Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Cancer Pro-oxidant Therapy Through Copper Redox Cycling: Repurposing Disulfiram and Tetrathiomolybdate

Author(s): Manuel Rieber*

Volume 26, Issue 35, 2020

Page: [4461 - 4466] Pages: 6

DOI: 10.2174/1381612826666200628022113

Price: $65

Abstract

Background: Copper (Cu) is a transition metal active in Fenton redox cycling from reduced Cu+ and H2O2, to oxidized Cu2+ and the hydroxyl radical (·OH) highly reactive oxygen species (ROS). At homeostatic Cu levels, ROS promote cell proliferation, migration, angiogenesis, and wound repair. To limit ROS toxicity, cells use Cu-dependent chaperone proteins, Cu-binding ceruloplasmin, and Cu-modulated enzymes like superoxide dismutases (SOD) like SOD1 and SOD3 to scavenge excess superoxide anions which favour Cu+ reduction, and mitochondrial cytochrome c oxidase, important in aerobic energy production. Because Cu helps drive tumor cell proliferation by promoting growth factor-independent receptor tyrosine kinase signaling, and Cu-dependent MEK1 involved in oncogenic BRAF-V600E signaling, further augmenting bioavailable Cu may promote ROS overproduction, cancer progression and eventually tumor cell death. For these reasons, the following clinically approved copper chelators are being repurposed as anti-cancer agents: a) ammonium tetrathiomolybdate (TTM) used to treat Wilson’s disease (copper overload) and Menkes disease (copper deficiency); b) Disulfiram (DSF), used against alcoholism, since it inhibits Aldehyde Dehydrogenase (ALDH1) enzyme, important in ethanol detoxification, and a key target against cancer stem cells. Moreover, TTM and DSF are also relevant in cancer clinical trials, because they increase the uptake of both Cu and Platinum (Pt)-containing anti-cancer drugs, since Pt and Cu share the same CTR1 copper transporter.

Purpose: The majority of reports on Cu chelators dealt separately with either TTM, DSF or others. Here, we compare in parallel, the anti-cancer efficacy of low doses of TTM and DSF, asking whether they can be synergistic or antagonistic. The relevance of their unequal ROS inducing abilities and their different behavior as ionophores is also addressed.

Significance: The potential of Cu chelators as repurposed anti-cancer drugs, should be greater in patients with higher endogenous Cu levels. Since platinum and Cu share uptake receptors, the synergism by drugs containing these metals should not be under-estimated. The potential of disulfiram or its metabolically active Cu-containing form, to inhibit ALDH1-positive tumor cells is therapeutically very important.

Keywords: Cu chelation, Cu-MEK activation, oxaliplatin, tetrathiomolybdate, disulfiram, ALDH1-positive tumor cells.

[1]
Bhattacharjee A, Chakraborty K, Shukla A. Cellular copper homeostasis: current concepts on its interplay with glutathione homeostasis and its implication in physiology and human diseases. Metallomics 2017; 9(10): 1376-88.
[http://dx.doi.org/10.1039/C7MT00066A] [PMID: 28675215]
[2]
Gupte A, Mumper RJ. Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat Rev 2009; 35(1): 32-46.
[http://dx.doi.org/10.1016/j.ctrv.2008.07.004] [PMID: 18774652]
[3]
Zhang X, Yang Q. Association between serum copper levels and lung cancer risk: A meta-analysis. J Int Med Res 2018; 46(12): 4863-73.
[http://dx.doi.org/10.1177/0300060518798507] [PMID: 30296873]
[4]
Ishida S, Andreux P, Poitry-Yamate C, Auwerx J, Hanahan D. Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proc Natl Acad Sci USA 2013; 110(48): 19507-12.
[http://dx.doi.org/10.1073/pnas.1318431110] [PMID: 24218578]
[5]
Liao Y, Zhao J, Bulek K, et al. Inflammation mobilizes copper metabolism to promote colon tumorigenesis via an IL-17-STEAP4-XIAP axis. Nat Commun 2020; 11(1): 900.
[http://dx.doi.org/10.1038/s41467-020-14698-y] [PMID: 32060280]
[6]
Turski ML, Brady DC, Kim HJ, et al. A novel role for copper in Ras/mitogen-activated protein kinase signaling. Mol Cell Biol 2012; 32(7): 1284-95.
[http://dx.doi.org/10.1128/MCB.05722-11] [PMID: 22290441]
[7]
Brady DC, Crowe MS, Turski ML, et al. Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature 2014; 509(7501): 492-6.
[http://dx.doi.org/10.1038/nature13180] [PMID: 24717435]
[8]
Pham AN, Xing G, Miller CJ, Waite TD. Fenton-like copper redox chemistry revisited: Hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production. J Catal 2013; 301: 54-64.
[http://dx.doi.org/10.1016/j.jcat.2013.01.025]
[9]
Maryon EB, Molloy SA, Kaplan JH. Cellular glutathione plays a key role in copper uptake mediated by human copper transporter 1. Am J Physiol Cell Physiol 2013; 304(8): C768-79.
[http://dx.doi.org/10.1152/ajpcell.00417.2012] [PMID: 23426973]
[10]
Tsai CY, Finley JC, Ali SS, Patel HH, Howell SB. Copper influx transporter 1 is required for FGF, PDGF and EGF-induced MAPK signaling. Biochem Pharmacol 2012; 84(8): 1007-13.
[http://dx.doi.org/10.1016/j.bcp.2012.07.014] [PMID: 22842628]
[11]
Karginova O, Weekley CM, Raoul A, et al. Inhibition of Copper Transport Induces Apoptosis in Triple-Negative Breast Cancer Cells and Suppresses Tumor Angiogenesis. Mol Cancer Ther 2019; 18(5): 873-85.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0667] [PMID: 30824611]
[12]
Narayanan G. R BS, Vuyyuru H, Muthuvel B, Konerirajapuram Natrajan S. CTR1 silencing inhibits angiogenesis by limiting copper entry into endothelial cells. PLoS One 2013; 8(9): e71982-9.
[http://dx.doi.org/10.1371/journal.pone.0071982] [PMID: 24039729]
[13]
Cui H, Zhang AJ, McKeage MJ, et al. Copper transporter 1 in human colorectal cancer cell lines: Effects of endogenous and modified expression on oxaliplatin cytotoxicity. J Inorg Biochem 2017; 177: 249-58.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.04.022] [PMID: 28551160]
[14]
Masaldan S, Clatworthy SAS, Gamell C, et al. Copper accumulation in senescent cells: Interplay between copper transporters and impaired autophagy. Redox Biol 2018; 16: 322-31.
[15]
