Abstract
Background: Digitization and automation are the buzzwords in clinical research and pharma companies are investigating heavily here. Right from drug discovery to personalized medicine, digital patients and patient engagement, there is great consideration of technology at each step.
Methods: The published data and online information available is reviewed to give an overview of digitization in pharma, across the drug development cycle, industry collaborations and innovations. The regulatory guidelines, innovative collaborations across industry, academics and thought leadership are presented. Also included are some ideas, suggestions, way forwards while digitizing the pharma neurons, the regulatory stand, benefits and challenges.
Results: The innovations range from discovering personalized medicine to conducting virtual clinical trials, and maximizing data collection from the real-world experience. To address the increasing demand for the real-world data and the needs of tech-savvy patients, the innovations are shaping up accordingly. Pharma companies are collaborating with academics and they are co-innovating the technology for example Massachusetts Institute of Technology’s program. This focuses on the modernization of clinical trials, strategic use of artificial intelligence and machine learning using real-world evidence, assess the risk-benefit ratio of deploying digital analytics in medicine, and proactively identifying the solutions.
Conclusion: With unfolding data on the impact of science and technology amalgamation, we need shared mindset between data scientists and medical professionals to maximize the utility of enormous health and medical data. To tackle this efficiently, there is a need of cross-collaboration and education, and align with ethical and regulatory requirements. A perfect blend of industry, regulatory, and academia will ensure successful digitization of pharma neurons.
Keywords: Artificial Intelligence, clinical Trials, digitization, machine Learning, pharmaceuticals, technology in Medicine.
Graphical Abstract
[http://dx.doi.org/10.1016/j.tips.2019.05.005] [PMID: 31326235]
[http://dx.doi.org/10.2196/14676] [PMID: 31267981]
[http://dx.doi.org/10.1038/nature14539] [PMID: 26017442]
[http://dx.doi.org/10.1109/JPROC.2015.2494198]
[http://dx.doi.org/10.1136/bmjopen-2017-018774] [PMID: 29678964]
[http://dx.doi.org/10.21037/atm.2016.12.26] [PMID: 28149844]
[http://dx.doi.org/10.1186/1743-0003-9-21] [PMID: 22520559]
[http://dx.doi.org/10.1056/NEJMsb1609216] [PMID: 27959688]
[http://dx.doi.org/10.1377/hlthaff.25.2.420] [PMID: 16522582]
[http://dx.doi.org/10.1055/s-0039-1677945] [PMID: 31419831]
[http://dx.doi.org/10.1073/pnas.1717139115] [PMID: 29531073]
[http://dx.doi.org/10.1186/s12859-018-2029-1] [PMID: 29368597]
[http://dx.doi.org/10.1038/s41467-017-02465-5] [PMID: 29298978]
[http://dx.doi.org/10.1186/s13073-018-0564-z] [PMID: 30053901]
[http://dx.doi.org/10.1093/bioinformatics/bty531] [PMID: 30535306]
[http://dx.doi.org/10.1186/s40168-018-0398-3] [PMID: 29335008]
[http://dx.doi.org/10.1093/jamia/ocx032] [PMID: 28505320]
[http://dx.doi.org/10.1142/9789813235533_0044] [PMID: 29218907]
[http://dx.doi.org/10.1038/s41586-018-0579-z] [PMID: 30305743]
[http://dx.doi.org/10.1136/rmdopen-2019-001004] [PMID: 31413871]
[http://dx.doi.org/10.1016/S1470-2045(19)30149-4] [PMID: 31044724]
[http://dx.doi.org/10.1080/13645706.2019.1575882] [PMID: 30810430]
[http://dx.doi.org/10.1038/nature21056] [PMID: 28117445]
[http://dx.doi.org/10.1001/jama.2016.17216] [PMID: 27898976]
[http://dx.doi.org/10.1007/s00261-018-1517-0] [PMID: 29492605]
[http://dx.doi.org/10.1007/s12551-018-0449-9] [PMID: 30182201]
[http://dx.doi.org/10.1016/j.jacr.2017.12.028] [PMID: 29398494]
[http://dx.doi.org/10.1093/annonc/mdx781] [PMID: 29324970]
[http://dx.doi.org/10.1007/s11886-013-0441-8] [PMID: 24338557]
[http://dx.doi.org/10.1038/nature15819] [PMID: 26469047]
[http://dx.doi.org/10.1093/jamia/ocz163] [PMID: 31562516]
[http://dx.doi.org/10.2217/pgs-2018-0008] [PMID: 29697304]
[http://dx.doi.org/10.1136/amiajnl-2011-000214] [PMID: 21676938]
[http://dx.doi.org/10.1001/jamainternmed.2015.8581] [PMID: 26998708]
[http://dx.doi.org/10.1016/j.jbi.2017.04.021] [PMID: 28465082]
[http://dx.doi.org/10.1073/pnas.1803294115] [PMID: 29666228]
[http://dx.doi.org/10.1186/s12859-016-1415-9] [PMID: 28056782]
[http://dx.doi.org/10.1001/jamainternmed.2016.6008] [PMID: 27723879]
[http://dx.doi.org/10.1038/nbt.3300] [PMID: 26213851]
[http://dx.doi.org/10.1038/s41746-018-0029-1] [PMID: 31304302]
[http://dx.doi.org/10.1016/j.clinph.2019.07.014] [PMID: 31419742]
[http://dx.doi.org/10.1038/s41591-019-0447-x] [PMID: 31110349]
[http://dx.doi.org/10.3389/fninf.2019.00053] [PMID: 31417388]
[http://dx.doi.org/10.1016/j.drudis.2019.03.003] [PMID: 30876845]
[http://dx.doi.org/10.1038/s41573-019-0024-5] [PMID: 30976107]
[http://dx.doi.org/10.1016/j.cct.2014.04.009] [PMID: 24792229]
[http://dx.doi.org/10.1016/j.clinthera.2017.03.018] [PMID: 28413148]
[http://dx.doi.org/10.1016/j.conctc.2019.100318] [PMID: 30656241]
[http://dx.doi.org/10.1038/srep26094] [PMID: 27185194]
[http://dx.doi.org/10.3389/fgene.2019.00611] [PMID: 31417602]
[http://dx.doi.org/10.1038/s41746-019-0148-3] [PMID: 31372505]
[http://dx.doi.org/10.1056/NEJMsb1702054] [PMID: 28328337]
[http://dx.doi.org/10.1056/NEJMc1314515] [PMID: 24476448]
[http://dx.doi.org/10.1126/science.aag2612] [PMID: 29074582]
[http://dx.doi.org/10.1016/j.jclinepi.2019.02.004] [PMID: 30763612]
[http://dx.doi.org/10.1098/rsif.2017.0387] [PMID: 29618526]
[http://dx.doi.org/10.1038/s41591-018-0316-z] [PMID: 30617335]
[http://dx.doi.org/10.1038/s41591-018-0320-3] [PMID: 30617337]
[http://dx.doi.org/10.1038/s41591-019-0603-3] [PMID: 31551578]
[http://dx.doi.org/10.1038/s41591-018-0300-7] [PMID: 30617339]