Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Development of New Therapeutics to Meet the Current Challenge of Drug Resistant Tuberculosis

Author(s): Bashir A. Sheikh, Basharat A. Bhat, Umar Mehraj, Wajahat Mir, Suhail Hamadani and Manzoor A. Mir*

Volume 22, Issue 4, 2021

Published on: 27 June, 2020

Page: [480 - 500] Pages: 21

DOI: 10.2174/1389201021666200628021702

Price: $65

Abstract

Tuberculosis (TB) is a prominent infective disease and a major reason of mortality/ morbidity globally. Mycobacterium tuberculosis causes a long-lasting latent infection in a significant proportion of human population. The increasing burden of tuberculosis is mainly caused due to multi drug-resistance. The failure of conventional treatment has been observed in large number of cases. Drugs that are used to treat extensively drug-resistant tuberculosis are expensive, have limited efficacy, and have more side effects for a longer duration of time and are often associated with poor prognosis. To regulate the emergence of multidrug resistant tuberculosis, extensively drug-resistant tuberculosis and totally drug resistant tuberculosis, efforts are being made to understand the genetic/molecular basis of target drug delivery and mechanisms of drug resistance. Understanding the molecular approaches and pathology of Mycobacterium tuberculosis through whole genome sequencing may further help in the improvement of new therapeutics to meet the current challenge of global health. Understanding cellular mechanisms that trigger resistance to Mycobacterium tuberculosis infection may expose immune associates of protection, which could be an important way for vaccine development, diagnostics, and novel host-directed therapeutic strategies. The recent development of new drugs and combinational therapies for drug-resistant tuberculosis through major collaboration between industry, donors, and academia gives an improved hope to overcome the challenges in tuberculosis treatment. In this review article, an attempt was made to highlight the new developments of drug resistance to the conventional drugs and the recent progress in the development of new therapeutics for the treatment of drugresistant and non-resistant cases.

Keywords: Tuberculosis, multidrug resistant TB, gene mutations, drug targets, extensively Drug Resistant TB (XDR-TB), Totally Drug resistant TB (TDR-TB).

Graphical Abstract

[1]
Hameed, H.M.A.; Islam, M.M.; Chhotaray, C.; Wang, C.; Liu, Y.; Tan, Y.; Li, X.; Tan, S.; Delorme, V.; Yew, W.W.; Liu, J.; Zhang, T. Molecular targets related drug resistance mechanisms in MDR-, XDR-, and TDR-Mycobacterium tuberculosis strains. Front. Cell. Infect. Microbiol., 2018, 8, 114.
[http://dx.doi.org/10.3389/fcimb.2018.00114] [PMID: 29755957]
[2]
Lew, W.; Pai, M.; Oxlade, O.; Martin, D.; Menzies, D. Initial drug resistance and tuberculosis treatment outcomes: systematic review and meta-analysis. Ann. Intern. Med., 2008, 149(2), 123-134.
[http://dx.doi.org/10.7326/0003-4819-149-2-200807150-00008] [PMID: 18626051]
[3]
Winston, C.A.; Mitruka, K. Treatment duration for patients with drug-resistant tuberculosis, United States. Emerg. Infect. Dis., 2012, 18(7), 1201-1202.
[http://dx.doi.org/10.3201/eid1807.120261] [PMID: 22709909]
[4]
Pietersen, E.; Ignatius, E.; Streicher, E.M.; Mastrapa, B.; Padanilam, X.; Pooran, A.; Badri, M.; Lesosky, M.; van Helden, P.; Sirgel, F.A.; Warren, R.; Dheda, K. Long-term outcomes of patients with extensively drug-resistant tuberculosis in South Africa: a cohort study. Lancet, 2014, 383(9924), 1230-1239.
[http://dx.doi.org/10.1016/S0140-6736(13)62675-6] [PMID: 24439237]
[5]
Raviglione, M.C.; Snider, D.E., Jr; Kochi, A. Global epidemiology of tuberculosis. Morbidity and mortality of a worldwide epidemic. JAMA, 1995, 273(3), 220-226.
[http://dx.doi.org/10.1001/jama.1995.03520270054031] [PMID: 7807661]
[6]
Dye, C.; Scheele, S.; Dolin, P.; Pathania, V.; Raviglione, M.C. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA, 1999, 282(7), 677-686.
[http://dx.doi.org/10.1001/jama.282.7.677] [PMID: 10517722]
[7]
Organization, W.H. The World health report: 1999: Making a difference: message from the Director-General; World Health Organization: Geneva, 1999.
[8]
Raviglione, M.C.; Harries, A.D.; Msiska, R.; Wilkinson, D.; Nunn, P. Tuberculosis and HIV: current status in Africa. AIDS, 1997, 11(Suppl. B), S115-S123.
[PMID: 9416373]
[9]
Li, J.; Gao, X.; Luo, T.; Wu, J.; Sun, G.; Liu, Q.; Jiang, Y.; Zhang, Y.; Mei, J.; Gao, Q. Association of gyrA/B mutations and resistance levels to fluoroquinolones in clinical isolates of Mycobacterium tuberculosis. Emerg. Microbes Infect., 2014, 3(3), e19.
[http://dx.doi.org/10.1038/emi.2014.21] [PMID: 26038513]
[10]
Ioerger, T.R.; Feng, Y.; Chen, X.; Dobos, K.M.; Victor, T.C.; Streicher, E.M.; Warren, R.M.; Gey van Pittius, N.C.; Van Helden, P.D.; Sacchettini, J.C. The non-clonality of drug resistance in Beijing-genotype isolates of Mycobacterium tuberculosis from the Western Cape of South Africa. BMC Genomics, 2010, 11(1), 670.
[http://dx.doi.org/10.1186/1471-2164-11-670] [PMID: 21110864]
[11]
Comas, I.; Borrell, S.; Roetzer, A.; Rose, G.; Malla, B.; Kato-Maeda, M.; Galagan, J.; Niemann, S.; Gagneux, S. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat. Genet., 2011, 44(1), 106-110.
[http://dx.doi.org/10.1038/ng.1038] [PMID: 22179134]
[12]
Farhat, M.R.; Shapiro, B.J.; Kieser, K.J.; Sultana, R.; Jacobson, K.R.; Victor, T.C.; Warren, R.M.; Streicher, E.M.; Calver, A.; Sloutsky, A.; Kaur, D.; Posey, J.E.; Plikaytis, B.; Oggioni, M.R.; Gardy, J.L.; Johnston, J.C.; Rodrigues, M.; Tang, P.K.; Kato-Maeda, M.; Borowsky, M.L.; Muddukrishna, B.; Kreiswirth, B.N.; Kurepina, N.; Galagan, J.; Gagneux, S.; Birren, B.; Rubin, E.J.; Lander, E.S.; Sabeti, P.C.; Murray, M. Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis. Nat. Genet., 2013, 45(10), 1183-1189.
[http://dx.doi.org/10.1038/ng.2747] [PMID: 23995135]
[13]
Hazbón, M.H.; Motiwala, A.S.; Cavatore, M.; Brimacombe, M.; Whittam, T.S.; Alland, D. Convergent evolutionary analysis identifies significant mutations in drug resistance targets of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2008, 52(9), 3369-3376.
[http://dx.doi.org/10.1128/AAC.00309-08] [PMID: 18591265]
[14]
Lanzas, F; Karakousis, PC; Sacchettini, JC; Ioerger, TR Multidrug-resistant tuberculosis in Panama is driven by clonal expansion of an MDR-TB strain related to the KZN XDR-TB strain from South Africa., J. Clin. Microbiol., 2013, JCM. 01122-13..
[15]
Müller, B.; Chihota, V.N.; Pillay, M.; Klopper, M.; Streicher, E.M.; Coetzee, G.; Trollip, A.; Hayes, C.; Bosman, M.E.; Gey van Pittius, N.C.; Victor, T.C.; Gagneux, S.; van Helden, P.D.; Warren, R.M. Programmatically selected multidrug-resistant strains drive the emergence of extensively drug-resistant tuberculosis in South Africa. PLoS One, 2013, 8(8), e70919.
[http://dx.doi.org/10.1371/journal.pone.0070919] [PMID: 24058399]
[16]
Gillespie, S.H. Evolution of drug resistance in Mycobacterium tuberculosis: clinical and molecular perspective. Antimicrob. Agents Chemother., 2002, 46(2), 267-274.
[http://dx.doi.org/10.1128/AAC.46.2.267-274.2002] [PMID: 11796329]
[17]
Gandhi, N.R.; Nunn, P.; Dheda, K.; Schaaf, H.S.; Zignol, M.; van Soolingen, D.; Jensen, P.; Bayona, J. Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet, 2010, 375(9728), 1830-1843.
[http://dx.doi.org/10.1016/S0140-6736(10)60410-2] [PMID: 20488523]
[18]
Brossier, F.; Veziris, N.; Truffot-Pernot, C.; Jarlier, V.; Sougakoff, W. Molecular investigation of resistance to the antituberculous drug ethionamide in multidrug-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2011, 55(1), 355-360.
[http://dx.doi.org/10.1128/AAC.01030-10] [PMID: 20974869]
[19]
Borrell, S.; Gagneux, S. Strain diversity, epistasis and the evolution of drug resistance in Mycobacterium tuberculosis. Clin. Microbiol. Infect., 2011, 17(6), 815-820.
[http://dx.doi.org/10.1111/j.1469-0691.2011.03556.x] [PMID: 21682802]
[20]
Müller, B.; Borrell, S.; Rose, G.; Gagneux, S. The heterogeneous evolution of multidrug-resistant Mycobacterium tuberculosis. Trends Genet., 2013, 29(3), 160-169.
[http://dx.doi.org/10.1016/j.tig.2012.11.005] [PMID: 23245857]
[21]
Li, X-Z.; Nikaido, H. Efflux-mediated drug resistance in bacteria: an update. Drugs, 2009, 69(12), 1555-1623.
[http://dx.doi.org/10.2165/11317030-000000000-00000] [PMID: 19678712]
[22]
Machado, D.; Couto, I.; Perdigão, J.; Rodrigues, L.; Portugal, I.; Baptista, P.; Veigas, B.; Amaral, L.; Viveiros, M. Contribution of efflux to the emergence of isoniazid and multidrug resistance in Mycobacterium tuberculosis. PLoS One, 2012, 7(4), e34538.
[http://dx.doi.org/10.1371/journal.pone.0034538] [PMID: 22493700]
[23]
Schmalstieg, A.M.; Srivastava, S.; Belkaya, S.; Deshpande, D.; Meek, C.; Leff, R.; van Oers, N.S.; Gumbo, T. The antibiotic resistance arrow of time: efflux pump induction is a general first step in the evolution of mycobacterial drug resistance. Antimicrob. Agents Chemother., 2012, 56(9), 4806-4815.
[http://dx.doi.org/10.1128/AAC.05546-11] [PMID: 22751536]
[24]
Campbell, E.A.; Korzheva, N.; Mustaev, A.; Murakami, K.; Nair, S.; Goldfarb, A.; Darst, S.A. Structural mechanism for rifampicin inhibition of bacterial rna polymerase. Cell, 2001, 104(6), 901-912.
[http://dx.doi.org/10.1016/S0092-8674(01)00286-0] [PMID: 11290327]
[25]
Barnard, F.M.; Maxwell, A. Interaction between DNA gyrase and quinolones: effects of alanine mutations at GyrA subunit residues Ser(83) and Asp(87). Antimicrob. Agents Chemother., 2001, 45(7), 1994-2000.
[http://dx.doi.org/10.1128/AAC.45.7.1994-2000.2001] [PMID: 11408214]
[26]
Rouse, D.A.; DeVito, J.A.; Li, Z.; Byer, H.; Morris, S.L. Site-directed mutagenesis of the katG gene of Mycobacterium tuberculosis: effects on catalase-peroxidase activities and isoniazid resistance. Mol. Microbiol., 1996, 22(3), 583-592.
[http://dx.doi.org/10.1046/j.1365-2958.1996.00133.x] [PMID: 8939440]
[27]
Stover, C.K.; Warrener, P.; VanDevanter, D.R.; Sherman, D.R.; Arain, T.M.; Langhorne, M.H.; Anderson, S.W.; Towell, J.A.; Yuan, Y.; McMurray, D.N.; Kreiswirth, B.N.; Barry, C.E.; Baker, W.R. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature, 2000, 405(6789), 962-966.
[http://dx.doi.org/10.1038/35016103] [PMID: 10879539]
[28]
Zhang, Y.; Yew, W.W. Mechanisms of drug resistance in Mycobacterium tuberculosis. state of the art series. Drug-resistant tuberculosis. Edited by CY. Chiang. Number 1 in the series. Int. J. Tuberc. Lung Dis., 2009, 13(11), 1320-1330.
[PMID: 19861002]
[29]
Almeida Da Silva, P.E.; Palomino, J.C. Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J. Antimicrob. Chemother., 2011, 66(7), 1417-1430.
[http://dx.doi.org/10.1093/jac/dkr173] [PMID: 21558086]
[30]
Campbell, P.J.; Morlock, G.P.; Sikes, R.D.; Dalton, T.L.; Metchock, B.; Starks, A.M.; Hooks, D.P.; Cowan, L.S.; Plikaytis, B.B.; Posey, J.E. Molecular detection of mutations associated with first- and second-line drug resistance compared with conventional drug susceptibility testing of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2011, 55(5), 2032-2041.
[http://dx.doi.org/10.1128/AAC.01550-10] [PMID: 21300839]
[31]
Kim, S.J. Drug-susceptibility testing in tuberculosis: methods and reliability of results. Eur. Respir. J., 2005, 25(3), 564-569.
[http://dx.doi.org/10.1183/09031936.05.00111304] [PMID: 15738303]
[32]
Lawn, S.D.; Mwaba, P.; Bates, M.; Piatek, A.; Alexander, H.; Marais, B.J.; Cuevas, L.E.; McHugh, T.D.; Zijenah, L.; Kapata, N.; Abubakar, I.; McNerney, R.; Hoelscher, M.; Memish, Z.A.; Migliori, G.B.; Kim, P.; Maeurer, M.; Schito, M.; Zumla, A. Advances in tuberculosis diagnostics: the Xpert MTB/RIF assay and future prospects for a point-of-care test. Lancet Infect. Dis., 2013, 13(4), 349-361.
[http://dx.doi.org/10.1016/S1473-3099(13)70008-2] [PMID: 23531388]
[33]
Banu, S.; Rahman, S.M.; Khan, M.S.R.; Ferdous, S.S.; Ahmed, S.; Gratz, J.; Stroup, S.; Pholwat, S.; Heysell, S.K.; Houpt, E.R. Discordance across several methods for drug susceptibility testing of drug-resistant Mycobacterium tuberculosis isolates in a single laboratory. J. Clin. Microbiol., 2014, 52(1), 156-163.
[http://dx.doi.org/10.1128/JCM.02378-13] [PMID: 24172155]
[34]
Van Deun, A.; Wright, A.; Zignol, M.; Weyer, K.; Rieder, H.L. Drug susceptibility testing proficiency in the network of supranational tuberculosis reference laboratories. Int. J. Tuberc. Lung Dis., 2011, 15(1), 116-124.
[PMID: 21276307]
[35]
Laurenzo, D.; Mousa, S.A. Mechanisms of drug resistance in Mycobacterium tuberculosis and current status of rapid molecular diagnostic testing. Acta Trop., 2011, 119(1), 5-10.
[http://dx.doi.org/10.1016/j.actatropica.2011.04.008] [PMID: 21515239]
[36]
Helb, D.; Jones, M.; Story, E.; Boehme, C.; Wallace, E.; Ho, K.; Kop, J.; Owens, M.R.; Rodgers, R.; Banada, P.; Safi, H.; Blakemore, R.; Lan, N.T.; Jones-López, E.C.; Levi, M.; Burday, M.; Ayakaka, I.; Mugerwa, R.D.; McMillan, B.; Winn-Deen, E.; Christel, L.; Dailey, P.; Perkins, M.D.; Persing, D.H.; Alland, D. Rapid detection of Mycobacterium tuberculosis and rifampin resistance by use of on-demand, near-patient technology. J. Clin. Microbiol., 2010, 48(1), 229-237.
[http://dx.doi.org/10.1128/JCM.01463-09] [PMID: 19864480]
[37]
Amplification, A.R-T.N.A. Technology for Rapid and Simultaneous Detection of Tuberculosis and Rifampicin Resistance: Xpert MTB/RIF Assay for the Diagnosis of Pulmonary and Extrapulmonary TB in Adults and Children: Policy Update; World Health Organization: Geneva, 2013.
[38]
Organization, WH Pathways to better diagnostics for tuberculosis: a blueprint for the development of TB diagnostics by the new diagnostics working group of the Stop TB Partnership.,. 2009.
[39]
Organization, WH Anti-Tuberculosis Drug Resistance in the World, The WHO/IUATLD Global Project on Anti-tuberculosis Drug Resistance Surveillance. WHO/TB/97 229, . 1997.
[40]
Organization, WH Anti-tuberculosis drug resistance in the world/the WHO/IUATLD Global Project on Anti-Tuberculosis Drug Resistance Surveillance. Report 2, Prevalence and trends. Anti-tuberculosis drug resistance in the world/the WHO/IUATLD Global Project on Anti-Tuberculosis Drug Resistance Surveillance Report 2, Prevalence and trends,.
[41]
Espinal, M.A.; Laszlo, A.; Simonsen, L.; Boulahbal, F.; Kim, S.J.; Reniero, A.; Hoffner, S.; Rieder, H.L.; Binkin, N.; Dye, C.; Williams, R.; Raviglione, M.C. Global trends in resistance to antituberculosis drugs. N. Engl. J. Med., 2001, 344(17), 1294-1303.
[http://dx.doi.org/10.1056/NEJM200104263441706] [PMID: 11320389]
[42]
Willcox, P.A. Drug-resistant tuberculosis: worldwide trends, problems specific to Eastern Europe and other hotspots, and the threat to developing countries. Curr. Opin. Pulm. Med., 2001, 7(3), 148-153.
[http://dx.doi.org/10.1097/00063198-200105000-00006] [PMID: 11371770]
[43]
Holden, C. Stalking a killer in Russia’s prisons. Science, 1999, 286(5445), 1670.
[http://dx.doi.org/10.1126/science.286.5445.1670] [PMID: 10610559]
[44]
Portaels, F.; Rigouts, L.; Bastian, I. Addressing multidrug-resistant tuberculosis in penitentiary hospitals and in the general population of the former Soviet Union. Int. J. Tuberc. Lung Dis., 1999, 3(7), 582-588.
[PMID: 10423220]
[45]
Kimerling, M.E.; Kluge, H.; Vezhnina, N.; Iacovazzi, T.; Demeulenaere, T.; Portaels, F.; Matthys, F. Inadequacy of the current WHO re-treatment regimen in a central Siberian prison: treatment failure and MDR-TB. Int. J. Tuberc. Lung Dis., 1999, 3(5), 451-453.
[PMID: 10331736]
[46]
India, T. RNTCP status report; Central TB Division, Directorate General of Health Services Ministry of Health and Family Welfare, Nirman Bhawan: New Delhi, 2017.
[47]
Zumla, A.; George, A.; Sharma, V.; Herbert, R.H.N.; Oxley, A.; Oliver, M. Baroness Masham of Ilton. The WHO 2014 global tuberculosis report--further to go. Lancet Glob. Health, 2015, 3(1), e10-e12.
[http://dx.doi.org/10.1016/S2214-109X(14)70361-4] [PMID: 25539957]
[48]
Law, S.; Piatek, A.S.; Vincent, C.; Oxlade, O.; Menzies, D. Emergence of drug resistance in patients with tuberculosis cared for by the Indian health-care system: a dynamic modelling study. Lancet Public Health, 2017, 2(1), e47-e55.
[http://dx.doi.org/10.1016/S2468-2667(16)30035-4] [PMID: 29249480]
[49]
Centers for Disease Control and Prevention (CDC). Emergence of Mycobacterium tuberculosis with extensive resistance to second-line drugs--worldwide, 2000-2004. MMWR Morb. Mortal. Wkly. Rep., 2006, 55(11), 301-305.
[PMID: 16557213]
[50]
Millet, J-P.; Moreno, A.; Fina, L.; del Baño, L.; Orcau, A.; de Olalla, P.G.; Caylà, J.A. Factors that influence current tuberculosis epidemiology. Eur. Spine J., 2013, 22(4)(Suppl. 4), 539-548.
[http://dx.doi.org/10.1007/s00586-012-2334-8] [PMID: 22565801]
[51]
Trivedi, S.S.; Desai, S.G. Primary antituberculosis drug resistance and acquired rifampicin resistance in Gujarat, India. Tubercle, 1988, 69(1), 37-42.
[http://dx.doi.org/10.1016/0041-3879(88)90038-4] [PMID: 3140458]
[52]
Dorjee, K.; Sadutshang, T.D.; Rana, R.S.; Topgyal, S.; Phunkyi, D.; Choetso, T. High prevalence of rifampin-resistant tuberculosis in mountainous districts of India. Indian J. Tuberc., 2019. , 67(1), 59-64
[PMID: 32192619]
[53]
Datta, BS; Hassan, G; Kadri, SM; Qureshi, W; Kamili, MA; Singh, H Multidrug-resistant and extensively drug resistant tuberculosis in Kashmir, India. J. Infect. Developing Count., 2010, 4(1), 019-23..
[54]
Cohen, T.; van Helden, P.D.; Wilson, D.; Colijn, C.; McLaughlin, M.M.; Abubakar, I.; Warren, R.M. Mixed-strain mycobacterium tuberculosis infections and the implications for tuberculosis treatment and control. Clin. Microbiol. Rev., 2012, 25(4), 708-719.
[http://dx.doi.org/10.1128/CMR.00021-12] [PMID: 23034327]
[55]
Caws, M.; Thwaites, G.; Dunstan, S.; Hawn, T.R.; Lan, N.T.N.; Thuong, N.T.T.; Stepniewska, K.; Huyen, M.N.; Bang, N.D.; Loc, T.H.; Gagneux, S.; van Soolingen, D.; Kremer, K.; van der Sande, M.; Small, P.; Anh, P.T.; Chinh, N.T.; Quy, H.T.; Duyen, N.T.; Tho, D.Q.; Hieu, N.T.; Torok, E.; Hien, T.T.; Dung, N.H.; Nhu, N.T.; Duy, P.M.; van Vinh Chau, N.; Farrar, J. The influence of host and bacterial genotype on the development of disseminated disease with Mycobacterium tuberculosis. PLoS Pathog., 2008, 4(3), e1000034.
[http://dx.doi.org/10.1371/journal.ppat.1000034] [PMID: 18369480]
[56]
Drobniewski, F.; Balabanova, Y.; Nikolayevsky, V.; Ruddy, M.; Kuznetzov, S.; Zakharova, S.; Melentyev, A.; Fedorin, I. Drug-resistant tuberculosis, clinical virulence, and the dominance of the Beijing strain family in Russia. JAMA, 2005, 293(22), 2726-2731.
[http://dx.doi.org/10.1001/jama.293.22.2726] [PMID: 15941801]
[57]
Comas, I.; Coscolla, M.; Luo, T.; Borrell, S.; Holt, K.E.; Kato-Maeda, M.; Parkhill, J.; Malla, B.; Berg, S.; Thwaites, G.; Yeboah-Manu, D.; Bothamley, G.; Mei, J.; Wei, L.; Bentley, S.; Harris, S.R.; Niemann, S.; Diel, R.; Aseffa, A.; Gao, Q.; Young, D.; Gagneux, S. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat. Genet., 2013, 45(10), 1176-1182.
[http://dx.doi.org/10.1038/ng.2744] [PMID: 23995134]
[58]
Gagneux, S.; Small, P.M. Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect. Dis., 2007, 7(5), 328-337.
[http://dx.doi.org/10.1016/S1473-3099(07)70108-1] [PMID: 17448936]
[59]
Salk, J.J.; Schmitt, M.W.; Loeb, L.A. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat. Rev. Genet., 2018, 19(5), 269-285.
[http://dx.doi.org/10.1038/nrg.2017.117] [PMID: 29576615]
[60]
Böttger, E.C.; Springer, B.; Pletschette, M.; Sander, P. Fitness of antibiotic-resistant microorganisms and compensatory mutations. Nat. Med., 1998, 4(12), 1343-1344.
[http://dx.doi.org/10.1038/3906] [PMID: 9846553]
[61]
Gopaul, K.K.; Brown, T.J.; Gibson, A.L.; Yates, M.D.; Drobniewski, F.A. Progression toward an improved DNA amplification-based typing technique in the study of Mycobacterium tuberculosis epidemiology. J. Clin. Microbiol., 2006, 44(7), 2492-2498.
[http://dx.doi.org/10.1128/JCM.01428-05] [PMID: 16825370]
[62]
Mathema, B.; Kurepina, N.E.; Bifani, P.J.; Kreiswirth, B.N. Molecular epidemiology of tuberculosis: current insights. Clin. Microbiol. Rev., 2006, 19(4), 658-685.
[http://dx.doi.org/10.1128/CMR.00061-05] [PMID: 17041139]
[63]
Frieden, T.R.; Sterling, T.; Pablos-Mendez, A.; Kilburn, J.O.; Cauthen, G.M.; Dooley, S.W. The emergence of drug-resistant tuberculosis in New York City. N. Engl. J. Med., 1993, 328(8), 521-526.
[http://dx.doi.org/10.1056/NEJM199302253280801] [PMID: 8381207]
[64]
Edlin, B.; Tokars, J.; Grieco, M.; Crawford, J.; Williams, J.; Sordillo, E. An outbreak of tuberculosis caused by multiple-drug resistant tuberculosis among hospitalized patients with the acquired immunodeficiency syndrome. N. Engl. J. Med., 1992, 326, 1514-1521.
[http://dx.doi.org/10.1056/NEJM199206043262302] [PMID: 1304721]
[65]
Fischl, M. An outbreak of tuberculosis caused by multiple-drug-resistant tubercule baccili among patients with HIV infection. Ann. Intern. Med., 1992, 117, 117-183.
[66]
García-García, M.L.; Ponce de León, A.; Jiménez-Corona, M.E.; Jiménez-Corona, A.; Palacios-Martínez, M.; Balandrano-Campos, S.; Ferreyra-Reyes, L.; Juárez-Sandino, L.; Sifuentes-Osornio, J.; Olivera-Díaz, H.; Valdespino-Gómez, J.L.; Small, P.M. Clinical consequences and transmissibility of drug-resistant tuberculosis in southern Mexico. Arch. Intern. Med., 2000, 160(5), 630-636.
[http://dx.doi.org/10.1001/archinte.160.5.630] [PMID: 10724048]
[67]
Organization, W.H. WHO best-practice statement on the off-label use of bedaquiline and delamanid for the treatment of multidrug-resistant tuberculosis; World Health Organization, 2017.
[68]
Srajal, P; Kesharwani, S; Kushwaha, V; Dwivedi, V; Sameem, S; Nair, SK A REVIEW ON NOVEL APROACHES FOR THE TREATMENT OF TUBERCULOSIS. interaction.3:4.,.
[69]
Organization, W.H. The use of bedaquiline in the treatment of multidrug-resistant tuberculosis: interim policy guidance; World Health Organization, 2013.
[70]
Gandhi, N.R.; Moll, A.; Sturm, A.W.; Pawinski, R.; Govender, T.; Lalloo, U.; Zeller, K.; Andrews, J.; Friedland, G. Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet, 2006, 368(9547), 1575-1580.
[http://dx.doi.org/10.1016/S0140-6736(06)69573-1] [PMID: 17084757]
[71]
Velayati, A.A.; Masjedi, M.R.; Farnia, P.; Tabarsi, P.; Ghanavi, J. ZiaZarifi, A.H.; Hoffner, S.E. Emergence of new forms of totally drug-resistant tuberculosis bacilli: super extensively drug-resistant tuberculosis or totally drug-resistant strains in iran. Chest, 2009, 136(2), 420-425.
[http://dx.doi.org/10.1378/chest.08-2427] [PMID: 19349380]
[72]
Udwadia, Z.F.; Amale, R.A.; Ajbani, K.K.; Rodrigues, C. Totally drug-resistant tuberculosis in India. Clin. Infect. Dis., 2012, 54(4), 579-581.
[http://dx.doi.org/10.1093/cid/cir889] [PMID: 22190562]
[73]
Migliori, G.B.; Centis, R.; D’Ambrosio, L.; Spanevello, A.; Borroni, E.; Cirillo, D.M.; Sotgiu, G. Totally drug-resistant and extremely drug-resistant tuberculosis: the same disease? Clin. Infect. Dis., 2012, 54(9), 1379-1380.
[http://dx.doi.org/10.1093/cid/cis128] [PMID: 22492321]
[74]
Mitchison, D.A. Basic mechanisms of chemotherapy. Chest, 1979, 76(6)(Suppl.), 771-781.
[http://dx.doi.org/10.1378/chest.76.6.771] [PMID: 92392]
[75]
Blanchard, J.S. Molecular mechanisms of drug resistance in Mycobacterium tuberculosis. Annu. Rev. Biochem., 1996, 65(1), 215-239.
[http://dx.doi.org/10.1146/annurev.bi.65.070196.001243] [PMID: 8811179]
[76]
Telenti, A.; Imboden, P.; Marchesi, F.; Lowrie, D.; Cole, S.; Colston, M.J.; Matter, L.; Schopfer, K.; Bodmer, T. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet, 1993, 341(8846), 647-650.
[http://dx.doi.org/10.1016/0140-6736(93)90417-F] [PMID: 8095569]
[77]
Ramaswamy, S.; Musser, J.M. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuber. Lung Dis., 1998, 79(1), 3-29.
[http://dx.doi.org/10.1054/tuld.1998.0002] [PMID: 10645439]
[78]
Somoskovi, A.; Parsons, L.M.; Salfinger, M. The molecular basis of resistance to isoniazid, rifampin, and pyrazinamide in Mycobacterium tuberculosis. Respir. Res., 2001, 2(3), 164-168.
[http://dx.doi.org/10.1186/rr54] [PMID: 11686881]
[79]
Caws, M.; Duy, P.M.; Tho, D.Q.; Lan, N.T.N.; Hoa, D.V.; Farrar, J. Mutations prevalent among rifampin- and isoniazid-resistant Mycobacterium tuberculosis isolates from a hospital in Vietnam. J. Clin. Microbiol., 2006, 44(7), 2333-2337.
[http://dx.doi.org/10.1128/JCM.00330-06] [PMID: 16825345]
[80]
Heep, M.; Rieger, U.; Beck, D.; Lehn, N. Mutations in the beginning of the rpoB gene can induce resistance to rifamycins in both Helicobacter pylori and Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2000, 44(4), 1075-1077.
[http://dx.doi.org/10.1128/AAC.44.4.1075-1077.2000] [PMID: 10722516]
[81]
Siu, G.K.H.; Zhang, Y.; Lau, T.C.; Lau, R.W.; Ho, P-L.; Yew, W-W.; Tsui, S.K.; Cheng, V.C.; Yuen, K.Y.; Yam, W.C. Mutations outside the rifampicin resistance-determining region associated with rifampicin resistance in Mycobacterium tuberculosis. J. Antimicrob. Chemother., 2011, 66(4), 730-733.
[http://dx.doi.org/10.1093/jac/dkq519] [PMID: 21393153]
[82]
Yang, B.; Koga, H.; Ohno, H.; Ogawa, K.; Fukuda, M.; Hirakata, Y.; Maesaki, S.; Tomono, K.; Tashiro, T.; Kohno, S. Relationship between antimycobacterial activities of rifampicin, rifabutin and KRM-1648 and rpoB mutations of Mycobacterium tuberculosis. J. Antimicrob. Chemother., 1998, 42(5), 621-628.
[http://dx.doi.org/10.1093/jac/42.5.621] [PMID: 9848446]
[83]
Cavusoglu, C.; Karaca-Derici, Y.; Bilgic, A. In-vitro activity of rifabutin against rifampicin-resistant Mycobacterium tuberculosis isolates with known rpoB mutations. Clin. Microbiol. Infect., 2004, 10(7), 662-665.
[http://dx.doi.org/10.1111/j.1469-0691.2004.00917.x] [PMID: 15214882]
[84]
Burman, W.J.; Jones, B.E. Treatment of HIV-related tuberculosis in the era of effective antiretroviral therapy. Am. J. Respir. Crit. Care Med., 2001, 164(1), 7-12.
[http://dx.doi.org/10.1164/ajrccm.164.1.2101133] [PMID: 11435232]
[85]
Traore, H.; Fissette, K.; Bastian, I.; Devleeschouwer, M.; Portaels, F. Detection of rifampicin resistance in Mycobacterium tuberculosis isolates from diverse countries by a commercial line probe assay as an initial indicator of multidrug resistance. Int. J. Tuberc. Lung Dis., 2000, 4(5), 481-484.
[PMID: 10815743]
[86]
Brandis, G.; Hughes, D. Genetic characterization of compensatory evolution in strains carrying rpoB Ser531Leu, the rifampicin resistance mutation most frequently found in clinical isolates. J. Antimicrob. Chemother., 2013, 68(11), 2493-2497.
[http://dx.doi.org/10.1093/jac/dkt224] [PMID: 23759506]
[87]
de Vos, M.; Müller, B.; Borrell, S.; Black, P.A.; van Helden, P.D.; Warren, R.M.; Gagneux, S.; Victor, T.C. Putative compensatory mutations in the rpoC gene of rifampin-resistant Mycobacterium tuberculosis are associated with ongoing transmission. Antimicrob. Agents Chemother., 2013, 57(2), 827-832.
[http://dx.doi.org/10.1128/AAC.01541-12] [PMID: 23208709]
[88]
Zhang, Y.; Heym, B.; Allen, B.; Young, D.; Cole, S. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature, 1992, 358(6387), 591-593.
[http://dx.doi.org/10.1038/358591a0] [PMID: 1501713]
[89]
Rawat, R.; Whitty, A.; Tonge, P.J. The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: adduct affinity and drug resistance. Proc. Natl. Acad. Sci. USA, 2003, 100(24), 13881-13886.
[http://dx.doi.org/10.1073/pnas.2235848100] [PMID: 14623976]
[90]
Ramaswamy, S.V.; Reich, R.; Dou, S-J.; Jasperse, L.; Pan, X.; Wanger, A.; Quitugua, T.; Graviss, E.A. Single nucleotide polymorphisms in genes associated with isoniazid resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2003, 47(4), 1241-1250.
[http://dx.doi.org/10.1128/AAC.47.4.1241-1250.2003] [PMID: 12654653]
[91]
Vilchèze, C.; Jacobs, W.R., Jr; William, R. The mechanism of isoniazid killing: clarity through the scope of genetics. Annu. Rev. Microbiol., 2007, 61, 35-50.
[http://dx.doi.org/10.1146/annurev.micro.61.111606.122346] [PMID: 18035606]
[92]
Rozwarski, D.A.; Grant, G.A.; Barton, D.H.; Jacobs, W.R., Jr; Sacchettini, J.C. Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science, 1998, 279(5347), 98-102.
[http://dx.doi.org/10.1126/science.279.5347.98] [PMID: 9417034]
[93]
Fenner, L.; Egger, M.; Bodmer, T.; Altpeter, E.; Zwahlen, M.; Jaton, K.; Pfyffer, G.E.; Borrell, S.; Dubuis, O.; Bruderer, T.; Siegrist, H.H.; Furrer, H.; Calmy, A.; Fehr, J.; Stalder, J.M.; Ninet, B.; Böttger, E.C.; Gagneux, S. Swiss HIV Cohort Study and the Swiss Molecular Epidemiology of Tuberculosis Study Group . Effect of mutation and genetic background on drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2012, 56(6), 3047-3053.
[http://dx.doi.org/10.1128/AAC.06460-11] [PMID: 22470121]
[94]
Banerjee, A.; Dubnau, E.; Quemard, A.; Balasubramanian, V.; Um, K.S.; Wilson, T.; Collins, D.; de Lisle, G.; Jacobs, W.R. Jr inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science, 1994, 263(5144), 227-230.
[http://dx.doi.org/10.1126/science.8284673] [PMID: 8284673]
[95]
Larsen, M.H.; Vilchèze, C.; Kremer, L.; Besra, G.S.; Parsons, L.; Salfinger, M.; Heifets, L.; Hazbon, M.H.; Alland, D.; Sacchettini, J.C.; Jacobs, W.R. Jr Overexpression of inhA, but not kasA, confers resistance to isoniazid and ethionamide in Mycobacterium smegmatis, M. bovis BCG and M. tuberculosis. Mol. Microbiol., 2002, 46(2), 453-466.
[http://dx.doi.org/10.1046/j.1365-2958.2002.03162.x] [PMID: 12406221]
[96]
Machado, D.; Perdigão, J.; Ramos, J.; Couto, I.; Portugal, I.; Ritter, C.; Boettger, E.C.; Viveiros, M. High-level resistance to isoniazid and ethionamide in multidrug-resistant Mycobacterium tuberculosis of the Lisboa family is associated with inhA double mutations. J. Antimicrob. Chemother., 2013, 68(8), 1728-1732.
[http://dx.doi.org/10.1093/jac/dkt090] [PMID: 23539241]
[97]
Argyrou, A.; Vetting, M.W.; Aladegbami, B.; Blanchard, J.S. Mycobacterium tuberculosis dihydrofolate reductase is a target for isoniazid. Nat. Struct. Mol. Biol., 2006, 13(5), 408-413.
[http://dx.doi.org/10.1038/nsmb1089] [PMID: 16648861]
[98]
Argyrou, A.; Jin, L.; Siconilfi-Baez, L.; Angeletti, R.H.; Blanchard, J.S. Proteome-wide profiling of isoniazid targets in Mycobacterium tuberculosis. Biochemistry, 2006, 45(47), 13947-13953.
[http://dx.doi.org/10.1021/bi061874m] [PMID: 17115689]
[99]
Ho, Y.M.; Sun, Y-J.; Wong, S-Y.; Lee, A.S. Contribution of dfrA and inhA mutations to the detection of isoniazid-resistant Mycobacterium tuberculosis isolates. Antimicrob. Agents Chemother., 2009, 53(9), 4010-4012.
[http://dx.doi.org/10.1128/AAC.00433-09] [PMID: 19581462]
[100]
Wang, F.; Jain, P.; Gulten, G.; Liu, Z.; Feng, Y.; Ganesula, K.; Motiwala, A.S.; Ioerger, T.R.; Alland, D.; Vilchèze, C.; Jacobs, W.R., Jr; Sacchettini, J.C. Mycobacterium tuberculosis dihydrofolate reductase is not a target relevant to the antitubercular activity of isoniazid. Antimicrob. Agents Chemother., 2010, 54(9), 3776-3782.
[http://dx.doi.org/10.1128/AAC.00453-10] [PMID: 20566771]
[101]
Rinder, H.; Thomschke, A.; Rüsch-Gerdes, S.; Bretzel, G.; Feldmann, K.; Rifai, M.; Löscher, T. Significance of ahpC promoter mutations for the prediction of isoniazid resistance in Mycobacterium tuberculosis. Eur. J. Clin. Microbiol. Infect. Dis., 1998, 17(7), 508-511.
[http://dx.doi.org/10.1007/s100960050116] [PMID: 9764555]
[102]
Sherman, D.R.; Mdluli, K.; Hickey, M.J.; Arain, T.M.; Morris, S.L.; Barry, C.E., III; Stover, C.K. Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science, 1996, 272(5268), 1641-1643.
[http://dx.doi.org/10.1126/science.272.5268.1641] [PMID: 8658136]
[103]
Heym, B.; Stavropoulos, E.; Honoré, N.; Domenech, P.; Saint-Joanis, B.; Wilson, T.M.; Collins, D.M.; Colston, M.J.; Cole, S.T. Effects of overexpression of the alkyl hydroperoxide reductase AhpC on the virulence and isoniazid resistance of Mycobacterium tuberculosis. Infect. Immun., 1997, 65(4), 1395-1401.
[http://dx.doi.org/10.1128/IAI.65.4.1395-1401.1997] [PMID: 9119479]
[104]
Cardoso, R.F.; Cardoso, M.A.; Leite, C.Q.F.; Sato, D.N.; Mamizuka, E.M.; Hirata, R.D.C.; de Mello, F.F.; Hirata, M.H. Characterization of ndh gene of isoniazid resistant and susceptible Mycobacterium tuberculosis isolates from Brazil. Mem. Inst. Oswaldo Cruz, 2007, 102(1), 59-61.
[http://dx.doi.org/10.1590/S0074-02762007000100009] [PMID: 17294000]
[105]
Ando, H.; Kitao, T.; Miyoshi-Akiyama, T.; Kato, S.; Mori, T.; Kirikae, T. Downregulation of katG expression is associated with isoniazid resistance in Mycobacterium tuberculosis. Mol. Microbiol., 2011, 79(6), 1615-1628.
[http://dx.doi.org/10.1111/j.1365-2958.2011.07547.x] [PMID: 21244531]
[106]
Miesel, L.; Weisbrod, T.R.; Marcinkeviciene, J.A.; Bittman, R.; Jacobs, W.R. Jr NADH dehydrogenase defects confer isoniazid resistance and conditional lethality in Mycobacterium smegmatis. J. Bacteriol., 1998, 180(9), 2459-2467.
[http://dx.doi.org/10.1128/JB.180.9.2459-2467.1998] [PMID: 9573199]
[107]
Vilchèze, C.; Weisbrod, T.R.; Chen, B.; Kremer, L.; Hazbón, M.H.; Wang, F.; Alland, D.; Sacchettini, J.C.; Jacobs, W.R. Jr Altered NADH/NAD+ ratio mediates coresistance to isoniazid and ethionamide in mycobacteria. Antimicrob. Agents Chemother., 2005, 49(2), 708-720.
[http://dx.doi.org/10.1128/AAC.49.2.708-720.2005] [PMID: 15673755]
[108]
Ando, H.; Miyoshi-Akiyama, T.; Watanabe, S.; Kirikae, T. A silent mutation in mabA confers isoniazid resistance on Mycobacterium tuberculosis. Mol. Microbiol., 2014, 91(3), 538-547.
[http://dx.doi.org/10.1111/mmi.12476] [PMID: 24354762]
[109]
Takayama, K.; Kilburn, J.O. Inhibition of synthesis of arabinogalactan by ethambutol in Mycobacterium smegmatis. Antimicrob. Agents Chemother., 1989, 33(9), 1493-1499.
[http://dx.doi.org/10.1128/AAC.33.9.1493] [PMID: 2817850]
[110]
Mikusová, K.; Slayden, R.A.; Besra, G.S.; Brennan, P.J. Biogenesis of the mycobacterial cell wall and the site of action of ethambutol. Antimicrob. Agents Chemother., 1995, 39(11), 2484-2489.
[http://dx.doi.org/10.1128/AAC.39.11.2484] [PMID: 8585730]
[111]
Telenti, A.; Philipp, W.J.; Sreevatsan, S.; Bernasconi, C.; Stockbauer, K.E.; Wieles, B.; Musser, J.M.; Jacobs, W.R., Jr The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat. Med., 1997, 3(5), 567-570.
[http://dx.doi.org/10.1038/nm0597-567] [PMID: 9142129]
[112]
Sreevatsan, S.; Stockbauer, K.E.; Pan, X.; Kreiswirth, B.N.; Moghazeh, S.L.; Jacobs, W.R., Jr; Telenti, A.; Musser, J.M. Ethambutol resistance in Mycobacterium tuberculosis: critical role of embB mutations. Antimicrob. Agents Chemother., 1997, 41(8), 1677-1681.
[http://dx.doi.org/10.1128/AAC.41.8.1677] [PMID: 9257740]
[113]
Ahmad, S.; Jaber, A-A.; Mokaddas, E. Frequency of embB codon 306 mutations in ethambutol-susceptible and -resistant clinical Mycobacterium tuberculosis isolates in Kuwait. Tuberculosis (Edinb.), 2007, 87(2), 123-129.
[http://dx.doi.org/10.1016/j.tube.2006.05.004] [PMID: 17289435]
[114]
Mitchison, D.A. The action of antituberculosis drugs in short-course chemotherapy. Tubercle, 1985, 66(3), 219-225.
[http://dx.doi.org/10.1016/0041-3879(85)90040-6] [PMID: 3931319]
[115]
Konno, K.; Feldmann, F.M.; McDermott, W. Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am. Rev. Respir. Dis., 1967, 95(3), 461-469.
[PMID: 4225184]
[116]
Scorpio, A.; Zhang, Y. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat. Med., 1996, 2(6), 662-667.
[http://dx.doi.org/10.1038/nm0696-662] [PMID: 8640557]
[117]
Zhang, Y.; Mitchison, D. The curious characteristics of pyrazinamide: a review. Int. J. Tuberc. Lung Dis., 2003, 7(1), 6-21.
[PMID: 12701830]
[118]
Zimhony, O.; Vilchèze, C.; Arai, M.; Welch, J.T.; Jacobs, W.R. Jr Pyrazinoic acid and its n-propyl ester inhibit fatty acid synthase type I in replicating tubercle bacilli. Antimicrob. Agents Chemother., 2007, 51(2), 752-754.
[http://dx.doi.org/10.1128/AAC.01369-06] [PMID: 17101678]
[119]
Zimhony, O.; Cox, J.S.; Welch, J.T.; Vilchèze, C.; Jacobs, W.R. Jr Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nat. Med., 2000, 6(9), 1043-1047.
[http://dx.doi.org/10.1038/79558] [PMID: 10973326]
[120]
Tan, Y.; Hu, Z.; Zhang, T.; Cai, X.; Kuang, H.; Liu, Y.; Chen, J.; Yang, F.; Zhang, K.; Tan, S.; Zhao, Y. Role of pncA and rpsA gene sequencing in detection of pyrazinamide resistance in Mycobacterium tuberculosis isolates from southern China. J. Clin. Microbiol., 2014, 52(1), 291-297.
[http://dx.doi.org/10.1128/JCM.01903-13] [PMID: 24131688]
[121]
Scorpio, A.; Lindholm-Levy, P.; Heifets, L.; Gilman, R.; Siddiqi, S.; Cynamon, M.; Zhang, Y. Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 1997, 41(3), 540-543.
[http://dx.doi.org/10.1128/AAC.41.3.540] [PMID: 9055989]
[122]
Cheng, S-J.; Thibert, L.; Sanchez, T.; Heifets, L.; Zhang, Y. pncA mutations as a major mechanism of pyrazinamide resistance in Mycobacterium tuberculosis: spread of a monoresistant strain in Quebec, Canada. Antimicrob. Agents Chemother., 2000, 44(3), 528-532.
[http://dx.doi.org/10.1128/AAC.44.3.528-532.2000] [PMID: 10681313]
[123]
Alexander, D.C.; Ma, J.H.; Guthrie, J.L.; Blair, J.; Chedore, P.; Jamieson, F.B. Gene sequencing for routine verification of pyrazinamide resistance in Mycobacterium tuberculosis: a role for pncA but not rpsA. J. Clin. Microbiol., 2012, 50(11), 3726-3728.
[http://dx.doi.org/10.1128/JCM.00620-12] [PMID: 22895038]
[124]
Simons, S.O.; Mulder, A.; van Ingen, J.; Boeree, M.J.; van Soolingen, D. Role of rpsA gene sequencing in diagnosis of pyrazinamide resistance. J. Clin. Microbiol., 2013, 51(1), 382.
[http://dx.doi.org/10.1128/JCM.02739-12] [PMID: 23269981]
[125]
Crofton, J.; Mitchison, D.A. Streptomycin resistance in pulmonary tuberculosis. BMJ, 1948, 2(4588), 1009-1015.
[http://dx.doi.org/10.1136/bmj.2.4588.1009] [PMID: 18100441]
[126]
Moazed, D.; Noller, H.F. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature, 1987, 327(6121), 389-394.
[http://dx.doi.org/10.1038/327389a0] [PMID: 2953976]
[127]
Finken, M.; Kirschner, P.; Meier, A.; Wrede, A.; Böttger, E.C. Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Mol. Microbiol., 1993, 9(6), 1239-1246.
[http://dx.doi.org/10.1111/j.1365-2958.1993.tb01253.x] [PMID: 7934937]
[128]
Okamoto, S.; Tamaru, A.; Nakajima, C.; Nishimura, K.; Tanaka, Y.; Tokuyama, S.; Suzuki, Y.; Ochi, K. Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria. Mol. Microbiol., 2007, 63(4), 1096-1106.
[http://dx.doi.org/10.1111/j.1365-2958.2006.05585.x] [PMID: 17238915]
[129]
Spies, F.S.; da Silva, P.E.A.; Ribeiro, M.O.; Rossetti, M.L.; Zaha, A. Identification of mutations related to streptomycin resistance in clinical isolates of Mycobacterium tuberculosis and possible involvement of efflux mechanism. Antimicrob. Agents Chemother., 2008, 52(8), 2947-2949.
[http://dx.doi.org/10.1128/AAC.01570-07] [PMID: 18541729]
[130]
Goss, W.A.; Deitz, W.H.; Cook, T.M. Mechanism of action of nalidixic acid on Escherichia coli II. Inhibition of deoxyribonucleic acid synthesis. J. Bacteriol., 1965, 89(4), 1068-1074.
[http://dx.doi.org/10.1128/JB.89.4.1068-1074.1965] [PMID: 14276097]
[131]
Rustomjee, R.; Lienhardt, C.; Kanyok, T.; Davies, G.R.; Levin, J.; Mthiyane, T.; Reddy, C.; Sturm, A.W.; Sirgel, F.A.; Allen, J.; Coleman, D.J.; Fourie, B.; Mitchison, D.A. Gatifloxacin for TB (OFLOTUB) study team. A Phase II study of the sterilising activities of ofloxacin, gatifloxacin and moxifloxacin in pulmonary tuberculosis. Int. J. Tuberc. Lung Dis., 2008, 12(2), 128-138.
[PMID: 18230244]
[132]
Palomino, J.C.; Martin, A. Tuberculosis clinical trial update and the current anti-tuberculosis drug portfolio. Curr. Med. Chem., 2013, 20(30), 3785-3796.
[http://dx.doi.org/10.2174/09298673113209990166] [PMID: 23862617]
[133]
Fàbrega, A.; Madurga, S.; Giralt, E.; Vila, J. Mechanism of action of and resistance to quinolones. Microb. Biotechnol., 2009, 2(1), 40-61.
[http://dx.doi.org/10.1111/j.1751-7915.2008.00063.x] [PMID: 21261881]
[134]
Aubry, A.; Pan, X-S.; Fisher, L.M.; Jarlier, V.; Cambau, E. Mycobacterium tuberculosis DNA gyrase: interaction with quinolones and correlation with antimycobacterial drug activity. Antimicrob. Agents Chemother., 2004, 48(4), 1281-1288.
[http://dx.doi.org/10.1128/AAC.48.4.1281-1288.2004] [PMID: 15047530]
[135]
Takiff, H.E.; Salazar, L.; Guerrero, C.; Philipp, W.; Huang, W.M.; Kreiswirth, B.; Cole, S.T.; Jacobs, W.R., Jr; Telenti, A. Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrob. Agents Chemother., 1994, 38(4), 773-780.
[http://dx.doi.org/10.1128/AAC.38.4.773] [PMID: 8031045]
[136]
Cheng, A.F.; Yew, W.W.; Chan, E.W.; Chin, M.L.; Hui, M.M.; Chan, R.C. Multiplex PCR amplimer conformation analysis for rapid detection of gyrA mutations in fluoroquinolone-resistant Mycobacterium tuberculosis clinical isolates. Antimicrob. Agents Chemother., 2004, 48(2), 596-601.
[http://dx.doi.org/10.1128/AAC.48.2.596-601.2004] [PMID: 14742214]
[137]
Sun, Z.; Zhang, J.; Zhang, X.; Wang, S.; Zhang, Y.; Li, C. Comparison of gyrA gene mutations between laboratory-selected ofloxacin-resistant Mycobacterium tuberculosis strains and clinical isolates. Int. J. Antimicrob. Agents, 2008, 31(2), 115-121.
[http://dx.doi.org/10.1016/j.ijantimicag.2007.10.014] [PMID: 18164184]
[138]
Maruri, F.; Sterling, T.R.; Kaiga, A.W.; Blackman, A.; van der Heijden, Y.F.; Mayer, C.; Cambau, E.; Aubry, A. A systematic review of gyrase mutations associated with fluoroquinolone-resistant Mycobacterium tuberculosis and a proposed gyrase numbering system. J. Antimicrob. Chemother., 2012, 67(4), 819-831.
[http://dx.doi.org/10.1093/jac/dkr566] [PMID: 22279180]
[139]
Musser, J.M. Antimicrobial agent resistance in mycobacteria: molecular genetic insights. Clin. Microbiol. Rev., 1995, 8(4), 496-514.
[http://dx.doi.org/10.1128/CMR.8.4.496] [PMID: 8665467]
[140]
Aubry, A.; Veziris, N.; Cambau, E.; Truffot-Pernot, C.; Jarlier, V.; Fisher, L.M. Novel gyrase mutations in quinolone-resistant and -hypersusceptible clinical isolates of Mycobacterium tuberculosis: functional analysis of mutant enzymes. Antimicrob. Agents Chemother., 2006, 50(1), 104-112.
[http://dx.doi.org/10.1128/AAC.50.1.104-112.2006] [PMID: 16377674]
[141]
Escribano, I.; Rodríguez, J.C.; Llorca, B.; García-Pachon, E.; Ruiz, M.; Royo, G. Importance of the efflux pump systems in the resistance of Mycobacterium tuberculosis to fluoroquinolones and linezolid. Chemotherapy, 2007, 53(6), 397-401.
[http://dx.doi.org/10.1159/000109769] [PMID: 17934259]
[142]
Alangaden, G.J.; Kreiswirth, B.N.; Aouad, A.; Khetarpal, M.; Igno, F.R.; Moghazeh, S.L.; Manavathu, E.K.; Lerner, S.A. Mechanism of resistance to amikacin and kanamycin in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 1998, 42(5), 1295-1297.
[http://dx.doi.org/10.1128/AAC.42.5.1295] [PMID: 9593173]
[143]
Suzuki, Y.; Katsukawa, C.; Tamaru, A.; Abe, C.; Makino, M.; Mizuguchi, Y.; Taniguchi, H. Detection of kanamycin-resistant Mycobacterium tuberculosis by identifying mutations in the 16S rRNA gene. J. Clin. Microbiol., 1998, 36(5), 1220-1225.
[http://dx.doi.org/10.1128/JCM.36.5.1220-1225.1998] [PMID: 9574680]
[144]
Krüüner, A.; Jureen, P.; Levina, K.; Ghebremichael, S.; Hoffner, S. Discordant resistance to kanamycin and amikacin in drug-resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2003, 47(9), 2971-2973.
[http://dx.doi.org/10.1128/AAC.47.9.2971-2973.2003] [PMID: 12937004]
[145]
Zaunbrecher, M.A.; Sikes, R.D., Jr; Metchock, B.; Shinnick, T.M.; Posey, J.E. Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 2009, 106(47), 20004-20009.
[http://dx.doi.org/10.1073/pnas.0907925106] [PMID: 19906990]
[146]
Stanley, R.E.; Blaha, G.; Grodzicki, R.L.; Strickler, M.D.; Steitz, T.A. The structures of the anti-tuberculosis antibiotics viomycin and capreomycin bound to the 70S ribosome. Nat. Struct. Mol. Biol., 2010, 17(3), 289-293.
[http://dx.doi.org/10.1038/nsmb.1755] [PMID: 20154709]
[147]
McClatchy, J.K.; Kanes, W.; Davidson, P.T.; Moulding, T.S. Cross-resistance in M. tuberculosis to kanamycin, capreomycin and viomycin. Tubercle, 1977, 58(1), 29-34.
[http://dx.doi.org/10.1016/S0041-3879(77)80007-X] [PMID: 68613]
[148]
Johansen, S.K.; Maus, C.E.; Plikaytis, B.B.; Douthwaite, S. Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2′-O-methylations in 16S and 23S rRNAs. Mol. Cell, 2006, 23(2), 173-182.
[http://dx.doi.org/10.1016/j.molcel.2006.05.044] [PMID: 16857584]
[149]
Georghiou, S.B.; Magana, M.; Garfein, R.S.; Catanzaro, D.G.; Catanzaro, A.; Rodwell, T.C. Evaluation of genetic mutations associated with Mycobacterium tuberculosis resistance to amikacin, kanamycin and capreomycin: a systematic review. PLoS One, 2012, 7(3), e33275.
[http://dx.doi.org/10.1371/journal.pone.0033275] [PMID: 22479378]
[150]
Carette, X.; Blondiaux, N.; Willery, E.; Hoos, S.; Lecat-Guillet, N.; Lens, Z.; Wohlkönig, A.; Wintjens, R.; Soror, S.H.; Frénois, F.; Dirié, B.; Villeret, V.; England, P.; Lippens, G.; Deprez, B.; Locht, C.; Willand, N.; Baulard, A.R. Structural activation of the transcriptional repressor EthR from Mycobacterium tuberculosis by single amino acid change mimicking natural and synthetic ligands. Nucleic Acids Res., 2012, 40(7), 3018-3030.
[http://dx.doi.org/10.1093/nar/gkr1113] [PMID: 22156370]
[151]
DeBarber, A.E.; Mdluli, K.; Bosman, M.; Bekker, L-G.; Barry, C.E. III Ethionamide activation and sensitivity in multidrug-resistant Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 2000, 97(17), 9677-9682.
[http://dx.doi.org/10.1073/pnas.97.17.9677] [PMID: 10944230]
[152]
Vilchèze, C.; Av-Gay, Y.; Attarian, R.; Liu, Z.; Hazbón, M.H.; Colangeli, R.; Chen, B.; Liu, W.; Alland, D.; Sacchettini, J.C.; Jacobs, W.R. Jr Mycothiol biosynthesis is essential for ethionamide susceptibility in Mycobacterium tuberculosis. Mol. Microbiol., 2008, 69(5), 1316-1329.
[http://dx.doi.org/10.1111/j.1365-2958.2008.06365.x] [PMID: 18651841]
[153]
Rengarajan, J.; Sassetti, C.M.; Naroditskaya, V.; Sloutsky, A.; Bloom, B.R.; Rubin, E.J. The folate pathway is a target for resistance to the drug para-aminosalicylic acid (PAS) in mycobacteria. Mol. Microbiol., 2004, 53(1), 275-282.
[http://dx.doi.org/10.1111/j.1365-2958.2004.04120.x] [PMID: 15225321]
[154]
Zhao, F.; Wang, X-D.; Erber, L.N.; Luo, M.; Guo, A.Z.; Yang, S.S.; Gu, J.; Turman, B.J.; Gao, Y.R.; Li, D.F.; Cui, Z.Q.; Zhang, Z.P.; Bi, L.J.; Baughn, A.D.; Zhang, X.E.; Deng, J.Y. Binding pocket alterations in dihydrofolate synthase confer resistance to para-aminosalicylic acid in clinical isolates of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2014, 58(3), 1479-1487.
[http://dx.doi.org/10.1128/AAC.01775-13] [PMID: 24366731]
[155]
Mathys, V.; Wintjens, R.; Lefevre, P.; Bertout, J.; Singhal, A.; Kiass, M.; Kurepina, N.; Wang, X.M.; Mathema, B.; Baulard, A.; Kreiswirth, B.N.; Bifani, P. Molecular genetics of para-aminosalicylic acid resistance in clinical isolates and spontaneous mutants of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2009, 53(5), 2100-2109.
[http://dx.doi.org/10.1128/AAC.01197-08] [PMID: 19237648]
[156]
Zhang, Y. The magic bullets and tuberculosis drug targets. Annu. Rev. Pharmacol. Toxicol., 2005, 45, 529-564.
[http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.100120] [PMID: 15822188]
[157]
Cáceres, N.E.; Harris, N.B.; Wellehan, J.F.; Feng, Z.; Kapur, V.; Barletta, R.G. Overexpression of the D-alanine racemase gene confers resistance to D-cycloserine in Mycobacterium smegmatis. J. Bacteriol., 1997, 179(16), 5046-5055.
[http://dx.doi.org/10.1128/JB.179.16.5046-5055.1997] [PMID: 9260945]
[158]
Chen, J.M.; Uplekar, S.; Gordon, S.V.; Cole, S.T. A point mutation in cycA partially contributes to the D-cycloserine resistance trait of Mycobacterium bovis BCG vaccine strains. PLoS One, 2012, 7(8), e43467.
[http://dx.doi.org/10.1371/journal.pone.0043467] [PMID: 22912881]
[159]
Grzegorzewicz, A.E.; Korduláková, J.; Jones, V.; Born, S.E.; Belardinelli, J.M.; Vaquié, A.; Gundi, V.A.; Madacki, J.; Slama, N.; Laval, F.; Vaubourgeix, J.; Crew, R.M.; Gicquel, B.; Daffé, M.; Morbidoni, H.R.; Brennan, P.J.; Quémard, A.; McNeil, M.R.; Jackson, M. A common mechanism of inhibition of the Mycobacterium tuberculosis mycolic acid biosynthetic pathway by isoxyl and thiacetazone. J. Biol. Chem., 2012, 287(46), 38434-38441.
[http://dx.doi.org/10.1074/jbc.M112.400994] [PMID: 23002234]
[160]
Andini, N.; Nash, K.A. Intrinsic macrolide resistance of the Mycobacterium tuberculosis complex is inducible. Antimicrob. Agents Chemother., 2006, 50(7), 2560-2562.
[http://dx.doi.org/10.1128/AAC.00264-06] [PMID: 16801446]
[161]
Bosne-David, S.; Barros, V.; Verde, S.C.; Portugal, C.; David, H.L. Intrinsic resistance of Mycobacterium tuberculosis to clarithromycin is effectively reversed by subinhibitory concentrations of cell wall inhibitors. J. Antimicrob. Chemother., 2000, 46(3), 391-395.
[http://dx.doi.org/10.1093/jac/46.3.391] [PMID: 10980165]
[162]
Barry, V.C.; Belton, J.G.; Conalty, M.L.; Denneny, J.M.; Edward, D.W.; O’Sullivan, J.F.; Twomey, D.; Winder, F. A new series of phenazines (rimino-compounds) with high antituberculosis activity. Nature, 1957, 179(4568), 1013-1015.
[http://dx.doi.org/10.1038/1791013a0] [PMID: 13430770]
[163]
Browne, S.G.; Hogerzeil, L.M. “B 663” in the treatment of leprosy. Preliminary report of a pilot trial. Lepr. Rev., 1962, 33(1), 6-10.
[http://dx.doi.org/10.5935/0305-7518.19620002] [PMID: 13873759]
[164]
Cholo, M.C.; Steel, H.C.; Fourie, P.B.; Germishuizen, W.A.; Anderson, R. Clofazimine: current status and future prospects. J. Antimicrob. Chemother., 2012, 67(2), 290-298.
[http://dx.doi.org/10.1093/jac/dkr444] [PMID: 22020137]
[165]
Yano, T.; Kassovska-Bratinova, S.; Teh, J.S.; Winkler, J.; Sullivan, K.; Isaacs, A.; Schechter, N.M.; Rubin, H. Reduction of clofazimine by mycobacterial type 2 NADH:quinone oxidoreductase: a pathway for the generation of bactericidal levels of reactive oxygen species. J. Biol. Chem., 2011, 286(12), 10276-10287.
[http://dx.doi.org/10.1074/jbc.M110.200501] [PMID: 21193400]
[166]
Hartkoorn, R.C.; Uplekar, S.; Cole, S.T. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2014, 58(5), 2979-2981.
[http://dx.doi.org/10.1128/AAC.00037-14] [PMID: 24590481]
[167]
Leach, K.L.; Brickner, S.J.; Noe, M.C.; Miller, P.F. Linezolid, the first oxazolidinone antibacterial agent. Ann. N. Y. Acad. Sci., 2011, 1222(1), 49-54.
[http://dx.doi.org/10.1111/j.1749-6632.2011.05962.x] [PMID: 21434942]
[168]
Richter, E.; Rüsch-Gerdes, S.; Hillemann, D. First linezolid-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2007, 51(4), 1534-1536.
[http://dx.doi.org/10.1128/AAC.01113-06] [PMID: 17242139]
[169]
Hillemann, D.; Rüsch-Gerdes, S.; Richter, E. In vitro-selected linezolid-resistant Mycobacterium tuberculosis mutants. Antimicrob. Agents Chemother., 2008, 52(2), 800-801.
[http://dx.doi.org/10.1128/AAC.01189-07] [PMID: 18070973]
[170]
Beckert, P.; Hillemann, D.; Kohl, T.A.; Kalinowski, J.; Richter, E.; Niemann, S.; Feuerriegel, S. rplC T460C identified as a dominant mutation in linezolid-resistant Mycobacterium tuberculosis strains. Antimicrob. Agents Chemother., 2012, 56(5), 2743-2745.
[http://dx.doi.org/10.1128/AAC.06227-11] [PMID: 22371899]
[171]
Cave, A.; Alland, D.; Eisenach, K.D.; Sifuentes-Osornio, J.; Donald, M.; León, M.B. Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2006, 50(8), 2640-2649..
[172]
Himasree, Y; Sukanya, K. ; Bhavyasri, K.; Amrutha, K.; Hari Prasath K. Recent trends in treatment of multidrug resistanttuberculosis- a review. Mycobact. Dis., 2017, 7, 250..
[173]
Pym, A.S.; Diacon, A.H.; Tang, S-J.; Conradie, F.; Danilovits, M.; Chuchottaworn, C.; Vasilyeva, I.; Andries, K.; Bakare, N.; De Marez, T.; Haxaire-Theeuwes, M.; Lounis, N.; Meyvisch, P.; Van Baelen, B.; van Heeswijk, R.P.; Dannemann, B. TMC207-C209 Study Group. Bedaquiline in the treatment of multidrug- and extensively drug-resistant tuberculosis. Eur. Respir. J., 2016, 47(2), 564-574.
[http://dx.doi.org/10.1183/13993003.00724-2015] [PMID: 26647431]
[174]
Andries, K.; Verhasselt, P.; Guillemont, J.; Göhlmann, H.W.; Neefs, J-M.; Winkler, H.; Van Gestel, J.; Timmerman, P.; Zhu, M.; Lee, E.; Williams, P.; de Chaffoy, D.; Huitric, E.; Hoffner, S.; Cambau, E.; Truffot-Pernot, C.; Lounis, N.; Jarlier, V. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science, 2005, 307(5707), 223-227.
[http://dx.doi.org/10.1126/science.1106753] [PMID: 15591164]
[175]
Koul, A.; Dendouga, N.; Vergauwen, K.; Molenberghs, B.; Vranckx, L.; Willebrords, R.; Ristic, Z.; Lill, H.; Dorange, I.; Guillemont, J.; Bald, D.; Andries, K. Diarylquinolines target subunit c of mycobacterial ATP synthase. Nat. Chem. Biol., 2007, 3(6), 323-324.
[http://dx.doi.org/10.1038/nchembio884] [PMID: 17496888]
[176]
Gov C. A Phase 3 Study Assessing the Safety and Efficacy of Bedaquiline Plus PA-824 Plus Linezolid in Subjects With Drug Resistant Pulmonary Tuberculosis; Identifier NCT02333799;, about 13 screens. National Library of Medicine (US) Bethesda (MD),. 2000.
[177]
Dawson, R.; Harris, K.; Conradie, A.; Burger, D.; Murray, S.; Mendel, C. editors. Efficacy of bedaquiline, pretomanid, moxifloxacin & PZA (BPaMZ) against DS-& MDR-TB. Conference on Retroviruses and Opportunistic Infections (CROI), CROI Foundation in partnership with the International Antiviral Society-USA, Seattle, WA2017..
[178]
Gov C. Safety and efficacy of various doses and treatment durations of linezolid plus bedaquiline and pretomanid in participants with pulmonary TB, XDR-TB, Pre-XDR-TB or non-responsive/ intolerant MDR-TB (ZeNix). National Library of Medicine (US) Bethesda (MD);. 2000.
[179]
Field, S .K. Safety and efficacy of delamanid in the treatment of multidrug-resistant tuberculosis (MDR-TB). Clin. Med. Insights: Therapeut., 2013, 5, CMT. S11675..
[180]
Lessem, E. An activist’s guide to delamanid (deltyba); Treatment Action Group, 2014, pp. 1-6.
[181]
Sloan, D.J.; Lewis, J.M. Management of multidrug-resistant TB: novel treatments and their expansion to low resource settings. Trans. R. Soc. Trop. Med. Hyg., 2016, 110(3), 163-172.
[http://dx.doi.org/10.1093/trstmh/trv107] [PMID: 26884496]
[182]
Xavier, A.S.; Lakshmanan, M. Delamanid: A new armor in combating drug-resistant tuberculosis. J. Pharmacol. Pharmacother., 2014, 5(3), 222-224.
[http://dx.doi.org/10.4103/0976-500X.136121] [PMID: 25210407]
[183]
Silva, D.R.; Dalcolmo, M.; Tiberi, S.; Arbex, M.A.; Munoz-Torrico, M.; Duarte, R.; D’Ambrosio, L.; Visca, D.; Rendon, A.; Gaga, M.; Zumla, A.; Migliori, G.B. New and repurposed drugs to treat multidrug- and extensively drug-resistant tuberculosis. J. Bras. Pneumol., 2018, 44(2), 153-160.
[http://dx.doi.org/10.1590/s1806-37562017000000436] [PMID: 29791557]
[184]
Upton, A.M.; Cho, S.; Yang, T.J.; Kim, Y.; Wang, Y.; Lu, Y.; Wang, B.; Xu, J.; Mdluli, K.; Ma, Z.; Franzblau, S.G. In vitro and in vivo activities of the nitroimidazole TBA-354 against Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2015, 59(1), 136-144.
[http://dx.doi.org/10.1128/AAC.03823-14] [PMID: 25331696]
[185]
Rustomjee, R.; Zumla, A. Delamanid expanded access novel treatment of drug resistant tuberculosis. Infect. Drug Resist., 2015, 8, 359-366.
[http://dx.doi.org/10.2147/IDR.S62119] [PMID: 26604805]
[186]
Das, S.; Sehgal, V.K. Delamanid and its Role in Drug-Resistant Tuberculosis. Int. J. of Medical Dental Sci., 2017, 6(1), 1449-1453.
[http://dx.doi.org/10.19056/ijmdsjssmes/2017/v6i1/125574]
[187]
Sacksteder, K.A.; Protopopova, M.; Barry, C.E., III; Andries, K.; Nacy, C.A. Discovery and development of SQ109: a new antitubercular drug with a novel mechanism of action. Future Microbiol., 2012, 7(7), 823-837.
[http://dx.doi.org/10.2217/fmb.12.56] [PMID: 22827305]
[188]
Tahlan, K.; Wilson, R.; Kastrinsky, D.B.; Arora, K.; Nair, V.; Fischer, E.; Barnes, S.W.; Walker, J.R.; Alland, D.; Barry, C.E., III; Boshoff, H.I. SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2012, 56(4), 1797-1809.
[http://dx.doi.org/10.1128/AAC.05708-11] [PMID: 22252828]
[189]
Grzegorzewicz, A.E.; Pham, H.; Gundi, V.A.; Scherman, M.S.; North, E.J.; Hess, T.; Jones, V.; Gruppo, V.; Born, S.E.; Korduláková, J.; Chavadi, S.S.; Morisseau, C.; Lenaerts, A.J.; Lee, R.E.; McNeil, M.R.; Jackson, M. Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane. Nat. Chem. Biol., 2012, 8(4), 334-341.
[http://dx.doi.org/10.1038/nchembio.794] [PMID: 22344175]
[190]
Jia, L.; Tomaszewski, J.E.; Hanrahan, C.; Coward, L.; Noker, P.; Gorman, G.; Nikonenko, B.; Protopopova, M. Pharmacodynamics and pharmacokinetics of SQ109, a new diamine-based antitubercular drug. Br. J. Pharmacol., 2005, 144(1), 80-87.
[http://dx.doi.org/10.1038/sj.bjp.0705984] [PMID: 15644871]
[191]
Chen, P.; Gearhart, J.; Protopopova, M.; Einck, L.; Nacy, C.A. Synergistic interactions of SQ109, a new ethylene diamine, with front-line antitubercular drugs in vitro. J. Antimicrob. Chemother., 2006, 58(2), 332-337.
[http://dx.doi.org/10.1093/jac/dkl227] [PMID: 16751637]
[192]
Reddy, V.M.; Einck, L.; Andries, K.; Nacy, C.A. In vitro interactions between new antitubercular drug candidates SQ109 and TMC207. Antimicrob. Agents Chemother., 2010, 54(7), 2840-2846.
[http://dx.doi.org/10.1128/AAC.01601-09] [PMID: 20385864]
[193]
Varela, C.; Rittmann, D.; Singh, A.; Krumbach, K.; Bhatt, K.; Eggeling, L.; Besra, G.S.; Bhatt, A. MmpL genes are associated with mycolic acid metabolism in mycobacteria and corynebacteria. Chem. Biol., 2012, 19(4), 498-506.
[http://dx.doi.org/10.1016/j.chembiol.2012.03.006] [PMID: 22520756]
[194]
Falzon, D.; Schünemann, H.J.; Harausz, E.; González-Angulo, L.; Lienhardt, C.; Jaramillo, E.; Weyer, K. World Health Organization treatment guidelines for drug-resistant tuberculosis, 2016 update. Eur. Respir. J., 2017, 49(3), 1602308.
[http://dx.doi.org/10.1183/13993003.02308-2016] [PMID: 28331043]
[195]
Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomedicine, 2017, 12, 1227-1249.
[http://dx.doi.org/10.2147/IJN.S121956] [PMID: 28243086]
[196]
Huang, Y.; Yu, F.; Park, Y-S.; Wang, J.; Shin, M-C.; Chung, H.S.; Yang, V.C. Co-administration of protein drugs with gold nanoparticles to enable percutaneous delivery. Biomaterials, 2010, 31(34), 9086-9091.
[http://dx.doi.org/10.1016/j.biomaterials.2010.08.046] [PMID: 20828812]
[197]
Huh, A.J.; Young, J.K. "Nanoantibiotics": A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release, 2011, 156, 128-145..
[198]
Mathuria, J.P. Nanoparticles in tuberculosis diagnosis, treatment and prevention: A hope for future. Dig. J. Nanomater. Biostruct. (DJNB), 2009, 4(2)..
[199]
Dawson, R.; Condos, R.; Tse, D.; Huie, M.L.; Ress, S.; Tseng, C-H.; Brauns, C.; Weiden, M.; Hoshino, Y.; Bateman, E.; Rom, W.N. Immunomodulation with recombinant interferon-γ1b in pulmonary tuberculosis. PLoS One, 2009, 4(9), e6984.
[http://dx.doi.org/10.1371/journal.pone.0006984] [PMID: 19753300]
[200]
Elliott, A.M.; Halwiindi, B.; Bagshawe, A.; Hayes, R.J.; Luo, N.; Pobee, J.O.; McAdam, K.P. Use of prednisolone in the treatment of HIV-positive tuberculosis patients. Q. J. Med., 1992, 85(307-308), 855-860.
[PMID: 1484947]
[201]
Elliott, A.M.; Luzze, H.; Quigley, M.A.; Nakiyingi, J.S.; Kyaligonza, S.; Namujju, P.B.; Ducar, C.; Ellner, J.J.; Whitworth, J.A.; Mugerwa, R.; Johnson, J.L.; Okwera, A. A randomized, double-blind, placebo-controlled trial of the use of prednisolone as an adjunct to treatment in HIV-1-associated pleural tuberculosis. J. Infect. Dis., 2004, 190(5), 869-878.
[http://dx.doi.org/10.1086/422257] [PMID: 15295690]
[202]
Mathur, M.L. Potential utility of Mycobacterium w vaccine in control of tuberculosis. Curr. Respir. Med. Rev., 2006, 2(2), 183-188.
[http://dx.doi.org/10.2174/157339806776843120]
[203]
Gupta, A.; Ahmad, F.J.; Ahmad, F.; Gupta, U.D.; Natarajan, M.; Katoch, V.; Bhaskar, S. Efficacy of Mycobacterium indicus pranii immunotherapy as an adjunct to chemotherapy for tuberculosis and underlying immune responses in the lung. PLoS One, 2012, 7(7), e39215.
[http://dx.doi.org/10.1371/journal.pone.0039215] [PMID: 22844392]
[204]
Mayosi, B.M.; Ntsekhe, M.; Bosch, J.; Pandie, S.; Jung, H.; Gumedze, F.; Pogue, J.; Thabane, L.; Smieja, M.; Francis, V.; Joldersma, L.; Thomas, K.M.; Thomas, B.; Awotedu, A.A.; Magula, N.P.; Naidoo, D.P.; Damasceno, A.; Chitsa Banda, A.; Brown, B.; Manga, P.; Kirenga, B.; Mondo, C.; Mntla, P.; Tsitsi, J.M.; Peters, F.; Essop, M.R.; Russell, J.B.; Hakim, J.; Matenga, J.; Barasa, A.F.; Sani, M.U.; Olunuga, T.; Ogah, O.; Ansa, V.; Aje, A.; Danbauchi, S.; Ojji, D.; Yusuf, S. IMPI Trial Investigators. Prednisolone and Mycobacterium indicus pranii in tuberculous pericarditis. N. Engl. J. Med., 2014, 371(12), 1121-1130.
[http://dx.doi.org/10.1056/NEJMoa1407380] [PMID: 25178809]
[205]
Hofman, S.; Segers, M.M.; Ghimire, S.; Bolhuis, M.S.; Sturkenboom, M.G.; Van Soolingen, D.; Alffenaar, J.W. Emerging drugs and alternative possibilities in the treatment of tuberculosis. Expert Opin. Emerg. Drugs, 2016, 21(1), 103-116.
[http://dx.doi.org/10.1517/14728214.2016.1151000] [PMID: 26848966]
[206]
Batdelger, D.; Dandii, D.; Jirathitikal, V.; Bourinbaiar, A.S. Open-label trial of therapeutic immunization with oral V-5 Immunitor (V5) vaccine in patients with chronic hepatitis C. Vaccine, 2008, 26(22), 2733-2737.
[http://dx.doi.org/10.1016/j.vaccine.2008.03.021] [PMID: 18455842]
[207]
Arjanova, O.V.; Prihoda, N.D.; Yurchenko, L.V.; Sokolenko, N.I.; Frolov, V.M.; Tarakanovskaya, M.G.; Batdelger, D.; Jirathitikal, V.; Bourinbaiar, A.S. Adjunct oral immunotherapy in patients with re-treated, multidrug-resistant or HIV-coinfected TB. Immunotherapy, 2011, 3(2), 181-191.
[http://dx.doi.org/10.2217/imt.10.96] [PMID: 21182457]
[208]
Butov, D.A.; Pashkov, Y.N.; Stepanenko, A.L.; Choporova, A.I.; Butova, T.S.; Batdelger, D.; Jirathitikal, V.; Bourinbaiar, A.S.; Zaitzeva, S.I. Phase IIb randomized trial of adjunct immunotherapy in patients with first-diagnosed tuberculosis, relapsed and multi-drug-resistant (MDR) TB. J. Immune Based Ther. Vaccines, 2011, 9(1), 3.
[http://dx.doi.org/10.1186/1476-8518-9-3] [PMID: 21244690]
[209]
Butov, D.A.; Efremenko, Y.V.; Prihoda, N.D.; Zaitzeva, S.I.; Yurchenko, L.V.; Sokolenko, N.I.; Butova, T.S.; Stepanenko, A.L.; Kutsyna, G.A.; Jirathitikal, V.; Bourinbaiar, A.S. Randomized, placebo-controlled Phase II trial of heat-killed Mycobacterium vaccae (Immodulon batch) formulated as an oral pill (V7). Immunotherapy, 2013, 5(10), 1047-1054.
[http://dx.doi.org/10.2217/imt.13.110] [PMID: 24088075]
[210]
Ping, X.; Junchi, X.; Xinnian, C.; Zhijian, Y.; Meiying, W. Autologous cytokine-induced killer (CIK) immunotherapy in a case of disseminated tuberculosis. Sarcoidosis Vasc. Diffuse Lung Dis., 2015, 32(1), 83-86.
[PMID: 26237360]
[211]
Jiao, X.; Lo-Man, R.; Guermonprez, P.; Fiette, L.; Dériaud, E.; Burgaud, S.; Gicquel, B.; Winter, N.; Leclerc, C. Dendritic cells are host cells for mycobacteria in vivo that trigger innate and acquired immunity. J. Immunol., 2002, 168(3), 1294-1301.
[http://dx.doi.org/10.4049/jimmunol.168.3.1294] [PMID: 11801668]
[212]
Liu, C.H.; Liu, H.; Ge, B. Innate immunity in tuberculosis: host defense vs pathogen evasion. Cell. Mol. Immunol., 2017, 14(12), 963-975.
[http://dx.doi.org/10.1038/cmi.2017.88] [PMID: 28890547]
[213]
Zhang, Y.; Yew, W.W.; Barer, M.R. Targeting persisters for tuberculosis control. Antimicrob. Agents Chemother., 2012, 56(5), 2223-2230.
[http://dx.doi.org/10.1128/AAC.06288-11] [PMID: 22391538]
[214]
O’Garra, A.; Redford, P.S.; McNab, F.W.; Bloom, C.I.; Wilkinson, R.J.; Berry, M.P. The immune response in tuberculosis. Annu. Rev. Immunol., 2013, 31, 475-527.
[http://dx.doi.org/10.1146/annurev-immunol-032712-095939] [PMID: 23516984]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy