Abstract
Background: From the literature it is known that many derivatives of fused thienopyrimidines and furopyrimidines possess broad spectrum of biological activity.
Objectives: The current studies describe the synthesis and evaluation of antimicrobial activity of some new N-1,3-thiazol-2-ylacetamides of pyrido[3',2':4,5]furo(thieno)[3,2-d]pyrimidines.
Methods: By cyclocondensation of ethyl 1-aminofuro(thieno)[2,3-b]pyridine-2-carboxylates 1with formamide were converted to the pyrido[3',2':4,5]furo(thieno)[3,2-d]pyrimidin-7(8)-ones 2.Alkylation of compound 2 with 2-chloro-N-1,3-thiazol-2-ylacetamide led to the aimed N-1,3-thiazol-2-ylaceta-mides of pyrido[3',2':4,5]furo(thieno)[3,2-d]pyrimidines 3. Starting from compound 2 the relevant S-alkylated derivatives of pyrido[3',2':4,5]furo(thieno)[3,2-d]pyrimidines 6 were also synthesized.
Results: All the compounds showed antibacterial activity to non-resistant strains. Compounds 3a-3m showed antibacterial activity with MIC/MBC at 0.08-2.31 mg/mL/0.11-3.75 mg/mL .The two most active compounds, 3j and 6b, appeared to be more active towards MRSA than the reference drugs. Half of the tested compounds appeared to be equipotent/more potent than ketoconazole and more potent than bifonazole.
The docking analysis provided useful information about the interactions occurring between the tested compounds and the different enzymes.
Conclusion: Gram-negative and Gram-positive bacteria and fungi showed different response towards tested compounds, indicating that different substituents may lead to different modes of action or that the metabolism of some bacteria/fungi was better able to overcome the effect of the compounds or adapt to it.
Keywords: furo(thieno)[3, 2-d]pyrimidin-7(8)-ones, furo(thieno)[3, 2-d]pyrimidin-4(7, 8)-thiones, 2-chloro-N-1, 3-thiazol 2- ylacetamide, Alkylation, Antimicrobial activity, Biological activity.
Graphical Abstract
[http://dx.doi.org/10.1023/B:RUCB.0000035630.75564.2b]
[http://dx.doi.org/10.1070/RCR4447]
[http://dx.doi.org/10.1016/j.bmcl.2007.02.032 ] [PMID: 17339109]
[http://dx.doi.org/10.1128/AAC.00032-17 ] [PMID: 28438931]
[http://dx.doi.org/10.1021/jm0504407 ] [PMID: 16279797]
[http://dx.doi.org/10.1007/s11094-014-1026-6]
[http://dx.doi.org/10.1007/s11094-016-1439-5]
[http://dx.doi.org/10.1590/0001-3765201820170798 ] [PMID: 29694500]
[http://dx.doi.org/10.1080/00397911.2019.1595659]
[http://dx.doi.org/10.3390/molecules24213952 ] [PMID: 31683699]
[http://dx.doi.org/10.1016/j.ejmech.2015.11.002 ] [PMID: 26599534]
[http://dx.doi.org/10.1016/j.bmcl.2016.05.093 ] [PMID: 27301367]
[http://dx.doi.org/10.1016/j.bmc.2015.08.002 ] [PMID: 26319621]
[http://dx.doi.org/10.1016/j.cbi.2018.03.013 ] [PMID: 29574026]
[http://dx.doi.org/10.3390/molecules24091741 ] [PMID: 31060260]
[http://dx.doi.org/10.1007/s00044-019-02433-2]
[http://dx.doi.org/10.1016/j.jscs.2017.04.007]
[http://dx.doi.org/10.1080/00397911.2017.1412465]
[http://dx.doi.org/10.1007/s11094-013-0910-9]
[http://dx.doi.org/10.1007/s10593-013-1192-6]
[http://dx.doi.org/10.1039/C6RA06507D]
[http://dx.doi.org/10.1016/j.tet.2013.10.015]
[http://dx.doi.org/10.1002/prac. 19743160620.]
[http://dx.doi.org/10.1016/j.bmc.2018.08.004 ] [PMID: 30107969]
[http://dx.doi.org/10.1016/j. mimet.2012.05.001]
[http://dx.doi.org/10.1128/JCM.39.4.1360-1367.2001 ] [PMID: 11283057]
[http://dx.doi.org/10.1111/j.1439-0507.1988.tb03718.x ] [PMID: 3292912]
[http://dx.doi.org/10.2174/1385272820666151116213645]