Fukai T, Ushio-Fukai M, Kaplan JH. Copper transporters and copper chaperones: roles in cardiovascular physiology and disease. Am J Physiol Cell Physiol 2018; 315(2): C186-201.
[http://dx.doi.org/10.1152/ajpcell.00132.2018] [PMID: 29874110]
[16]
Lopez J, Ramchandani D, Vahdat L. Copper Depletion as a Therapeutic Strategy in Cancer Essential Metals in Medicine: Therapeutic Use and Toxicity of Metal Ions in the Clinic 2019; 303-30..
[http://dx.doi.org/10.1515/9783110527872-012]
[17]
Linder MC. Ceruloplasmin and other copper binding components of blood plasma and their functions: an update. Metallomics 2016; 8(9): 887-905.
[http://dx.doi.org/10.1039/C6MT00103C] [PMID: 27426697]
[18]
Goldstein IM, Kaplan HB, Edelson HS, Weissmann G. Ceruloplasmin. A scavenger of superoxide anion radicals. J Biol Chem 1979; 254(10): 4040-5.
[PMID: 220229]
[19]
Goldstein IM, Kaplan HB, Edelson HS, Weissmann G. Ceruloplasmin: an acute phase reactant that scavenges oxygen-derived free radicals. Ann N Y Acad Sci 1982; 389: 368-79. [Review
[http://dx.doi.org/10.1111/j.1749-6632.1982.tb22150.x] [PMID: 6284006]
[20]
Shang Y, Luo M, Yao F, Wang S, Yuan Z, Yang Y. Ceruloplasmin suppresses ferroptosis by regulating iron homeostasis in hepatocellular carcinoma cells. Cell Signal 2020. 72109633
[http://dx.doi.org/10.1016/j.cellsig.2020.109633] [PMID: 32283255]
[21]
Ramos D, Mar D, Ishida M, et al. Mechanism of copper uptake from blood plasma ceruloplasmin by mammalian cells. PLoS One 2016; 11(3) e0149516
[http://dx.doi.org/10.1371/journal.pone.0149516] [PMID: 26934375]
[22]
Squitti R, Siotto M, Arciello M, Rossi L. Non-ceruloplasmin bound copper and ATP7B gene variants in Alzheimer’s disease. Metallomics 2016; 8(9): 863-73.
[http://dx.doi.org/10.1039/C6MT00101G] [PMID: 27499330]
[23]
Kim YJ, Bond GJ, Tsang T, Posimo JM, Busino L, Brady DC. Copper chaperone ATOX1 is required for MAPK signaling and growth in BRAF mutation-positive melanoma. Metallomics 2019; 11(8): 1430-40.
[http://dx.doi.org/10.1039/C9MT00042A] [PMID: 31317143]
[24]
La Fontaine S, Mercer JF. Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis. Arch Biochem Biophys 2007; 463(2): 149-67.
[http://dx.doi.org/10.1016/j.abb.2007.04.021] [PMID: 17531189]
[25]
Pase L, Voskoboinik I, Greenough M, Camakaris J. Copper stimulates trafficking of a distinct pool of the Menkes copper ATPase (ATP7A) to the plasma membrane and diverts it into a rapid recycling pool. Biochem J 2004; 378(Pt 3): 1031-7.
[http://dx.doi.org/10.1042/bj20031181] [PMID: 14640979]
[26]
Shanbhag V, Jasmer-McDonald K, Zhu S, et al. ATP7A delivers copper to the lysyl oxidase family of enzymes and promotes tumorigenesis and metastasis. Proc Natl Acad Sci USA 2019; 116(14): 6836-41.
[http://dx.doi.org/10.1073/pnas.1817473116] [PMID: 30890638]
[27]
Blockhuys S, Zhang X, Wittung-Stafshede P. Single-cell tracking demonstrates copper chaperone Atox1 to be required for breast cancer cell migration. Proc Natl Acad Sci USA 2020; 117(4): 2014-9.
[http://dx.doi.org/10.1073/pnas.1910722117] [PMID: 31932435]
[28]
Pan Q, Kleer CG, van Golen KL, et al. Copper deficiency induced by tetrathiomolybdate suppresses tumor growth and angiogenesis. Cancer Res 2002; 62(17): 4854-9.
[PMID: 12208730]
[29]
Juarez JC, Betancourt O Jr, Pirie-Shepherd SR, et al. Copper binding by tetrathiomolybdate attenuates angiogenesis and tumor cell proliferation through the inhibition of superoxide dismutase 1. Clin Cancer Res 2006; 12(16): 4974-82.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0171] [PMID: 16914587]
[30]
Chisholm CL, Wang H, Wong AH, et al. Ammonium tetrathiomolybdate treatment targets the copper transporter ATP7A and enhances sensitivity of breast cancer to cisplatin. Oncotarget 2016; 7(51): 84439-52.
[http://dx.doi.org/10.18632/oncotarget.12992] [PMID: 27806319]
[31]
Kim KK, Abelman S, Yano N, et al. Tetrathiomolybdate inhibits mitochondrial complex IV and mediates degradation of hypoxia-inducible factor-1α in cancer cells. Sci Rep 2015; 5: 14296.
[http://dx.doi.org/10.1038/srep14296] [PMID: 26469226]
[32]
Chan N, Willis A, Kornhauser N, et al. Influencing the tumor microenvironment: A Phase II study of copper depletion using tetrathiomolybdate in patients with breast cancer at high risk for recurrence and in preclinical models of lung metastases. Clin Cancer Res 2017; 23(3): 666-76.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1326] [PMID: 27769988]
[33]
Brady DC, Crowe MS, Greenberg DN, Counter CM. Copper chelation inhibits BRAFV600E driven melanomagenesis and counters resistance to BRAFV600E and MEK1/2 inhibitors. Cancer Res 2017; 77(22): 6240-52.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1190] [PMID: 28986383]
[34]
Wang Z, Zhang YH, Guo C, et al. Tetrathiomolybdate Treatment Leads to the Suppression of Inflammatory Responses through the TRAF6/NFκB Pathway in LPS-Stimulated BV-2 Microglia. Front Aging Neurosci 2018; 10: 9.
[http://dx.doi.org/10.3389/fnagi.2018.00009] [PMID: 29535623]
[35]
Yu Z, Zhou R, Zhao Y, et al. Blockage of SLC31A1-dependent copper absorption increases pancreatic cancer cell autophagy to resist cell death. Cell Prolif 2019; 52(2) e12568
[http://dx.doi.org/10.1111/cpr.12568] [PMID: 30706544]
[36]
Smirnova J, Kabin E, Järving I, et al. Copper(I)-binding properties of de-coppering drugs for the treatment of Wilson disease. α-Lipoic acid as a potential anti-copper agent. Sci Rep 2018; 8(1): 1463.
[http://dx.doi.org/10.1038/s41598-018-19873-2] [PMID: 29362485]
[37]
Cater MA, Pearson HB, Wolyniec K, et al. Increasing intracellular bioavailable copper selectively targets prostate cancer cells. ACS Chem Biol 2013; 8(7): 1621-31.
[http://dx.doi.org/10.1021/cb400198p] [PMID: 23656859]
[38]
Alvarez HM, Xue Y, Robinson CD, et al. Tetrathiomolybdate inhibits copper trafficking proteins through metal cluster formation. Science 2010; 327(5963): 331-4.
[http://dx.doi.org/10.1126/science.1179907] [PMID: 19965379]
[39]
Safi R, Nelson ER, Chitneni SK, et al. Copper signaling axis as a target for prostate cancer therapeutics. Cancer Res 2014; 74(20): 5819-31.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3527] [PMID: 25320179]
[40]
Denoyer D, Pearson HB, Clatworthy SA, et al. Copper as a target for prostate cancer therapeutics: copper-ionophore pharmacology and altering systemic copper distribution. Oncotarget 2016; 7(24): 37064-80.
[http://dx.doi.org/10.18632/oncotarget.9245] [PMID: 27175597]
[41]
Stefani C, Al-Eisawi Z, Jansson PJ, Kalinowski DS, Richardson DR. Identification of differential anti-neoplastic activity of copper bis(thiosemicarbazones) that is mediated by intracellular reactive oxygen species generation and lysosomal membrane permeabilization. J Inorg Biochem 2015; 152: 20-37.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.08.010] [PMID: 26335599]
[42]
Liu X, Wang L, Cui W, et al. Targeting ALDH1A1 by disulfiram/copper complex inhibits non-small cell lung cancer recurrence driven by ALDH-positive cancer stem cells. Oncotarget 2016; 7(36): 58516-30.
[http://dx.doi.org/10.18632/oncotarget.11305] [PMID: 27542268]
[43]
Jin N, Zhu X, Cheng F, Zhang L. Disulfiram/copper targets stem cell-like ALDH+ population of multiple myeloma by inhibition of ALDH1A1 and Hedgehog pathway. J Cell Biochem 2018; 119(8): 6882-93.
[http://dx.doi.org/10.1002/jcb.26885] [PMID: 29665144]
[44]
He F, Chang C, Liu B, et al. Copper (II) Ions Activate Ligand-Independent Receptor Tyrosine Kinase (RTK) Signaling Pathway. BioMed Res Int 2019. 20194158415
[http://dx.doi.org/10.1155/2019/4158415] [PMID: 31218225]
[45]
Voss K, Harris C, Ralle M, Duffy M, Murchison C, Quinn JF. Modulation of tau phosphorylation by environmental copper. Transl Neurodegener 2014; 3(1): 24.
[http://dx.doi.org/10.1186/2047-9158-3-24] [PMID: 25671100]
[46]
Calderon-Aparicio A, Strasberg-Rieber M, Rieber M. Disulfiram anti-cancer efficacy without copper overload is enhanced by extracellular H2O2 generation: antagonism by tetrathiomolybdate. Oncotarget 2015; 6(30): 29771-81.
[http://dx.doi.org/10.18632/oncotarget.4833] [PMID: 26356671]
[47]
Calderon-Aparicio A, Cornejo A, Orue A, Rieber M. Anticancer response to disulfiram may be enhanced by co-treatment with MEK inhibitor or oxaliplatin: modulation by tetrathiomolybdate, KRAS/BRAF mutations and c-MYC/p53 status. Ecancermedicalscience 2019; 13: 890.
[http://dx.doi.org/10.3332/ecancer.2019.890] [PMID: 30792807]
[48]
Sudhahar V, Urao N, Oshikawa J, et al. Copper transporter ATP7A protects against endothelial dysfunction in type 1 diabetic mice by regulating extracellular superoxide dismutase. Diabetes 2013; 62(11): 3839-50.
[http://dx.doi.org/10.2337/db12-1228] [PMID: 23884884]
[49]
Griess B, Tom E, Domann F, Teoh-Fitzgerald M. Extracellular superoxide dismutase and its role in cancer. Free Radic Biol Med 2017; 112: 464-79.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.08.013] [PMID: 28842347]
[50]
Nguyen NH, Tran GB, Nguyen CTJ. 2020.
[51]
Foresman EL, Miller FJ Jr. Extracellular but not cytosolic superoxide dismutase protects against oxidant-mediated endothelial dysfunction. Redox Biol 2013; 1: 292-6.
[http://dx.doi.org/10.1016/j.redox.2013.04.003] [PMID: 24024163]
[52]
Solovieva ME, Shatalin YV, Solovyev VV, Sazonov AV, Kutyshenko VP, Akatov VS. Hydroxycobalamin catalyzes the oxidation of diethyldithiocarbamate and increases its cytotoxicity independently of copper ions. Redox Biol 2019; 20: 28-37.
[http://dx.doi.org/10.1016/j.redox.2018.09.016] [PMID: 30290302]
[53]
Hassan I, Khan AA, Aman S, et al. Restrained management of copper level enhances the antineoplastic activity of imatinib in vitro and in vivo. Sci Rep 2018; 8(1): 1682.
[http://dx.doi.org/10.1038/s41598-018-19410-1] [PMID: 29374195]
[54]
Skrott Z, Mistrik M, Andersen KK, et al. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature 2017; 552(7684): 194-9.
[http://dx.doi.org/10.1038/nature25016] [PMID: 29211715]
[55]
Skrott Z, Majera D, Gursky J, et al. Disulfiram’s anti-cancer activity reflects targeting NPL4, not inhibition of aldehyde dehydrogenase. Oncogene 2019; 38(40): 6711-22.
[http://dx.doi.org/10.1038/s41388-019-0915-2] [PMID: 31391554]
[56]
Cater MA, Haupt Y. Clioquinol induces cytoplasmic clearance of the X-linked inhibitor of apoptosis protein (XIAP): therapeutic indication for prostate cancer. Biochem J 2011; 436(2): 481-91.
[http://dx.doi.org/10.1042/BJ20110123] [PMID: 21426304]
[57]
Allensworth JL, Evans MK, Bertucci F, et al. Disulfiram (DSF) acts as a copper ionophore to induce copper-dependent oxidative stress and mediate anti-tumor efficacy in inflammatory breast cancer. Mol Oncol 2015; 9(6): 1155-68.
[http://dx.doi.org/10.1016/j.molonc.2015.02.007] [PMID: 25769405]
[58]
Iljin K, Ketola K, Vainio P, et al. High-throughput cell-based screening of 4910 known drugs and drug-like small molecules identifies disulfiram as an inhibitor of prostate cancer cell growth. Clin Cancer Res 2009; 15(19): 6070-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1035] [PMID: 19789329]
[59]
Kita Y, Hamada A, Saito R, et al. Systematic chemical screening identifies disulfiram as a repurposed drug that enhances sensitivity to cisplatin in bladder cancer: a summary of preclinical studies. Br J Cancer 2019; 121(12): 1027-38.
[http://dx.doi.org/10.1038/s41416-019-0609-0] [PMID: 31673101]
[60]
Schmidtova S, Kalavska K, Gercakova K, et al. Disulfiram Overcomes Cisplatin Resistance in Human Embryonal Carcinoma Cells. Cancers (Basel) 2019; 11(9) E1224
[http://dx.doi.org/10.3390/cancers11091224] [PMID: 31443351]
[61]
Yang Z, Guo F, Albers AE, Sehouli J, Kaufmann AM. Disulfiram modulates ROS accumulation and overcomes synergistically cisplatin resistance in breast cancer cell lines. Biomed Pharmacother 2019. 113108727
[http://dx.doi.org/10.1016/j.biopha.2019.108727] [PMID: 30870721]
[62]
Guo F, Yang Z, Kulbe H, Albers AE, Sehouli J, Kaufmann AM. Inhibitory effect on ovarian cancer ALDH+ stem-like cells by Disulfiram and Copper treatment through ALDH and ROS modulation. Biomed Pharmacother 2019. 118109371
[http://dx.doi.org/10.1016/j.biopha.2019.109371] [PMID: 31545281]
[63]
Falls-Hubert KC, Butler AL, Gui K, et al. Disulfiram causes selective hypoxic cancer cell toxicity and radio-chemo-sensitization via redox cycling of copper. Free Radic Biol Med 2020; 150: 1-11.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.01.186] [PMID: 32032663]
[64]
Wu W, Yu L, Jiang Q, et al. Enhanced Tumor-Specific Disulfiram Chemotherapy by In Situ Cu2+ Chelation-Initiated Nontoxicity-to-Toxicity Transition. J Am Chem Soc 2019; 141(29): 11531-9.
[http://dx.doi.org/10.1021/jacs.9b03503] [PMID: 31251050]
[65]
Buß I, Hamacher A, Sarin N, Kassack MU, Kalayda GV. Relevance of copper transporter 1 and organic cation transporters 1-3 for oxaliplatin uptake and drug resistance in colorectal cancer cells. Metallomics 2018; 10(3): 414-25.
[http://dx.doi.org/10.1039/C7MT00334J] [PMID: 29417972]
[66]
Ekinci E, Rohondia S, Khan R, Dou QP. Repurposing Disulfiram as An Anti-Cancer Agent: Updated Review on Literature and Patents. Recent Patents Anticancer Drug Discov 2019; 14(2): 113-32.
[http://dx.doi.org/10.2174/1574892814666190514104035] [PMID: 31084595]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy