promote filaricidal activity against the target parasitic species. However, the majority of failures have occurred in pharmaceutical and pharmacokinetic issues.

Objective: The purpose of the study is to focus on the challenges and therapeutic issues in the treatment of filariasis. The review brings novel techniques and therapeutic approaches for combating lymphatic filariasis. It also offers significant developments and opportunities for such therapeutic interventions.

Conclusion: Through this review, an attempt has made to critically evaluate the avenues of innovative pharmaceuticals and molecular targeting approaches to bring an integrated solution to combat lymphatic filariasis.

Keywords: Bioavailability, filaricidal, lymphatic filariasis, novel target, parasitic disease, targeting approach.

Graphical Abstract

[1]
Ali Khan, A.; Mudassir, J.; Mohtar, N.; Darwis, Y. Advanced drug delivery to the lymphatic system: lipid-based nanoformulations. Int. J. Nanomedicine, 2013, 8, 2733-2744.
[PMID: 23926431]
[2]
Shrivastava, S; Gidwani, B; Gupta, A; Kaur, CD Ethnopharmacological approaches to treat lymphatic filariasis. International Journal of Pharmacy and Analytical Research, 2016, Sep; 5(3), 445-470..2320 -2831 Google Scholar.
[3]
Dietrich, C.F.; Chaubal, N.; Hoerauf, A.; Kling, K.; Piontek, M.S.; Steffgen, L.; Mand, S.; Dong, Y. Review of dancing parasites in lymphatic filariasis. Ultrasound Int. Open, 2019, 5(2), E65-E74.
[http://dx.doi.org/10.1055/a-0918-3678] [PMID: 31312785]
[5]
NVBDC Filariasis, 2019 26 August.https://www.nvbdcp.gov.in/index1.php?lang=1&level=1&sublinkid=5777&lid=3691 [26 August 2019]
[6]
Ali, M.; Afzal, M.; Kaushik, U.; Bhattacharya, S.M.; Ahmad, F.J.; Dinda, A.K. Perceptive solutions to anti-filarial chemotherapy of lymphatic filariasis from the plethora of nanomedical sciences. J. Drug Target., 2014, 22(1), 1-13.
[http://dx.doi.org/10.3109/1061186X.2013.832766] [PMID: 24004100]
[7]
Tripathi, KD Essentials of medical pharmacology; JP Medical Ltd, 2013. 30.Sep; Book
[8]
Rang, HP; Ritter, JM; Flower, RJ Henderson, G Rang & Dale's Pharmacology E-Book; Elsevier Health Sciences, 2014.2Dec; Book.
[9]
Pharmacopoeia, I. Government of India. Ministry of health and family welfare, 2007, 2, 1020-1021.
[10]
Goodman, L.S. Goodman and Gilman’s the pharmacological basis of therapeutics; McGraw-Hill: New York , 1996. Book.
[11]
Katzung, B.G. Basic and clinical pharmacology. McGraw-Hill Education; Book, 2017.
[12]
Howland, R.D.; Mycek, M.J.; Harvey, R.A.; Champe, P.C. Lippincott's illustrated reviews: Pharmacology; Lippincott Williams & Wilkins: Philadelphia; , 2006. Book.
[13]
Gyapong, J.O.; Owusu, I.O.; da-Costa Vroom, F.B.; Mensah, E.O.; Gyapong, M. Elimination of lymphatic filariasis: current perspectives on mass drug administration. Res. Rep. Trop. Med., 2018, 9, 25-33.
[http://dx.doi.org/10.2147/RRTM.S125204] [PMID: 30050352]
[14]
Poovi, G.; Damodharan, N. Lipid nanoparticles: A challenging approach for oral delivery of BCS Class-II drugs. Future Journal of Pharmaceutical Sciences., 2018, 4(2), 191-205.
[http://dx.doi.org/10.1016/j.fjps.2018.04.001]
[15]
Shrivastava, S.; Gidwani, B.; Kaur, C.D. Development of mebendazole loaded nanostructured lipid carriers for lymphatic targeting: Optimization, characterization, in-vitro and in-vivo evaluation. Particul. Sci. Technol., 2020, 1-1.
[http://dx.doi.org/10.1080/02726351.2020.1750515]
[16]
Kaur, C.D.; Nahar, M.; Jain, N.K. Lymphatic targeting of zidovudine using surface-engineered liposomes. J. Drug Target., 2008, 16(10), 798-805.
[http://dx.doi.org/10.1080/10611860802475688] [PMID: 19005941]
[17]
Kim, H; Kim, Y; Lee, J Liposomal formulations for enhanced lymphatic drug delivery. asian journal of pharmaceutical sciences., 2013 1Apr, 8(2), 96-103.
[http://dx.doi.org/10.1016/j.ajps.2013.07.012]
[18]
Roy, P.; Saha, S.K.; Gayen, P.; Chowdhury, P.; Sinha Babu, S.P. Exploration of antifilarial activity of gold nanoparticle against human and bovine filarial parasites: A nanomedicinal mechanistic approach. Colloids Surf. B Biointerfaces, 2018, 161, 236-243.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.057] [PMID: 29080508]
[19]
Ali, M.; Afzal, M.; Verma, M.; Misra-Bhattacharya, S.; Ahmad, F.J.; Dinda, A.K. Improved antifilarial activity of ivermectin in chitosan-alginate nanoparticles against human lymphatic filarial parasite, Brugia malayi. Parasitol. Res., 2013, 112(8), 2933-2943.
[http://dx.doi.org/10.1007/s00436-013-3466-4] [PMID: 23828187]
[20]
Saraf, S.; Ghosh, A.; Kaur, C.D.; Saraf, S. Novel modified nanosystem based lymphatic targeting. Res J Nanosci Nanotechnol., 2011, 1, 60-74.
[http://dx.doi.org/10.3923/rjnn.2011.60.74]
[21]
Kim, C.K.; Jeong, E.J. Enhanced lymph node delivery and immunogenicity of hepatitis B surface antigen entrapped in galactosylated liposomes. Int. J. Pharm., 1997, 147(2), 143-151.
[http://dx.doi.org/10.1016/S0378-5173(96)04798-9]
[22]
Singh, I.; Swami, R.; Khan, W.; Sistla, R. Lymphatic system: a prospective area for advanced targeting of particulate drug carriers. Expert Opin. Drug Deliv., 2014, 11(2), 211-229.
[http://dx.doi.org/10.1517/17425247.2014.866088] [PMID: 24350774]
[23]
Medina, L.A.; Calixto, S.M.; Klipper, R.; Phillips, W.T.; Goins, B. Avidin/biotin-liposome system injected in the pleural space for drug delivery to mediastinal lymph nodes. J. Pharm. Sci., 2004, 93(10), 2595-2608.
[http://dx.doi.org/10.1002/jps.20163] [PMID: 15349969]
[24]
Mangat, S.; Patel, H.M. Lymph node localization of non-specific antibody-coated liposomes. Life Sci., 1985, 36(20), 1917-1925.
[http://dx.doi.org/10.1016/0024-3205(85)90440-0] [PMID: 3990516]
[25]
Ling, S.S.; Magosso, E.; Khan, N.A. Enhanced oral bioavailability and intestinal lymphatic transport of a hydrophilic drug using liposomes. Drug Dev. Ind. Pharm., 2006, 32, 335e345. 0363-9045 (Print) 1520-5762 (Online)
[http://dx.doi.org/10.1080/03639040500519102]
[26]
Huang, YB; Tsai, MJ; Wu, PC Elastic liposomes as carriers for oral delivery and the brain distribution of (þ)-catechin. J Drug Target, 2011, 19, 709e718.
[http://dx.doi.org/10.3109/1061186X.2010.551402 ]
[27]
Mann, JFS; Ferro, VA; Mullen, AB Optimisation of a lipid based oral delivery system containing A/Panama influenza haemagglutinin. Vaccine, 2004, 22, 2425e2429.
[http://dx.doi.org/10.1016/j.vaccine.2003.11.067 ]
[28]
Takeuchi, H; Matsui, Y; Yamamoto, H Mucoadhesive properties of carbopol or chitosan-coated liposomes and their effectiveness in oral administration of calcitonin to rats. J Control Release, 2003, 86, 235e242.
[http://dx.doi.org/10.1016/S0168-3659(02)00411-X]
[29]
Zhang, X.Y.; Lu, W.Y. Recent advances in lymphatic targeted drug delivery system for tumor metastasis. Cancer Biol. Med., 2014, 11(4), 247-254.
[PMID: 25610710]
[30]
Ghosh, A.; Kaur, C.D.; Gupta, A.; Saraf, S. Surface engineered lamivudine loaded emulsome for targeting drug delivery to lymphatic system for effective treatment of hiv. , 2456-0189.
[31]
Wu, H.; Zhou, A.; Lu, C.; Wang, L. Examination of lymphatic transport of puerarin in unconscious lymph duct-cannulated rats after administration in microemulsion drug delivery systems. Eur. J. Pharm. Sci., 2011, 42(4), 348-353.
[http://dx.doi.org/10.1016/j.ejps.2010.12.010] [PMID: 21216284]
[32]
Gaur, R.L.; Dixit, S.; Sahoo, M.K.; Khanna, M.; Singh, S.; Murthy, P.K. Anti-filarial activity of novel formulations of albendazole against experimental brugian filariasis. Parasitology, 2007, 134(Pt 4), 537-544.
[http://dx.doi.org/10.1017/S0031182006001612] [PMID: 17078904]
[33]
Joshi, M.; Pathak, S.; Sharma, S.; Patravale, V. Design and in vivo pharmacodynamic evaluation of nanostructured lipid carriers for parenteral delivery of artemether. Nanoject. Int. J. Pharm., 2008, 364(1), 119-126.
[http://dx.doi.org/10.1016/j.ijpharm.2008.07.032] [PMID: 18765274]
[34]
Chaudhary, S.; Garg, T.; Murthy, R.S.; Rath, G.; Goyal, A.K. Recent approaches of lipid-based delivery system for lymphatic targeting via oral route. J. Drug Target., 2014, 22(10), 871-882.
[http://dx.doi.org/10.3109/1061186X.2014.950664] [PMID: 25148607]
[35]
Luo, G.; Yu, X.; Jin, C.; Yang, F.; Fu, D.; Long, J.; Xu, J.; Zhan, C.; Lu, W. LyP-1-conjugated nanoparticles for targeting drug delivery to lymphatic metastatic tumors. Int. J. Pharm., 2010, 385(1-2), 150-156.
[http://dx.doi.org/10.1016/j.ijpharm.2009.10.014] [PMID: 19825404]
[36]
Aji Alex, M.R.; Chacko, A.J.; Jose, S.; Souto, E.B. Lopinavir loaded solid lipid nanoparticles (SLN) for intestinal lymphatic targeting. Eur. J. Pharm. Sci., 2011, 42(1-2), 11-18.
[http://dx.doi.org/10.1016/j.ejps.2010.10.002] [PMID: 20971188]
[37]
Pavoni, L.; Pavela, R.; Cespi, M.; Bonacucina, G.; Maggi, F.; Zeni, V.; Canale, A.; Lucchi, A.; Bruschi, F.; Benelli, G. Green Micro- and Nanoemulsions for Managing Parasites, Vectors and Pests. Nanomaterials (Basel), 2019, 9(9), 1285.
[http://dx.doi.org/10.3390/nano9091285] [PMID: 31505756]
[38]
Ali, M.; Afzal, M.; Bhattacharya, S.M.; Ahmad, F.J.; Dinda, A.K. Nanopharmaceuticals to target antifilarials: a comprehensive review. Expert Opin. Drug Deliv., 2013, 10(5), 665-678.
[http://dx.doi.org/10.1517/17425247.2013.771630] [PMID: 23427945]
[39]
Reddy, S.T.; Rehor, A.; Schmoekel, H.G.; Hubbell, J.A.; Swartz, M.A. In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J. Control. Release, 2006, 112(1), 26-34.
[http://dx.doi.org/10.1016/j.jconrel.2006.01.006] [PMID: 16529839]
[40]
Al-Abd, N.M.; Nor, Z.M.; Al-Adhroey, A.H.; Suhaimi, A.; Sivanandam, S. Recent advances on the use of biochemical extracts as filaricidal agents. Evid. Based Complement. Alternat. Med., 2013.2013986573
[http://dx.doi.org/10.1155/2013/986573] [PMID: 24298292]
[41]
Sahare, K.N.; Singh, V. In-vitro antifilarial activity of methanol extract of aegle marmelos corr. leaves. Indo American Journal of Pharmaceutical Research., 2013, 3(6), 4567-4573.
[42]
Mukherjee, N.; Saini, P.; Mukherjee, S.; Roy, P.; Sinha Babu, S.P. In vitro antifilarial activity of Azadirachta indica aqueous extract through reactive oxygen species enhancement. Asian Pac. J. Trop. Med., 2014, 7(11), 841-848.
[http://dx.doi.org/10.1016/S1995-7645(14)60147-4] [PMID: 25441981]
[43]
Sahare, K.N.; Anandhraman, V.; Meshram, V.G.; Meshram, S.U.; Singh, V.; Reddy, M.V.; Goswami, K. Antifilarial Potential of Butea monosperma L. against microfilaria in vitro. International Journal of PharmTech Research.,, 2012, 4(3), 1181-1184...0974- 4304.
[44]
Deshmukh, M.; Sahare, K.N.; Patidar, K.; Mahajan, B.; Singh, V. Antifilarial activity of Butea monosperma L. leaves extracts against Setaria cervi. Trends in Vector Research and Parasitology., 2014, 1(1), 1.
[http://dx.doi.org/10.7243/2054-9881-1-1]
[45]
Rizvi, W; Kumar, A; Kumar, R; Haider, N In-vitro screening for antifilarial potential in leaves of calotropis gigantae.,
[46]
Ali, M.; Afzal, M.; Abdul Nasim, S.; Ahmad, I. Nanocurcumin: a novel antifilarial agent with DNA topoisomerase II inhibitory activity. J. Drug Target., 2014, 22(5), 395-407.
[http://dx.doi.org/10.3109/1061186X.2013.869823] [PMID: 24479705]
[47]
Kushwaha, V.; Saxena, K.; Verma, R.; Verma, S.K.; Katoch, D.; Kumar, N.; Lal, B.; Murthy, P.K.; Singh, B. Antifilarial activity of diterpenoids from Taxodium distichum. Parasit. Vectors, 2016, 9(1), 312.
[http://dx.doi.org/10.1186/s13071-016-1592-4] [PMID: 27245322]
[48]
Mathew, N.; Misra-Bhattacharya, S.; Perumal, V.; Muthuswamy, K. Antifilarial lead molecules isolated from Trachyspermum ammi. Molecules, 2008, 13(9), 2156-2168.
[http://dx.doi.org/10.3390/molecules13092156] [PMID: 18830147]
[49]
Sahare, K.N.; Singh, V. Antifilarial activity of Methanolic extract of Vitex negundo L. leaves against Setaria cervi filarial parasite. Sch. Acad. J. Pharm., 2015, 4(2), 88-92.2320-4206.(Online) ISSN 2347-9531 (Print).
[50]
Sahare, K.N.; Singh, V. Antifilarial activity of ethyl acetate extract of Vitex negundo leaves in vitro. Asian Pac. J. Trop. Med., 2013, 6(9), 689-692.
[http://dx.doi.org/10.1016/S1995-7645(13)60119-4] [PMID: 23827144]
[51]
Mitra, A.K.; Agrahari, V.; Mandal, A.; Cholkar, K.; Natarajan, C.; Shah, S.; Joseph, M.; Trinh, H.M.; Vaishya, R.; Yang, X.; Hao, Y.; Khurana, V.; Pal, D. Novel delivery approaches for cancer therapeutics. J. Control. Release, 2015, 219, 248-268.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.067] [PMID: 26456750]
[52]
Sharma, O.P.; Vadlamudi, Y.; Kota, A.G.; Sinha, V.K.; Kumar, M.S. Drug targets for lymphatic filariasis: a bioinformatics approach. J. Vector Borne Dis., 2013, 50(3), 155-162.
[PMID: 24220073]
[53]
Kalyanasundaram, R. inventor; University of Illinois, assignee. Vaccine and methods for detecting and preventing filariasis. United States patent application US 16/116,203. 2019.7Feb; US Patent US 16/116,203.
[54]
Pfarr, K.M.; Hoerauf, A.; Koenig, G.M.; Specht, S.; Schiefer, A.; Schaeberle, T.F.; Schmitz, A.; Kehraus, S. inventors; Rheinische Friedrich Wilhelms Universitaet Bonn, assignee. Compounds for use in the treatment of filariasis. United States patent US 9,168,244. 2015 27.Oct.US Patent US 9,168,244.
[55]
Samykutty, A.; Dakshinamoorthy, G.; Kalyanasundaram, R. Multivalent vaccine for lymphatic filariasis. Procedia Vaccinol., 2010, 3, 12-18.
[http://dx.doi.org/10.1016/j.provac.2010.11.003] [PMID: 21709765]
[56]
Baudonnet, L.; Mallard, C. inventors; Galderma SA, assignee. Dermatological compositions comprising avermectin nanocapsules. United States patent US 8,309,121. 2012 13.Nov.US Patent US 8,309,121.
[57]
Mallard, C.; Baudonnet, L. inventors; Galderma SA, assignee. Dermatological compositions comprising avermectin nanocapsules. United States patent US 8,491,928. 2013 23.Jul.US Patent US 8,491,928.
[58]
Hafiz Abdul; Herbal composition and medicaments thereof for treatment of filariasis., Indian Patent WO 2012/131720 Al. 2012 4October.Indian Patent WO 2012/131720 Al.
[59]
Stewart, G.C.; Thompson, B.M.; Lin, C.H. inventors; University of Missouri System, assignee. Bacillus based delivery system and methods of use. United States patent application US10081790B2., , 2011 17.Nov.US Patent US10081790B2.
[60]
Noordin Rahmah; Method for rapid detection of lymphatic filariasis.United States Patent US 2010/0021926 A1., 2010 28.Jan.US Patent US 2010/0021926 A1.
[61]
Goedemoed, J.H.; Hennink, W.E. inventors; Osteotech Inc, assignee. Polyetherester copolymers as drug delivery matrices. United States patent US 5,980,948., 1999 9.Nov. US Patent US 5,980,948.
[62]
Kron, M.A.; Leberman, R. inventors; Europaisches Laboratorium fur Molekularbiologie (EMBL), Michigan State University, assignee. Recombinant asparaginyl-tRNA synthetase from the human filarial parasite, Brugia malayi. United States patent US 5,721,116., 1998 24.Feb. US Patent US 5,721,116.
[63]
Friedheim, E.A.; Duwel, D. inventors; Hoechst AG, assignee. Treatment of filariasis. United States patent US 3,883,650., 1975 13.May. US Patent US 3,883,650.
[64]
Riviere, E.; Vilarel, D.Y.; Debrie, R.L.; Loiseau, G.P. inventors. Treatment of bilharziosis and filariasis employing the antimony salt of certain hydroxy quinolines. United States patent US 3,879,549., 1975 22.Apr. US Patent US 3,879,549.
[65]
Disease Control Programmes [NHM] National Vector Borne Disease Control Programme Retrieved from,, https://mohfw.gov.in/sites/default/files/05Chapter.pdf 30 January 2019
[66]
Banerjee, S.S.; Aher, N.; Patil, R.; Khandare, J. Poly (ethylene glycol)-prodrug conjugates: concept, design and applications. J. Drug Deliv., 2012.2012103973
[http://dx.doi.org/10.1155/2012/103973] [PMID: 22645686]
[67]
Ami, M.; Krunal, S.; Hejal, P. Advancements in controlled release gastroretentive drug delivery system: a review. J. Drug Deliv. Ther., 2012, 2(3), 34-41.
[http://dx.doi.org/10.22270/jddt.v2i3.164]
[68]
Morishita, M.; Lowman, A.M.; Takayama, K.; Nagai, T.; Peppas, N.A. Elucidation of the mechanism of incorporation of insulin in controlled release systems based on complexation polymers. J. Control. Release, 2002, 81(1-2), 25-32.
[http://dx.doi.org/10.1016/S0168-3659(02)00019-6] [PMID: 11992675]
[69]
Bassi, P.; Kaur, G. pH modulation: a mechanism to obtain pH-independent drug release. Expert Opin. Drug Deliv., 2010, 7(7), 845-857.
[http://dx.doi.org/10.1517/17425247.2010.491508] [PMID: 20509776]
[70]
Gour, A.; Jain, N.K. Advances in green synthesis of nanoparticles. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 844-851.
[http://dx.doi.org/10.1080/21691401.2019.1577878] [PMID: 30879351]
[71]
Kumar, D.; Kumar, G.; Agrawal, V. Green synthesis of silver nanoparticles using Holarrhena antidysenterica (L.) Wall.bark extract and their larvicidal activity against dengue and filariasis vectors. Parasitol. Res., 2018, 117(2), 377-389.
[http://dx.doi.org/10.1007/s00436-017-5711-8] [PMID: 29250727]
[72]
Kanthammal, S.; Jebanesan, A.; Kovendan, K.; Subramaniam, J.; Vijay, M. Novel insecticides of Syzygium cumini fabricated silver nanoparticles against filariasis, malaria, and dengue vector mosquitoes. methods (Mohanpuria et al., 2005; Rajan et al., 2015). 2018, 12, 13.2348-5906.
[73]
Nune, S.K.; Gunda, P.; Majeti, B.K.; Thallapally, P.K.; Forrest, M.L. Advances in lymphatic imaging and drug delivery. Adv. Drug Deliv. Rev., 2011, 63(10-11), 876-885.
[http://dx.doi.org/10.1016/j.addr.2011.05.020] [PMID: 21718728]
[74]
Landmann, F.; Voronin, D.; Sullivan, W.; Taylor, M.J. Anti-filarial activity of antibiotic therapy is due to extensive apoptosis after Wolbachia depletion from filarial nematodes. PLoS Pathog., 2011, 7(11)e1002351
[http://dx.doi.org/10.1371/journal.ppat.1002351] [PMID: 22072969]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy