Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Microwave: A Green Contrivance for the Synthesis of N-Heterocyclic Compounds

Author(s): Trimurti L. Lambat*, Paavan Kavi Param Gaitry Chopra and Sami H. Mahmood*

Volume 24, Issue 22, 2020

Page: [2527 - 2554] Pages: 28

DOI: 10.2174/1385272824999200622114919

Price: $65

Abstract

Microwave Mediated Organic Synthesis (MMOS) is typical on the proficient heat shift carried out by dielectric heating, which in turn, is primarily dependent on the capability of the reagent or solvent to take up microwave energy. The employment of microwave energy has witnessed a fast expansion in the past two decades, with novel and pioneering applications in peptide and organic synthesis, material sciences, polymer chemistry, biochemical processes and nanotechnology. This review summarizes current MW- mediated catalytic reactions in use for the synthesis of a diversity of N-heterocycles by Multi- Component Reactions (MCRs) and a variety of miscellaneous reactions. In addition, the review addresses some aspects of the use of nanoparticles for a diversity of applications in microwave chemistry.

Keywords: Microwave, organic synthesis, multi-component reaction, N-heterocycles, nanotechnology, dielectric heating.

Graphical Abstract

[1]
Gawande, M.B.; Shelke, S.N.; Zboril, R.; Varma, R.S. Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. Acc. Chem. Res., 2014, 47(4), 1338-1348.
[http://dx.doi.org/10.1021/ar400309b] [PMID: 24666323]
[2]
Kokel, A.; Schäfer, C.; Török, B. Microwave-assisted reactions in green chemistry. In:Green Chemistry and Chemical Engineering; Springer: New York, 2019.
[3]
Keglevich, G. Milestones in Microwave Chemistry; Keglevich, G., Ed.; Springer International Publishing: Cham, 2016.
[http://dx.doi.org/10.1007/978-3-319-30632-2]
[4]
Horikoshi, S.; Schiffmann, R.F.; Fukushima, J.; Serpone, N. Microwave as a heat source. In:Microwave Chemical and Materials Processing, 1st ed; Springer Singapore, 2018, pp. 1-17.
[http://dx.doi.org/10.1007/978-981-10-6466-1]
[5]
Cintas, P.; Veronesi, P.; Leonelli, C.; Keglevich, G.; Mucsi, Z.; Radoiu, M.; Ano, T. Microwave Chemistry; Cravotto, G; Carnaroglio, D., Ed.; DeGruyter: Berlin, 2017, pp. 1-3.
[6]
Saha, A.; Wu, C.; Peng, R.; Koodali, R.; Banerjee, S. Facile synthesis of 1,3,5-triarylbenzenes and 4-aryl-NH-1,2,3-triazoles using mesoporous Pd-MCM-41 as reusable catalyst. Eur. J. Org. Chem., 2019, 1, 104-111.
[http://dx.doi.org/10.1002/ejoc.201801290]
[7]
Payra, S.; Saha, A.; Banerjee, S. On water Cu@g-C3N4 catalyzed synthesis of NH-1,2,3-Triazoles via [2+3] cycloadditions of nitroolefins/alkynes and sodium azide. ChemCatChem, 2018, 10(23), 5468-5474.
[http://dx.doi.org/10.1002/cctc.201801524]
[8]
Banerjee, S.; Payra, S.; Saha, A. A review on synthesis of benzothiazole derivatives. Curr. Organocatal., 2017, 4(3), 164-181.
[http://dx.doi.org/10.2174/2213337205666180119143539]
[9]
Anastas, P.T.; Warner, J.C. Green Chemistry, Theory and Practice; Oxford University Press: Oxford, 1998.
[10]
Keglevich, G.; Grün, A.; Bálint, E. Green chemical syntheses and applications within organophosphorus chemistry. Struct. Chem., 2017, 28, 431-443.
[http://dx.doi.org/10.1007/s11224-016-0847-1]
[11]
(a)Banerjee, S.; Balasanthiran, V.; Koodali, R.T; Sereda, G.A. Pd-MCM48: a novel recyclable heterogeneous catalyst for chemo- and regioselective hydrogenation of olefins and coupling reactions. Org. Biomol. Chem., 2010, 8(19), 4316-4321.
[http://dx.doi.org/10.1039/c0ob00183j] [PMID: 20668769]
(b)Banerjee, S.; Saha, A. Free-ZnO nanoparticles: a mild, efficient and reusable catalyst for the one-pot multicomponent synthesis of tetrahydrobenzo [b] pyran and dihydropyrimidone derivatives. New J. Chem., 2013, 37, 4170.
[http://dx.doi.org/10.1039/c3nj00723e]
(c)Banerjee, S.; Payra, S.; Saha, A; Sereda, G. ZnO nanoparticles: a green efficient catalyst for the room temperature synthesis of biologically active 2- aryl-1, 3-benzothiazole and 1, 3-benzoxazole derivatives. Tetrahedron Lett., 2014, 55, 5515-5520.
[http://dx.doi.org/10.1016/j.tetlet.2014.07.123]
(d)Saha, A.; Payra, S.; Banerjee, S. One-pot multicomponent synthesis of highly functionalized bio-active pyrano[2,3-c]pyrazole and benzylpyrazolyl coumarin derivatives using ZrO2 nanoparticles as a reusable catalyst. Green Chem., 2015, 17(19), 2859-2866.
[http://dx.doi.org/10.1039/C4GC02420F]
(e)Saha, A.; Payra, S.; Verma, S.; Mandal, M.; Thareja, S; Banerjee, S In silico binding affinity to cyclooxygenase-II and green synthesis of benzylpyrazolyl coumarin derivatives RSC Adv, 2015, 5100978
[http://dx.doi.org/10.1039/C5RA16643H ]
[12]
Climent, M.J.; Corma, A.; Borra, S.I. Homogeneous and heterogeneous catalysts for multicomponent reactions. RSC Advances, 2012, 2, 16-58.
[http://dx.doi.org/10.1039/C1RA00807B]
[13]
Kozhevnikov, I.V. Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chem. Rev., 1998, 98(1), 171-198.
[http://dx.doi.org/10.1021/cr960400y] [PMID: 11851502]
[14]
Rotstein, B.H.; Zaretsky, S.; Rai, V.; Yudin, A.K. Small heterocycles in multicomponent reactions. Chem. Rev., 2014, 114(16), 8323-8359.
[http://dx.doi.org/10.1021/cr400615v]
[15]
Martins, M.A.P.; Frizzo, C.P.; Moreira, D.N.; Buriol, L.; Machado, P. Solvent-free heterocyclic synthesis. Chem. Rev., 2009, 109(9), 4140-4182.
[http://dx.doi.org/10.1021/cr9001098] [PMID: 19737022]
[16]
Kumar, P.M.; Ravi, T.K.; Chawla, R.; Bhuvana, S.; Sonia, G.; Gopalakrishnan, S. Microwave assisted synthesis and biological activity of novel coumarinyltriazolothiadiazoles. Indian J. Pharm. Sci., 2010, 72(3), 357-360.
[http://dx.doi.org/10.4103/0250-474X.70483] [PMID: 21188046]
[17]
Lambat, T.L.; Deo, S.S.; Butle, A.B. Plasma marker based hepatoprotective evaluation of some novel synthesized benzofluorenone analogues: a medicinal chemistry approach. Karbala Int. J. Mod. Sci., 2017, 3, 39-45.
[http://dx.doi.org/10.1016/j.kijoms.2017.02.002]
[18]
Kaneria, A.R.; Giri, R.R.; Bhila, V.G.; Prajapati, H.J.; Brahmbhatt, D.I. Microwave assisted synthesis and biological activity of 3-aryl-furo[3,2-c]coumarins. Arab. J. Chem., 2017, 10, S1100-S1104.
[http://dx.doi.org/10.1016/j.arabjc.2013.01.017]
[19]
Lambat, T.L.; Deo, S.S. Synthesis of novel benzofluorenone derivatives and their HIV reverse transcriptase inhibitor activity. J. Chin. Adv. Mat. Soc., 2017, 5(1), 20-32.
[20]
De Coen, L.M.; Heugebaert, T.S.A.; García, D.; Stevens, C.V. Synthetic entries to and biological activity of pyrrolopyrimidines. Chem. Rev., 2016, 116(1), 80-139.
[http://dx.doi.org/10.1021/acs.chemrev.5b00483] [PMID: 26699634]
[21]
Bhardwaj, V.; Gumber, D.; Abbot, V.; Dhiman, S.; Sharma, P. Pyrrole: A resourceful small molecule in key medicinal hetero-aromatics. RSC Advances, 2015, 5, 15233-15266.
[http://dx.doi.org/10.1039/C4RA15710A]
[22]
Karad, S.C.; Purohit, V.B.; Thakor, P.; Thakkar, V.R.; Raval, D.K. Novel morpholinoquinoline nucleus clubbed with pyrazoline scaffolds: Synthesis, antibacterial, antitubercular and antimalarial activities. Eur. J. Med. Chem., 2016, 112, 270-279.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.016] [PMID: 26900659]
[23]
Li, P.H.; Zeng, P.; Chen, S.B.; Yao, P.F.; Mai, Y.W.; Tan, J.H.; Ou, T.M.; Huang, S.L.; Li, D.; Gu, L.Q.; Huang, Z.S. Synthesis and mechanism studies of 1,3-benzoazolyl substituted pyrrolo[2,3-b]pyrazine derivatives as nonintercalative topoisomerase II catalytic inhibitors. J. Med. Chem., 2016, 59(1), 238-252.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01284] [PMID: 26649766]
[24]
Anderson, M.O.; Zhang, J.; Liu, Y.; Yao, C.; Phuan, P.W.; Verkman, A.S. Nanomolar potency and metabolically stable inhibitors of kidney urea transporter UT-B. J. Med. Chem., 2012, 55(12), 5942-5950.
[http://dx.doi.org/10.1021/jm300491y] [PMID: 22694147]
[25]
Omar, A.M.M.E.; Aboulwafa, O.M.; Issa, D.A.E.; El-Shokrofy, M.M.S.; Amr, M.E.; El-Ashmawy, I.M. Design, facile synthesis and anthelmintic activity of new O-substituted 6-methoxybenzothiazole-2-carbamates. MedChemComm, 2015, 6, 795-805.
[http://dx.doi.org/10.1039/C4MD00557K] [PMID: 30108855]
[26]
Engers, J.L.; Rodriguez, A.L.; Konkol, L.C.; Morrison, R.D.; Thompson, A.D.; Byers, F.W.; Blobaum, A.L.; Chang, S.; Venable, D.F.; Loch, M.T.; Niswender, C.M.; Daniels, J.S.; Jones, C.K.; Conn, P.J.; Lindsley, C.W.; Emmitte, K.A. Discovery of a selective and CNS penetrant negative allosteric modulator of metabotropic glutamate receptor subtype 3 with antidepressant and anxiolytic activity in rodents. J. Med. Chem., 2015, 58(18), 7485-7500.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01005] [PMID: 26335039]
[27]
Kuroiwa, K.; Ishii, H.; Matsuno, K.; Asai, A.; Suzuki, Y. Synthesis and structure–activity relationship study of 1-phenyl-1-(quinazolin-4-yl)ethanols as anticancer agents. ACS Med. Chem. Lett., 2015, 6(3), 287-291.
[http://dx.doi.org/10.1021/ml5004684] [PMID: 25815147]
[28]
Castro, M.A.; Gamito, A.M.; Castano, V.T.; Linares, V.R.; del Corral, J.M.M.; Arango, A.C.M.; Galvis, L.B.; Francesch, A.M.; Feliciano, A.S. New 1,4-anthracenedione derivatives with fused heterocyclic rings: synthesis and biological evaluation. RSC Advances, 2015, 5, 1244-1261.
[http://dx.doi.org/10.1039/C4RA11726C]
[29]
Chen, Y.; Lan, Y.; Cao, X.; Xu, X.; Zhang, J.; Yu, M.; Liu, X.; Liu, B.F.; Zhang, G. Synthesis and evaluation of amide, sulfonamide and urea – benzisoxazole derivatives as potential atypical antipsychotics. MedChemComm, 2015, 6, 831-1838.
[http://dx.doi.org/10.1039/C4MD00578C]
[30]
Godoi, B.; Schumacher, R.F.; Zeni, G. Synthesis of heterocycles via electrophilic cyclization of alkynes containing heteroatom. Chem. Rev., 2011, 111(4), 2937-2980.
[http://dx.doi.org/10.1021/cr100214d] [PMID: 21425870]
[31]
Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev., 2012, 112(6), 3083-3135.
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608]
[32]
Lambat, T.L.; Abdala, A.A.; Mahmood, S.H.; Ledade, P.V.; Chaudhary, R.G.; Banerjee, S. Sulfamic acid promoted one-pot multicomponent reaction: a facile synthesis of 4-oxotetrahydroindoles under ball milling conditions. RSC Advances, 2019, 9, 39735-39742.
[http://dx.doi.org/10.1039/C9RA08478A]
[33]
Gawande, M.B.; Bonifacio, V.D.B.; Varma, R.S.; Nogueira, I.D.; Bundaleski, N.; Ghumman, C.A.A.; Teodoro, O.M.N.D.; Branco, P.S. Magnetically recyclable magnetite-ceria (Nanocat-Fe-Ce) nanocatalyst - applications in multicomponent reactions under benign conditions. Green Chem., 2013, 15, 1226-1231.
[http://dx.doi.org/10.1039/c3gc40375k]
[34]
Lambat, T.L.; Chaudhary, R.G.; Abdala, A.A.; Mishra, R.; Mahmood, S.H.; Banerjee, S. Mesoporous PbO nanoparticle-catalyzed synthesis of arylbenzodioxy xanthenedione scaffolds under solvent-free conditions in a ball mill. RSC Advances, 2019, 9, 31683-31690.
[http://dx.doi.org/10.1039/C9RA05903B]
[35]
Gawande, M.B.; Rathi, A.K.; Nogueira, I.D.; Varma, R.S.; Branco, P.S. Magnetite-supported sulfonic acid: a retrievable nanocatalyst for the Ritter reaction and multicomponent reactions. Green Chem., 2013, 15, 1895-1899.
[http://dx.doi.org/10.1039/c3gc40457a]
[36]
Lambat, T.L.; Deo, S.S.; Deshmukh, T.B. Sulphamic acid assisted synthesis of polyhydroquinolines via the Hantzsch multicomponent reaction: a green approach. J. Chem. Pharm. Res., 2014, 6(4), 888-892.
[37]
Deo, S.; Inam, F.; Kadam, N.; Lambat, T.L. Applications of thermal and microwave-assisted synthesis of xanthone derivative: new methodology. IJIER, 2014, 2(4), 88-96.
[38]
Lambat, T.L.; Deo, S.S. Sulphamic acid: an efficient and green synthesis of 2-[3-4-(3-chlorophenyl)-1-piperazinyl propyl]-1, 2, 4-triazolo [4, 3-a] pyridine-3- (2H)-one hydrochloride and its derivatives. Der Phar. Lett., 2014, 6(3), 218-224.
[39]
Lambat, T.L.; Deo, S.S.; Inam, F.S.; Deshmukh, T.B.; Bhat, A.R. Montmorillonite K10: an efficient organo heterogeneous catalyst for one-pot synthesis of new N,N′-alkylidene bisamide derivatives under solvent free condition. Karbala Int. J. Mod. Sci., 2016, 2, 63-68.
[http://dx.doi.org/10.1016/j.kijoms.2016.01.003]
[40]
Polshettiwar, V.; Varma, R.S. Greener and rapid access to bioactive heterocycles: Room temperature synthesis of pyrazoles and diazepines in aqueous medium. Tetrahedron Lett., 2008, 49, 397-400.
[http://dx.doi.org/10.1016/j.tetlet.2007.11.017]
[41]
Brauch, S.; van Berkel, S.S.; Westermann, B. Higher-order multicomponent reactions: beyond four reactants. Chem. Soc. Rev., 2013, 42(12), 4948-4962.
[http://dx.doi.org/10.1039/c3cs35505e] [PMID: 23426583]
[42]
Eftekhari-Sis, B.; Zirak, M.; Akbari, A. Arylglyoxals in synthesis of heterocyclic compounds. Chem. Rev., 2013, 113(5), 2958-3043.
[http://dx.doi.org/10.1021/cr300176g] [PMID: 23347156]
[43]
Zhang, W. Review of microwave heating as a tool for sustainable chemistry. J. Am. Chem. Soc., 2011, 133, 9-3218.
[http://dx.doi.org/10.1021/ja201010u]
[44]
Tajti, Á.; Tóth, N.; Bálint, E. Esterification of benzoic acid in a continuous flow microwave reactor. J. Flow Chem., 2018, 8, 11-19.
[http://dx.doi.org/10.1007/s41981-018-0001-x]
[45]
Faisal, M.; Saeed, A.; Hussain, S. Recent developments in synthetic chemistry and biological activities of pyrazole derivatives. J. Chem. Sci., 2019, 131, 70.
[http://dx.doi.org/10.1007/s12039-019-1646-1]
[46]
Gaonkar, S.L.; Vignesh, U.N. Synthesis and pharmacological properties of chalcones: a review. Res. Chem. Intermed., 2017, 43, 6043-6077.
[http://dx.doi.org/10.1007/s11164-017-2977-5]
[47]
Abid, M.; Török, B.; Huang, X. Microwave-assisted tandem processes for the synthesis of N-heterocycles. Aust. J. Chem., 2009, 62, 392.
[http://dx.doi.org/10.1071/CH08474_CO]
[48]
Suna, E.; Mutule, I. Microwave-assisted heterocyclic chemistry. Top. Curr. Chem., 2006, 266, 49-101.
[http://dx.doi.org/10.1007/128_058]
[49]
Gopi, C.; Krupamai, G.; Dhanaraju, M.D. A recent progress in microwave-assisted synthesis of heterocyclic compounds containing nitrogen, sulphur and oxygen. Rev. J. Chem., 2019, 9, 255-289.
[http://dx.doi.org/10.1134/S2079978019040034]
[50]
Henary, M.; Kananda, C.; Rotolo, L.; Savino, B.; Owens, E.A.; Cravotto, G. Benefits and applications of microwave-assisted synthesis of nitrogen containing heterocycles in medicinal chemistry. RSC Advances, 2020, 10, 14170.
[http://dx.doi.org/10.1039/D0RA01378A]
[51]
Saedi, H. Using Microwave Irradiation for synthesis of Imides consist of Pyromellitimide. J. Adv. Chem., 2014, 10, 2276-2282.
[http://dx.doi.org/10.24297/jac.v10i2.5493]
[52]
Benjamin, E.; Hijji, Y. A novel green synthesis of thalidomide and analogs. J. Chem., 2017, 2017, 1-6.
[http://dx.doi.org/10.1155/2017/6436185]
[53]
Sánchez, J.I.S.; Terán, A.O.; Corrales, L.A.P.; Martínez, L.U.O.; Ávila, J.M.; Bastidas, P.B. Microwave assisted synthesis of benzoxazinediones under solvent-free conditions. Green Chem. Lett. Rev., 2016, 9(4), 196-202.
[http://dx.doi.org/10.1080/17518253.2016.1230654]
[54]
Aydogan, F.; Basarir, M.; Yolacan, C.; Demir, A.S. New and clean synthesis of N-substituted pyrroles under microwave irradiation. Tetrahedron, 2007, 63, 9746-9750.
[http://dx.doi.org/10.1016/j.tet.2007.07.013]
[55]
Majumder, A.; Gupta, R.; Jain, A. Microwave-assisted synthesis of nitrogen-containing heterocycles. Green Chem. Lett. Rev., 2013, 6, 151-182.
[http://dx.doi.org/10.1080/17518253.2012.733032]
[56]
Nicolás, E.N.; Gerardine, F.S.; Renato, A.B.; Carlos, F.L.; Nataly, F.; Mario, A.F.; Flavia, C.Z. Microwave assisted synthesis of novel six-membered 4-C, 4-O and 4-S Lactams derivatives: characterization and in vitro biological evaluation of cytotoxicity and anticoagulant activity. J. Braz. Chem. Soc., 2017, 28(2), 203-207.
[http://dx.doi.org/10.21577/0103-5053.20160292]
[57]
Abebe, F.; Sutton, T.; Perkins, P.; Dennis, K.M.; Winstead, A. Microwave-assisted synthesis of rhodamine derivatives. Green Chem. Lett. Rev., 2018, 11(3), 237-245.
[http://dx.doi.org/10.1080/17518253.2018.1472814] [PMID: 32194653]
[58]
Alrobaian, M.; Azwari, S.A.; Belal, A.; Eldeab, H.A. An eco-friendly technique: solvent-free microwave synthesis and docking studies of some new pyridine nucleosides and their pharmacological significance. Molecules, 2019, 24(10), 1969-1983.
[http://dx.doi.org/10.3390/molecules24101969] [PMID: 31121872]
[59]
El Azab, I.H.; Youssef, M.M.; Amin, M.A. Microwave-assisted synthesis of novel 2H-chromene derivatives bearing phenylthiazolidinones and their biological activity assessment. Molecules, 2014, 19(12), 19648-19664.
[http://dx.doi.org/10.3390/molecules191219648] [PMID: 25432014]
[60]
Chauhan, M.; Rana, A.; Alex, J.M.; Negi, A.; Singh, S.; Kumar, R. Design, microwave-mediated synthesis and biological evaluation of novel 4-aryl(alkyl)amino-3-nitroquinoline and 2,4-diaryl(dialkyl)amino-3-nitroquinolines as anticancer agents. Bioorg. Chem., 2015, 58, 1-10.
[http://dx.doi.org/10.1016/j.bioorg.2014.11.004] [PMID: 25462621]
[61]
(a)Naeimi, H.; Didar, A.; Rashid, Z. Microwave-assisted synthesis of pyrido-dipyrimidines using magnetically CuFe2O4 nanoparticles as an efficient, reusable, and powerful catalyst in water. J. Iran. Chem. Soc., 2017, 14, 377-385.
[http://dx.doi.org/10.1007/s13738-016-0986-8]
(b)Bazgir, A.; Khanaposhtani, M.M.; Ghahremanzadeh, R.; Soorki, A.A. A clean, three-component and one-pot cyclo-condensation to pyrimidine-fused heterocycles. C.R. Chim., 2009, 12, 1287-1295.
[http://dx.doi.org/10.1016/j.crci.2009.06.004]
(c)Rawal, R.K.; Tripathi, R.; Katti, S.B.; Pannecouque, C.; De Clercq, E. Synthesis and evaluation of 2-(2,6-dihalophenyl)-3-pyrimidinyl-1,3- thiazolidin-4-one analogues as anti-HIV-1 agents. Bioorg. Med. Chem., 2007, 15(9), 3134-3142.
[http://dx.doi.org/10.1016/j.bmc.2007.02.044] [PMID: 17349793]
(d)Azizi, N.; Mobinikhaledi, A.; Amiri, A.K.; Ghafuri, H. Catalyst-free synthesis of dihydropyridine from barbituric acid in water. Res. Chem. Intermed., 2012, 38, 2271-2275.
[http://dx.doi.org/10.1007/s11164-012-0543-8]
[62]
Li, H.B.; Liang, W.; Ma, C.P.; Kai, Y.M.; Li, L.; Zhang, Y.G. Rapid and convenient synthesis of N-arylmorpholines under microwave irradiation. J. Heterocycl. Chem., 2013, 50, 995-998.
[http://dx.doi.org/10.1002/jhet.1710]
[63]
Kumar, S.; Patel, A.; Ahmed, N. Microwave-assisted expeditious and efficient synthesis of novel quinolin-4-ylmethoxychromen-2- and -4-ones catalyzed by YbCl3 under a solvent free one-pot three component domino reaction and their antimicrobial activity. RSC Advances, 2015, 5, 93067-93080.
[http://dx.doi.org/10.1039/C5RA15748J]
[64]
Vaddula, B.R.; Varma, R.S.; Leazer, J. Mixing with microwaves: solvent-free and catalyst-free synthesis of pyrazoles and diazepines. Tetrahedron Lett., 2013, 54, 1538-1541.
[http://dx.doi.org/10.1016/j.tetlet.2013.01.029]
[65]
Nikalje, A.; Ghodkeb, M.S.; Khana, F.; Sangshettia, J.N. Microwave assisted facile synthesis and biological evaluation of novel 2-indolyl -1, 5-benzothiazepines. Open Pharm. Sci. J., 2016, 3, 117-130.
[http://dx.doi.org/10.2174/1874844901603010117]
[66]
Albalawi, A.H.; El-Sayed, W.S.; Aljuhani, A.; Almutairi, S.M.; Rezki, N.; Aouad, M.R.; Messali, M. Microwave-assisted synthesis of some potential bioactive imidazolium-based room-temperature ionic liquids. Molecules, 2018, 23(7), 1727-1742.
[http://dx.doi.org/10.3390/molecules23071727] [PMID: 30011951]
[67]
Sahoo, B.M.; Kumar, B.V.V.R; Panda, J.; Dinda, S.C. Ecofriendly and facile one-pot multicomponent synthesis of thiopyrimidines under microwave irradiation. J. Nanopart., 2013, 2013, 1-6.
[http://dx.doi.org/10.1155/2013/780786]
[68]
Bharkavi, C.; Kumar, S.V; Ali, M.A One-pot microwave assisted stereoselective synthesis of novel dihydro-2ʹ H-spiro[indene-2,1ʹ-pyrrolo-[3,4-c]pyrrole]-tetraones and evaluation of their antimycobacterial activity and inhibition of AChE. Bioorg. Med. Chem. Lett., 2017, 27, 3071-3075.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.050] [PMID: 28552337]
[69]
Severino, B.; Corvino, A.; Fiorino, F.; Luciano, P.; Frecentese, F.; Magli, E.; Saccone, I.; Di Vaio, P.; Citi, V.; Calderone, V.; Servillo, L.; Casale, R.; Cirino, G.; Vellecco, V.; Bucci, M.; Perissutti, E.; Santagada, V.; Caliendo, G. 1,2,4-Thiadiazolidin-3,5-diones as novel hydrogen sulfide donors. Eur. J. Med. Chem., 2018, 143, 1677-1686.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.068] [PMID: 29133036]
[70]
Bhat, A.R.; Shalla, A.H.; Dongre, R.S. Microwave assisted one-pot catalyst free green synthesis of new methyl-7-amino-4-oxo-5-phenyl-2-thioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]pyrimidine-6-carboxylates as potent in vitro antibacterial and antifungal activity. J. Adv. Res., 2015, 6(6), 941-948.
[http://dx.doi.org/10.1016/j.jare.2014.10.007] [PMID: 26644932]
[71]
Xiong, R.; Borbas, K.E. Mild microwave-assisted synthesis of dipyrromethanes and their analogues. Synlett, 2015, 26, 484-488.
[http://dx.doi.org/10.1055/s-0034-1378925]
[72]
Chundawat, T.S.; Sharma, N.; Kumari, P.; Bhagat, S. Microwave-assisted nickel-catalyzed one-pot synthesis of 2,4,5-trisubstituted imidazoles. Synlett, 2015, 27, 404-408.
[http://dx.doi.org/10.1055/s-0035-1560825]
[73]
Safari, J.; Naseh, S.; Zarnegar, Z.; Akbari, Z. Applications of microwave technology to rapid synthesis of substituted imidazoles on silica-supported SbCl3 as an efficient heterogeneous catalyst. J. Taibah Univer. Sci., 2014, 8, 323-330.
[http://dx.doi.org/10.1016/j.jtusci.2014.01.007]
[74]
Nagarapu, L.; Apuri, S.; Kantevari, S. Potassium dodecatugstocobaltate trihydrate (K5CoW12O40H2O): a mild and efficient reusable catalyst for the one-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles under conventional heating and microwave irradiation. J. Mol. Catal. Chem., 2007, 266, 104-108.
[http://dx.doi.org/10.1016/j.molcata.2006.10.056]
[75]
Modi, M.; Jain, M. Green approach for the synthesis of 3-methyl-1-phenyl-4-((2-phenyl-1H-indol 3-yl)methylene)-1H-pyrazole-5(4H)-ones and their DNA Cleavage, antioxidant, and antimicrobial activities. J. Heterocycl. Chem., 2019, 56, 3303-3312.
[http://dx.doi.org/10.1002/jhet.3726]
[76]
Swarnkar, D.; Ameta, R.; Vyas, R. Microwave-assisted synthesis of some 1,3,4-oxadiazole derivatives and evaluation of their antibacterial and antifungal activity. Org. Chem. Int., 2014, 2014, 1-6.
[http://dx.doi.org/10.1155/2014/694060]
[77]
Hu, J.D.; Cao, C.P.; Lin, W.; Hu, M.H.; Huang, Z.B.; Shi, D.Q. Selective synthesis of polyfunctionalized pyrido[2,3-b]indoles by multicomponent domino reactions. J. Org. Chem., 2014, 79(17), 7935-7944.
[http://dx.doi.org/10.1021/jo501049m] [PMID: 25078565]
[78]
Li, M.Y.; Xu, H.W.; Fan, W.; Ye, Q.; Wang, X.; Jiang, B.; Wang, S.L.; Tu, S.J. New formal [3+3] cycloaddition of enaminones for forming tetracyclic indolo[2,3-b]quinolines under microwave irradiation. Tetrahedron, 2014, 70, 1004-1010.
[http://dx.doi.org/10.1016/j.tet.2013.11.022]
[79]
Yildirim, M.; Celikel, D.; Durust, Y.; Knight, D.W.; Kariuki, B.M. A rapid and efficient protocol for the synthesis of novel nitrothiazolo[3,2-c]pyrimidines via microwave-mediated Mannich cyclisation. Tetrahedron, 2014, 70, 2122-2128.
[http://dx.doi.org/10.1016/j.tet.2014.02.003]
[80]
Hosamani, K.M.; Reddy, D.S.; Devarajegowda, H.C. Microwave-assisted synthesis of new fluorinated coumarin–pyrimidine hybrids as potent anticancer agents, their DNA cleavage and X-ray crystal studies. RSC Advances, 2015, 5, 11261-11271.
[http://dx.doi.org/10.1039/C4RA12222D]
[81]
Konopka, M.; Markiewicz, G.; Stefankiewicz, A.R. Highly efficient one-step microwave-assisted synthesis of structurally diverse bis-substituted α-amino acid derived diimides. RSC Advances, 2018, 8, 29840-29846.
[http://dx.doi.org/10.1039/C8RA05835K]
[82]
Cao, J.; Wu, Q.; Zheng, W.; Li, L.; Mei, W. Microwave-assisted synthesis of polypyridyl ruthenium(II) complexes as potential tumortargeting inhibitors against the migration and invasion of Hela cells through G2/M phase arrest. RSC Advances, 2017, 7, 26625-26632.
[http://dx.doi.org/10.1039/C7RA00658F]
[83]
Draghici, B.; Vullo, D.; Akocak, S.; Walker, E.A.; Supuran, C.T.; Ilies, M.A. Ethylene bis-imidazoles are highly potent and selective activators for isozymes VA and VII of carbonic anhydrase, with a potential nootropic effect. Chem. Commun. (Camb.), 2014, 50(45), 5980-5983.
[http://dx.doi.org/10.1039/C4CC02346C] [PMID: 24763985]
[84]
Sawant, S.D.; Srinivas, M.; Reddy, G.L.; Rao, V.V.; Singh, P.P.; Vishwakarma, R.A. One-pot multicomponent synthesis of medicinally important purine quinazolinone derivatives. Tetrahedron Lett., 2012, 53, 6195-6198.
[http://dx.doi.org/10.1016/j.tetlet.2012.08.137]
[85]
Srinivas, M.; Singh Pathania, A.; Mahajan, P.; Verma, P.K.; Chobe, S.S.; Malik, F.A.; Nargotra, A.; Vishwakarma, R.A.; Sawant, S.D. Design and synthesis of 1,4-substituted 1H-1,2,3-triazolo-quinazolin-4(3H)-ones by Huisgen 1,3-dipolar cycloaddition with PI3Kγ isoform selective activity. Bioorg. Med. Chem. Lett., 2018, 28(6), 1005-1010.
[http://dx.doi.org/10.1016/j.bmcl.2018.02.032] [PMID: 29486969]
[86]
Iniya, M.; Vidya, B.; Anand, T.; Sivaraman, G.; Jeyanthi, D.; Krishnaveni, K.; Chellappa, D. Microwave-assisted synthesis of imidazoquinazoline for chemosensing of Pb2+ and Fe3+ and living cell application. ChemistrySelect, 2018, 3, 1282-1288.
[http://dx.doi.org/10.1002/slct.201702860]
[87]
Basiri, A.; Murugaiyah, V.; Osman, H.; Kumar, R.S.; Kia, Y.; Ali, M.A. Microwave assisted synthesis, cholinesterase enzymes inhibitory activities and molecular docking studies of new pyridopyrimidine derivatives. Bioorg. Med. Chem., 2013, 21(11), 3022-3031.
[http://dx.doi.org/10.1016/j.bmc.2013.03.058] [PMID: 23602518]
[88]
Xiong, X.; Cai, L. Application of magnetic nanoparticle-supported CuBr: a highly efficient and reusable catalyst for the one-pot and scale-up synthesis of 1,2,3-triazoles under microwave-assisted conditions. Catal. Sci. Technol., 2013, 3, 1301-1307.
[http://dx.doi.org/10.1039/c3cy20680g]
[89]
Srinivas, A.; Sunitha, M.; Raju, K.; Ravinder, B.; Anusha, S.; Rajasri, T.; Swapna, P.; Sushmitha, D.; Swaroopa, D.; Nikitha, G.; Rao, C. Microwave-assisted synthesis of hybrid heterocycles as potential anticancer agents. Acta Chim. Slov., 2017, 64(2), 319-331.
[http://dx.doi.org/10.17344/acsi.2016.3153] [PMID: 28621402]
[90]
Xiong, X.; Chen, H.; Tang, Z.; Jiang, Y. Supported CuBr on graphene oxide/Fe3O4: a highly efficient, magnetically separable catalyst for the multi-gram scale synthesis of 1,2,3-triazoles. RSC Advances, 2014, 4, 9830-9837.
[http://dx.doi.org/10.1039/c3ra45994b]
[91]
Roshandel, S.; Suri, S.C.; Marcischak, J.C.; Rasula, G.; Surya Prakash, G.K. Catalyst and solvent free microwave-assisted synthesis of substituted 1,2,3-triazoles. Green Chem., 2018, 20, 3700-3704.
[http://dx.doi.org/10.1039/C8GC01516C]
[92]
Ho, S.L.; Dao, P.D.Q.; Cho, C.S. Microwave-assisted synthesis of benzo[4,5]imidazo[1,2-a]pyrimidines from β-bromo-α,β-unsaturated aldehydes and 2-aminobenzimidazoles. Synlett, 2017, 28(14), 1811-1815.
[http://dx.doi.org/10.1055/s-0036-1588834]
[93]
Chouaïb, K.; Delemasure, S.; Dutartre, P.; Jannet, H.B. Microwave-assisted synthesis, anti-inflammatory and anti-proliferative activities of new maslinic acid derivatives bearing 1,5- and 1,4-disubstituted triazoles. J. Enzyme Inhib. Med. Chem., 2016, 31(Suppl. 2), 130-147.
[http://dx.doi.org/10.1080/14756366.2016.1193733] [PMID: 27435116]
[94]
Qin, J.; Li, Z.; Sun, X.; Jin, Y.; Su, W. Fast, solvent-free, and highly efficient synthesis of pyrazolo[3,4-b]pyridines using microwave irradiation and KHSO4 as a reusable green catalyst. Heterocycles, 2019, 96, 1408-1422.
[95]
Ramírez, J.R.; Caballero, R.; Guerra, J.; Carretero, A.R.; Migallón, A.S.; de la Hoz, A. Solvent-free microwave assisted synthesis of 2,5-dimethoxyphenylaminotriazines. ACS Sustain. Chem.& Eng., 2015, 3, 3405-3411.
[96]
Dimopoulou, A.; Manta, S.; Parmenopoulou, V.; Kollatos, N.; Christidou, O.; Triantakonstanti, V.V.; Schols, D.; Komiotis, D. An easy microwave-assisted synthesis of C8-alkynyl adenine pyranonucleosides as novel cytotoxic antitumor agents. Front Chem., 2015, 3, 21.
[http://dx.doi.org/10.3389/fchem.2015.00021] [PMID: 25853123]
[97]
Joshi, S.M.; Mane, R.B.; Pulagam, K.R.; Gómez-Vallejo, V.; Llop, J.; Rode, C.V. The microwave-assisted synthesis of 5-substituted 1H-tetrazoles via [3+2] cycloaddition over a heterogeneous Cu-based catalyst: application to the preparation of 13N-labelled tetrazoles. New J. Chem., 2017, 41, 8084-8091.
[http://dx.doi.org/10.1039/C7NJ00568G]
[98]
Kong, D.; Wang, X.; Shi, Z. Solvent- and catalyst-free synthesis of imidazo[1,2-a]pyridines under microwave irradiation. J. Chem. Res., 2016, 40, 529-531.
[http://dx.doi.org/10.3184/174751916X14683327937934]
[99]
Rao, R.N.; Mm, B.; Maiti, B.; Thakuria, R.; Chanda, K. Efficient access to Imidazo[1,2-a]pyridines/pyrazines/pyrimidines via catalyst-free annulations reaction under microwave irradiation in green solvent. ACS Comb. Sci., 2018, 20(3), 164-171.
[http://dx.doi.org/10.1021/acscombsci.7b00173] [PMID: 29373013]
[100]
Kumbar, M.N.; Kamble, R.R.; Kamble, A.K.; Salian, S.R.; Kumari, S.; Nair, R.; Kalthur, G.; Adiga, S.K.; Prasad, D.J. Design and microwave assisted synthesis of coumarin derivatives as PDE inhibitors. Int. J. Med. Chem., 2016, 2016, 1-16.
[http://dx.doi.org/10.1155/2016/9890630]
[101]
Rotolo, L.; Calcio Gaudino, E.; Carnaroglio, D.; Barge, A.; Tagliapietra, S.; Cravotto, G. Fast multigram scale microwave-assisted synthesis of vitamin E and C10-, C15-analogues under vacuum. RSC Advances, 2016, 6, 63515-63518.
[http://dx.doi.org/10.1039/C6RA13138G]
[102]
Bhatt, J.D.; Chudasama, C.J.; Patel, K.D. Microwave assisted synthesis of pyrimidines in ionic liquid and their potency as non-classical malarial antifolates. Arch. Pharm. (Weinheim), 2016, 349(10), 791-800.
[http://dx.doi.org/10.1002/ardp.201600148] [PMID: 27528517]
[103]
Yılmaz, F.; Faiz, Ö. Microwave-assisted synthesis and biological evaluation of some coumarin hydrazides. JOTCSA, 2018, 5(2), 551-568.
[http://dx.doi.org/10.18596/jotcsa.390928]
[104]
Mohamed, S.S.; Sadawi, I.A.A.; Gbaj, M.A. Microwave assisted synthesis and antimicrobial evaluation of symmetrical 1,2-phenylenediamine Schiff’s base derivatives. Pharm. Pharmacol. Int. J., 2018, 6(5), 344-348.
[105]
Rauf, M.K.; Zaib, S.; Talib, A.; Ebihara, M.; Badshah, A.; Bolte, M.; Iqbal, J. Solution-phase microwave assisted parallel synthesis, biological evaluation and in silico docking studies of N,N′-disubstituted thioureas derived from 3-chlorobenzoic acid. Bioorg. Med. Chem., 2016, 24(18), 4452-4463.
[http://dx.doi.org/10.1016/j.bmc.2016.07.042] [PMID: 27480030]
[106]
Santra, S.; Rahman, M.; Roy, A.; Majee, A.; Hajra, A. Microwave-assisted three-component “catalyst and solvent-free” green protocol: a highly efficient and clean one-pot synthesis of tetrahydrobenzo[b]pyrans. Org. Chem. Int., 2014, 2014(3), 1-8.
[http://dx.doi.org/10.1155/2014/851924]
[107]
Lambat, T.L. Microwave assisted scolecite as heterogeneous catalyst for multicomponent one-pot synthesis of novel chromene scaffolds with quantitative yields. J. Chinese Adv. Mat. Soc., 2018, 6, 134-144.
[http://dx.doi.org/10.1080/22243682.2018.1426040]
[108]
Lambat, T.L. Scolecite as novel heterogeneous catalyst for an efficient microwave assisted synthesis of 7-aryl-6H-benzo[H][1,3]dioxolo[4,5- b]xanthene-5,6(7H)-dione analogues via multi-component reaction. Int. J. Appl. Biol. Pharm. Technol., 2018, 8, 11-18.
[http://dx.doi.org/10.21276/ijabpt]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy