Abstract
Microwave Mediated Organic Synthesis (MMOS) is typical on the proficient heat shift carried out by dielectric heating, which in turn, is primarily dependent on the capability of the reagent or solvent to take up microwave energy. The employment of microwave energy has witnessed a fast expansion in the past two decades, with novel and pioneering applications in peptide and organic synthesis, material sciences, polymer chemistry, biochemical processes and nanotechnology. This review summarizes current MW- mediated catalytic reactions in use for the synthesis of a diversity of N-heterocycles by Multi- Component Reactions (MCRs) and a variety of miscellaneous reactions. In addition, the review addresses some aspects of the use of nanoparticles for a diversity of applications in microwave chemistry.
Keywords: Microwave, organic synthesis, multi-component reaction, N-heterocycles, nanotechnology, dielectric heating.
Graphical Abstract
[http://dx.doi.org/10.1021/ar400309b] [PMID: 24666323]
[http://dx.doi.org/10.1007/978-3-319-30632-2]
[http://dx.doi.org/10.1007/978-981-10-6466-1]
[http://dx.doi.org/10.1002/ejoc.201801290]
[http://dx.doi.org/10.1002/cctc.201801524]
[http://dx.doi.org/10.2174/2213337205666180119143539]
[http://dx.doi.org/10.1007/s11224-016-0847-1]
[http://dx.doi.org/10.1039/c0ob00183j] [PMID: 20668769]
(b)Banerjee, S.; Saha, A. Free-ZnO nanoparticles: a mild, efficient and reusable catalyst for the one-pot multicomponent synthesis of tetrahydrobenzo [b] pyran and dihydropyrimidone derivatives. New J. Chem., 2013, 37, 4170.
[http://dx.doi.org/10.1039/c3nj00723e]
(c)Banerjee, S.; Payra, S.; Saha, A; Sereda, G. ZnO nanoparticles: a green efficient catalyst for the room temperature synthesis of biologically active 2- aryl-1, 3-benzothiazole and 1, 3-benzoxazole derivatives. Tetrahedron Lett., 2014, 55, 5515-5520.
[http://dx.doi.org/10.1016/j.tetlet.2014.07.123]
(d)Saha, A.; Payra, S.; Banerjee, S. One-pot multicomponent synthesis of highly functionalized bio-active pyrano[2,3-c]pyrazole and benzylpyrazolyl coumarin derivatives using ZrO2 nanoparticles as a reusable catalyst. Green Chem., 2015, 17(19), 2859-2866.
[http://dx.doi.org/10.1039/C4GC02420F]
(e)Saha, A.; Payra, S.; Verma, S.; Mandal, M.; Thareja, S; Banerjee, S In silico binding affinity to cyclooxygenase-II and green synthesis of benzylpyrazolyl coumarin derivatives RSC Adv, 2015, 5100978
[http://dx.doi.org/10.1039/C5RA16643H ]
[http://dx.doi.org/10.1039/C1RA00807B]
[http://dx.doi.org/10.1021/cr960400y] [PMID: 11851502]
[http://dx.doi.org/10.1021/cr400615v]
[http://dx.doi.org/10.1021/cr9001098] [PMID: 19737022]
[http://dx.doi.org/10.4103/0250-474X.70483] [PMID: 21188046]
[http://dx.doi.org/10.1016/j.kijoms.2017.02.002]
[http://dx.doi.org/10.1016/j.arabjc.2013.01.017]
[http://dx.doi.org/10.1021/acs.chemrev.5b00483] [PMID: 26699634]
[http://dx.doi.org/10.1039/C4RA15710A]
[http://dx.doi.org/10.1016/j.ejmech.2016.02.016] [PMID: 26900659]
[http://dx.doi.org/10.1021/acs.jmedchem.5b01284] [PMID: 26649766]
[http://dx.doi.org/10.1021/jm300491y] [PMID: 22694147]
[http://dx.doi.org/10.1039/C4MD00557K] [PMID: 30108855]
[http://dx.doi.org/10.1021/acs.jmedchem.5b01005] [PMID: 26335039]
[http://dx.doi.org/10.1021/ml5004684] [PMID: 25815147]
[http://dx.doi.org/10.1039/C4RA11726C]
[http://dx.doi.org/10.1039/C4MD00578C]
[http://dx.doi.org/10.1021/cr100214d] [PMID: 21425870]
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608]
[http://dx.doi.org/10.1039/C9RA08478A]
[http://dx.doi.org/10.1039/c3gc40375k]
[http://dx.doi.org/10.1039/C9RA05903B]
[http://dx.doi.org/10.1039/c3gc40457a]
[http://dx.doi.org/10.1016/j.kijoms.2016.01.003]
[http://dx.doi.org/10.1016/j.tetlet.2007.11.017]
[http://dx.doi.org/10.1039/c3cs35505e] [PMID: 23426583]
[http://dx.doi.org/10.1021/cr300176g] [PMID: 23347156]
[http://dx.doi.org/10.1021/ja201010u]
[http://dx.doi.org/10.1007/s41981-018-0001-x]
[http://dx.doi.org/10.1007/s12039-019-1646-1]
[http://dx.doi.org/10.1007/s11164-017-2977-5]
[http://dx.doi.org/10.1071/CH08474_CO]
[http://dx.doi.org/10.1007/128_058]
[http://dx.doi.org/10.1134/S2079978019040034]
[http://dx.doi.org/10.1039/D0RA01378A]
[http://dx.doi.org/10.24297/jac.v10i2.5493]
[http://dx.doi.org/10.1155/2017/6436185]
[http://dx.doi.org/10.1080/17518253.2016.1230654]
[http://dx.doi.org/10.1016/j.tet.2007.07.013]
[http://dx.doi.org/10.1080/17518253.2012.733032]
[http://dx.doi.org/10.21577/0103-5053.20160292]
[http://dx.doi.org/10.1080/17518253.2018.1472814] [PMID: 32194653]
[http://dx.doi.org/10.3390/molecules24101969] [PMID: 31121872]
[http://dx.doi.org/10.3390/molecules191219648] [PMID: 25432014]
[http://dx.doi.org/10.1016/j.bioorg.2014.11.004] [PMID: 25462621]
[http://dx.doi.org/10.1007/s13738-016-0986-8]
(b)Bazgir, A.; Khanaposhtani, M.M.; Ghahremanzadeh, R.; Soorki, A.A. A clean, three-component and one-pot cyclo-condensation to pyrimidine-fused heterocycles. C.R. Chim., 2009, 12, 1287-1295.
[http://dx.doi.org/10.1016/j.crci.2009.06.004]
(c)Rawal, R.K.; Tripathi, R.; Katti, S.B.; Pannecouque, C.; De Clercq, E. Synthesis and evaluation of 2-(2,6-dihalophenyl)-3-pyrimidinyl-1,3- thiazolidin-4-one analogues as anti-HIV-1 agents. Bioorg. Med. Chem., 2007, 15(9), 3134-3142.
[http://dx.doi.org/10.1016/j.bmc.2007.02.044] [PMID: 17349793]
(d)Azizi, N.; Mobinikhaledi, A.; Amiri, A.K.; Ghafuri, H. Catalyst-free synthesis of dihydropyridine from barbituric acid in water. Res. Chem. Intermed., 2012, 38, 2271-2275.
[http://dx.doi.org/10.1007/s11164-012-0543-8]
[http://dx.doi.org/10.1002/jhet.1710]
[http://dx.doi.org/10.1039/C5RA15748J]
[http://dx.doi.org/10.1016/j.tetlet.2013.01.029]
[http://dx.doi.org/10.2174/1874844901603010117]
[http://dx.doi.org/10.3390/molecules23071727] [PMID: 30011951]
[http://dx.doi.org/10.1155/2013/780786]
[http://dx.doi.org/10.1016/j.bmcl.2017.05.050] [PMID: 28552337]
[http://dx.doi.org/10.1016/j.ejmech.2017.10.068] [PMID: 29133036]
[http://dx.doi.org/10.1016/j.jare.2014.10.007] [PMID: 26644932]
[http://dx.doi.org/10.1055/s-0034-1378925]
[http://dx.doi.org/10.1055/s-0035-1560825]
[http://dx.doi.org/10.1016/j.jtusci.2014.01.007]
[http://dx.doi.org/10.1016/j.molcata.2006.10.056]
[http://dx.doi.org/10.1002/jhet.3726]
[http://dx.doi.org/10.1155/2014/694060]
[http://dx.doi.org/10.1021/jo501049m] [PMID: 25078565]
[http://dx.doi.org/10.1016/j.tet.2013.11.022]
[http://dx.doi.org/10.1016/j.tet.2014.02.003]
[http://dx.doi.org/10.1039/C4RA12222D]
[http://dx.doi.org/10.1039/C8RA05835K]
[http://dx.doi.org/10.1039/C7RA00658F]
[http://dx.doi.org/10.1039/C4CC02346C] [PMID: 24763985]
[http://dx.doi.org/10.1016/j.tetlet.2012.08.137]
[http://dx.doi.org/10.1016/j.bmcl.2018.02.032] [PMID: 29486969]
[http://dx.doi.org/10.1002/slct.201702860]
[http://dx.doi.org/10.1016/j.bmc.2013.03.058] [PMID: 23602518]
[http://dx.doi.org/10.1039/c3cy20680g]
[http://dx.doi.org/10.17344/acsi.2016.3153] [PMID: 28621402]
[http://dx.doi.org/10.1039/c3ra45994b]
[http://dx.doi.org/10.1039/C8GC01516C]
[http://dx.doi.org/10.1055/s-0036-1588834]
[http://dx.doi.org/10.1080/14756366.2016.1193733] [PMID: 27435116]
[http://dx.doi.org/10.3389/fchem.2015.00021] [PMID: 25853123]
[http://dx.doi.org/10.1039/C7NJ00568G]
[http://dx.doi.org/10.3184/174751916X14683327937934]
[http://dx.doi.org/10.1021/acscombsci.7b00173] [PMID: 29373013]
[http://dx.doi.org/10.1155/2016/9890630]
[http://dx.doi.org/10.1039/C6RA13138G]
[http://dx.doi.org/10.1002/ardp.201600148] [PMID: 27528517]
[http://dx.doi.org/10.18596/jotcsa.390928]
[http://dx.doi.org/10.1016/j.bmc.2016.07.042] [PMID: 27480030]
[http://dx.doi.org/10.1155/2014/851924]
[http://dx.doi.org/10.1080/22243682.2018.1426040]
[http://dx.doi.org/10.21276/ijabpt]