Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Biological Sensing and Imaging Using Conjugated Polymers and Peptide Substrates

Author(s): Pan Wu and Chunyan Tan*

Volume 28, Issue 1, 2021

Published on: 25 June, 2020

Page: [2 - 10] Pages: 9

DOI: 10.2174/0929866527666200625162308

Price: $65

conference banner
Abstract

Peptides have been widely applied as targeting elements or enzyme-substrates in biological sensing and imaging. Conjugated Polymers (CPs) have emerged as a novel biosensing material and received considerable attention due to their excellent light absorption, strong fluorescence emission, as well as amplified quenching properties. In this review, we summarize the recent advances of using CPs and peptide substrates in biosensing and bioimaging. After a brief introduction of the advantages of CPs and peptide substrates, different sensing designs and mechanisms are discussed based on peptides’ structures and functions, including targeting recognition elements, enzyme-substrates, and cell-penetrating elements. Applications of CPs and peptides in fluorescent imaging and Raman imaging in living cells are subsequently reviewed.

Keywords: Peptides, conjugated polymers, targeting recognition, enzyme-substrates, cell penetration, biological sensing.

Graphical Abstract

[1]
Sewald, N.; Jakubke, H.D. Peptides: Chemistry and Biology.John Wiley & Sons, 2015.
[2]
Katsoyannis, P.G. Peptide synthesis and protein structure. J. Polym. Sci., Polym. Phys. Ed., 1961, 49, 51-74.
[3]
Guzmán, F.; Barberis, S.; Illanes, A.S. Peptide synthesis: chemical or enzymatic. Electron. J. Biotechnol., 2007, 10, 279-314.
[http://dx.doi.org/10.2225/vol10-issue2-fulltext-13]
[4]
Liu, Q.; Wang, J.; Boyd, B.J. Peptide-based biosensors. Talanta, 2015, 136, 114-127.
[http://dx.doi.org/10.1016/j.talanta.2014.12.020] [PMID: 25702993]
[5]
Karimzadeh, A.; Hasanzadeh, M.; Shadjou, N.; de la Guardia, M. Peptide based biosensors. TrAC. Trends Analyt. Chem., 2018, 107, 1-20.
[http://dx.doi.org/10.1016/j.trac.2018.07.018]
[6]
McQuade, D.T.; Pullen, A.E.; Swager, T.M. Conjugated polymer-based chemical sensors. Chem. Rev., 2000, 100(7), 2537-2574.
[http://dx.doi.org/10.1021/cr9801014] [PMID: 11749295]
[7]
Chen, L.; McBranch, D.W.; Wang, H.L.; Helgeson, R.; Wudl, F.; Whitten, D.G. Highly sensitive biological and chemical sensors based on reversible fluorescence quenching in a conjugated polymer. Proc. Natl. Acad. Sci. USA, 1999, 96(22), 12287-12292.
[http://dx.doi.org/10.1073/pnas.96.22.12287] [PMID: 10535914]
[8]
Zhan, R.; Liu, B. Functionalized conjugated polyelectrolytes for biological sensing and imaging. Chem. Rec., 2016, 16(3), 1715-1740.
[http://dx.doi.org/10.1002/tcr.201500308] [PMID: 27230631]
[9]
Zhu, C.; Liu, L.; Yang, Q.; Lv, F.; Wang, S. Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem. Rev., 2012, 112(8), 4687-4735.
[http://dx.doi.org/10.1021/cr200263w] [PMID: 22670807]
[10]
Wang, Q.; Chan, T.R.; Hilgraf, R.; Fokin, V.V.; Sharpless, K.B.; Finn, M.G. Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc., 2003, 125(11), 3192-3193.
[http://dx.doi.org/10.1021/ja021381e] [PMID: 12630856]
[11]
Hermanson, G.T. Bioconjugate Techniques. Academic press. 2013, 769-775.
[12]
Liu, J.; Feng, G.; Geng, J.; Liu, B. A facile strategy toward conjugated polyelectrolyte with oligopeptide as pendants for biological applications. ACS Appl. Mater. Interfaces, 2013, 5(11), 4511-4515.
[http://dx.doi.org/10.1021/am400169v] [PMID: 23444831]
[13]
VanVeller, B.; Swager, T.M. Biocompatible post-polymerization functionalization of a water soluble poly(p-phenylene ethynylene). Chem. Commun. (Camb.), 2010, 46(31), 5761-5763.
[http://dx.doi.org/10.1039/c0cc01456g] [PMID: 20596563]
[14]
Pu, K.Y.; Shi, J.; Wang, L.; Cai, L.; Wang, G.; Liu, B. Mannose-substituted conjugated polyelectrolyte and oligomer as an intelligent energy transfer pair for label-free visual detection of concanavalin A. Macromolecules, 2010, 43, 9690-9697.
[http://dx.doi.org/10.1021/ma1021264]
[15]
Phillips, R.L.; Kim, I.B.; Tolbert, L.M.; Bunz, U.H. Fluorescence self-quenching of a mannosylated poly(p-phenyleneethynylene) induced by concanavalin A. J. Am. Chem. Soc., 2008, 130(22), 6952-6954.
[http://dx.doi.org/10.1021/ja802094s] [PMID: 18473459]
[16]
Liu, J.; Ding, D.; Geng, J.; Liu, B. PEGylated conjugated polyelectrolytes containing 2, 1, 3-benzoxadiazole units for targeted cell imaging. Polym. Chem., 2012, 3, 1567-1575.
[http://dx.doi.org/10.1039/c2py20113e]
[17]
Feng, G.; Ding, D.; Liu, B. Fluorescence bioimaging with conjugated polyelectrolytes. Nanoscale, 2012, 4(20), 6150-6165.
[http://dx.doi.org/10.1039/c2nr31392h] [PMID: 22964921]
[18]
Li, K.; Pu, K.Y.; Cai, L.; Liu, B. Phalloidin-functionalized hyperbranched conjugated polyelectrolyte for filamentous actin imaging in living hela cells. Chem. Mater., 2011, 23, 2113-2119.
[http://dx.doi.org/10.1021/cm103557h]
[19]
Wu, C.; Chiu, D.T. Highly fluorescent semiconducting polymer dots for biology and medicine. Angew. Chem. Int. Ed. Engl., 2013, 52(11), 3086-3109.
[http://dx.doi.org/10.1002/anie.201205133] [PMID: 23307291]
[20]
Wu, C.; Hansen, S.J.; Hou, Q.; Yu, J.; Zeigler, M.; Jin, Y.; Burnham, D.R.; McNeill, J.D.; Olson, J.M.; Chiu, D.T. Design of highly emissive polymer dot bioconjugates for in vivo tumor targeting. Angew. Chem. Int. Ed. Engl., 2011, 50(15), 3430-3434.
[http://dx.doi.org/10.1002/anie.201007461] [PMID: 21381164]
[21]
Pu, K.Y.; Li, K.; Liu, B. Multicolor conjugate polyelectrolyte /peptide complexes as self-assembled nanoparticles for receptor-targeted cellular imaging. Chem. Mater., 2010, 22, 6736-6741.
[http://dx.doi.org/10.1021/cm102788b]
[22]
Cai, K.; Tan, Y.; Tan, C.; Wu, J.; Wu, P.; Liang, J.; Liu, S.; Zhang, B.; Jiang, Y. An iminodiacetate-modified conjugated polyelectrolyte for fluorescent labeling of histidine-tagged proteins. Chem. Commun. (Camb.), 2017, 53(30), 4191-4194.
[http://dx.doi.org/10.1039/C7CC00850C] [PMID: 28261720]
[23]
Yuan, Y.; Min, Y.; Hu, Q.; Xing, B.; Liu, B. NIR photoregulated chemo- and photodynamic cancer therapy based on conjugated polyelectrolyte-drug conjugate encapsulated upconversion nanoparticles. Nanoscale, 2014, 6(19), 11259-11272.
[http://dx.doi.org/10.1039/C4NR03302G] [PMID: 25130329]
[24]
Wu, J.; Tan, Y.; Xie, Y.; Wu, Y.; Zhao, R.; Jiang, Y.; Tan, C. Diazobenzene-containing conjugated polymers as dark quenchers. Chem. Commun. (Camb.), 2013, 49(97), 11379-11381.
[http://dx.doi.org/10.1039/c3cc46711b] [PMID: 24166648]
[25]
Lv, Y.; Wu, J.; Wu, P.; Chen, Y.Z.; Tan, Y.; Tan, C.; Jiang, Y. A sensitive polymeric dark quencher-based sensing platform for fluorescence “turn on” detection of proteins. RSC Advances, 2016, 6, 42443-42446.
[http://dx.doi.org/10.1039/C6RA07310G]
[26]
Volk, E.L.; Pankuch, J.J.; Chave, K.J.; Coward, J.K.; Schneider, E. A rapid assay for the quantitation of γ-glutamyl hydrolase using a fluorogenic peptide as substrate. Biotechniques, 2003, 35(5), 926-928, 930, 932.
[http://dx.doi.org/10.2144/03355bm04] [PMID: 14628664]
[27]
Wosnick, J.H.; Mello, C.M.; Swager, T.M. Synthesis and application of poly(phenylene ethynylene)s for bioconjugation: a conjugated polymer-based fluorogenic probe for proteases. J. Am. Chem. Soc., 2005, 127(10), 3400-3405.
[http://dx.doi.org/10.1021/ja043134b] [PMID: 15755158]
[28]
Pinto, M.R.; Schanze, K.S. Amplified fluorescence sensing of protease activity with conjugated polyelectrolytes. Proc. Natl. Acad. Sci. USA, 2004, 101(20), 7505-7510.
[http://dx.doi.org/10.1073/pnas.0402280101] [PMID: 15136727]
[29]
Xie, Y.; Zhao, R.; Tan, Y.; Zhang, X.; Liu, F.; Jiang, Y.; Tan, C. Conjugated polymer-based real-time fluorescence caspase assays. ACS Appl. Mater. Interfaces, 2012, 4(1), 405-410.
[http://dx.doi.org/10.1021/am201470a] [PMID: 22128871]
[30]
Shi, H.; Wang, G.; Liang, J.; Liu, B. Fluorescence turn-on detection of live cell apoptosis using a hyperbranched conjugated polyelectrolyte. MedChemComm, 2013, 4, 554-558.
[http://dx.doi.org/10.1039/c2md20240a]
[31]
Pu, K.Y.; Liu, B. Fluorescent conjugated polyelectrolytes for bioimaging. Adv. Funct. Mater., 2011, 21, 3408-3423.
[http://dx.doi.org/10.1002/adfm.201101153]
[32]
Cordovilla, C.; Swager, T.M. Strain release in organic photonic nanoparticles for protease sensing. J. Am. Chem. Soc., 2012, 134(16), 6932-6935.
[http://dx.doi.org/10.1021/ja301259v] [PMID: 22489929]
[33]
Hunter, T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell, 1995, 80(2), 225-236.
[http://dx.doi.org/10.1016/0092-8674(95)90405-0] [PMID: 7834742]
[34]
Rininsland, F.; Xia, W.; Wittenburg, S.; Shi, X.; Stankewicz, C.; Achyuthan, K.; McBranch, D.; Whitten, D. Metal ion-mediated polymer superquenching for highly sensitive detection of kinase and phosphatase activities. Proc. Natl. Acad. Sci. USA, 2004, 101(43), 15295-15300.
[http://dx.doi.org/10.1073/pnas.0406832101] [PMID: 15494445]
[35]
Xie, Y.; Tan, Y.; Liu, R.; Zhao, R.; Tan, C.; Jiang, Y. Continuous and sensitive acid phosphatase assay based on a conjugated polyelectrolyte. ACS Appl. Mater. Interfaces, 2012, 4(8), 3784-3787.
[http://dx.doi.org/10.1021/am3011498] [PMID: 22812479]
[36]
Kim, J.H.; Lee, S.; Park, K.; Nam, H.Y.; Jang, S.Y.; Youn, I.; Kim, K.; Jeon, H.; Park, R.W.; Kim, I.S.; Choi, K.; Kwon, I.C. Protein-phosphorylation-responsive polymeric nanoparticles for imaging protein kinase activities in single living cells. Angew. Chem. Int. Ed. Engl., 2007, 46(30), 5779-5782.
[http://dx.doi.org/10.1002/anie.200700767] [PMID: 17600805]
[37]
Nobori, T.; Shiosaki, S.; Mori, T.; Toita, R.; Kim, C.W.; Nakamura, Y.; Kishimura, A.; Niidome, T.; Katayama, Y. Fluorescent polyion complex nanoparticle that incorporates an internal standard for quantitative analysis of protein kinase activity. Bioconjug. Chem., 2014, 25(5), 869-872.
[http://dx.doi.org/10.1021/bc500142j] [PMID: 24787996]
[38]
Zorko, M.; Langel, U. Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv. Drug Deliv. Rev., 2005, 57(4), 529-545.
[http://dx.doi.org/10.1016/j.addr.2004.10.010] [PMID: 15722162]
[39]
Liu, Y.; Wu, P.; Jiang, J.; Wu, J.; Chen, Y.; Tan, Y.; Tan, C.; Jiang, Y. Conjugated polyelectrolyte nanoparticles for apoptotic cell imaging. ACS Appl. Mater. Interfaces, 2016, 8(34), 21984-21989.
[http://dx.doi.org/10.1021/acsami.6b09347] [PMID: 27525500]
[40]
Tipping, W.J.; Lee, M.; Serrels, A.; Brunton, V.G.; Hulme, A.N. Stimulated Raman scattering microscopy: an emerging tool for drug discovery. Chem. Soc. Rev., 2016, 45(8), 2075-2089.
[http://dx.doi.org/10.1039/C5CS00693G] [PMID: 26839248]
[41]
Li, S.; Chen, T.; Wang, Y.; Liu, L.; Lv, F.; Li, Z.; Huang, Y.; Schanze, K.S.; Wang, S. Conjugated polymer with intrinsic alkyne units for synergistically enhanced Raman imaging in living cells. Angew. Chem. Int. Ed. Engl., 2017, 56(43), 13455-13458.
[http://dx.doi.org/10.1002/anie.201707042] [PMID: 28851103]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy