Generic placeholder image

Reviews on Recent Clinical Trials

Editor-in-Chief

ISSN (Print): 1574-8871
ISSN (Online): 1876-1038

Review Article

Digitizing the Pharma Neurons – A Technological Operation in Progress!

Author(s): Payal Bhardwaj*, Raj Kumar Yadav and Sojan Kurian

Volume 15, Issue 3, 2020

Page: [178 - 187] Pages: 10

DOI: 10.2174/1574887115666200621183459

Price: $65

Abstract

Background: Digitization and automation are the buzzwords in clinical research and pharma companies are investigating heavily here. Right from drug discovery to personalized medicine, digital patients and patient engagement, there is great consideration of technology at each step.

Methods: The published data and online information available is reviewed to give an overview of digitization in pharma, across the drug development cycle, industry collaborations and innovations. The regulatory guidelines, innovative collaborations across industry, academics and thought leadership are presented. Also included are some ideas, suggestions, way forwards while digitizing the pharma neurons, the regulatory stand, benefits and challenges.

Results: The innovations range from discovering personalized medicine to conducting virtual clinical trials, and maximizing data collection from the real-world experience. To address the increasing demand for the real-world data and the needs of tech-savvy patients, the innovations are shaping up accordingly. Pharma companies are collaborating with academics and they are co-innovating the technology for example Massachusetts Institute of Technology’s program. This focuses on the modernization of clinical trials, strategic use of artificial intelligence and machine learning using real-world evidence, assess the risk-benefit ratio of deploying digital analytics in medicine, and proactively identifying the solutions.

Conclusion: With unfolding data on the impact of science and technology amalgamation, we need shared mindset between data scientists and medical professionals to maximize the utility of enormous health and medical data. To tackle this efficiently, there is a need of cross-collaboration and education, and align with ethical and regulatory requirements. A perfect blend of industry, regulatory, and academia will ensure successful digitization of pharma neurons.

Keywords: Artificial Intelligence, clinical Trials, digitization, machine Learning, pharmaceuticals, technology in Medicine.

Graphical Abstract

[2]
Harrer S, Shah P, Antony B, Hu J. Artificial Intelligence for Clinical Trial Design. Trends Pharmacol Sci 2019; 40(8): 577-91.
[http://dx.doi.org/10.1016/j.tips.2019.05.005] [PMID: 31326235]
[3]
Kononowicz AA, Woodham LA, Edelbring S, et al. Virtual Patient Simulations in Health Professions Education: Systematic Review and Meta-Analysis by the Digital Health Education Collaboration. J Med Internet Res 2019; 21(7) e14676
[http://dx.doi.org/10.2196/14676] [PMID: 31267981]
[4]
FDA. Novel Drug Approvals for 2018. [Online] 2018. Available at: https://www.fda.gov/drugs/developmentapprovalprocess/druginnovation/ucm592464.htm
[5]
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521(7553): 436-44.
[http://dx.doi.org/10.1038/nature14539] [PMID: 26017442]
[6]
Leung MKK, Delong A, Alipanahi B, et al. Machine learning in genomic medicine: a review of computational problems and datasets. Proc IEEE 2016; 104: 176-97.
[http://dx.doi.org/10.1109/JPROC.2015.2494198]
[7]
Shah P, Yauney G, Gupta O, et al. Technology-enabled examinations of cardiac rhythm, optic nerve, oral health, tympanic membrane, gait and coordination evaluated jointly with routine health screenings: an observational study at the 2015 Kumbh Mela in India. BMJ Open 2018; 8(4) e018774
[http://dx.doi.org/10.1136/bmjopen-2017-018774] [PMID: 29678964]
[8]
Jørgensen JT, Hersom M. Companion diagnostics-a tool to improve pharmacotherapy. Ann Transl Med 2016; 4(24): 482.
[http://dx.doi.org/10.21037/atm.2016.12.26] [PMID: 28149844]
[9]
Patel S, Park H, Bonato P, Chan L, Rodgers M. A review of wearable sensors and systems with application in rehabilitation. J Neuroeng Rehabil 2012; 9: 21.
[http://dx.doi.org/10.1186/1743-0003-9-21] [PMID: 22520559]
[10]
Yauney G, Shah P. Reinforcement learning with action-derived rewards for chemotherapy and clinical trial dosing regimen selection. Proc Mach Learn Res 2018; 85: 161-226.
[11]
Sherman RE, Anderson SA, Dal Pan GJ, et al. Real-world evidence - what is it and what can it tell us? N Engl J Med 2016; 375(23): 2293-7.
[http://dx.doi.org/10.1056/NEJMsb1609216] [PMID: 27959688]
[12]
Adams CP, Brantner VV. Estimating the cost of new drug development: is it really 802 million dollars? Health Aff (Millwood) 2006; 25(2): 420-8.
[http://dx.doi.org/10.1377/hlthaff.25.2.420] [PMID: 16522582]
[13]
Smaïl-Tabbone M, Rance B. Section Editors for the IMIA Yearbook Section on Bioinformatics and Translational Informatics. Contributions from the 2018 Literature on Bioinformatics and Translational Informatics. Yearb Med Inform 2019; 28(1): 190-3.
[http://dx.doi.org/10.1055/s-0039-1677945] [PMID: 31419831]
[14]
Mobadersany P, Yousefi S, Amgad M, et al. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc Natl Acad Sci USA 2018; 115(13): E2970-9.
[http://dx.doi.org/10.1073/pnas.1717139115] [PMID: 29531073]
[15]
Lee K, Kim B, Choi Y, et al. Deep learning of mutation-gene-drug relations from the literature. BMC Bioinformatics 2018; 19(1): 21.
[http://dx.doi.org/10.1186/s12859-018-2029-1] [PMID: 29368597]
[16]
Lee SI, Celik S, Logsdon BA, et al. A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia. Nat Commun 2018; 9(1): 42.
[http://dx.doi.org/10.1038/s41467-017-02465-5] [PMID: 29298978]
[17]
Sengupta S, Sun SQ, Huang KL, et al. Integrative omics analyses broaden treatment targets in human cancer. Genome Med 2018; 10(1): 60.
[http://dx.doi.org/10.1186/s13073-018-0564-z] [PMID: 30053901]
[18]
Sun SQ, Mashl RJ, Sengupta S, et al. Database of evidence for precision oncology portal. Bioinformatics 2018; 34(24): 4315-7.
[http://dx.doi.org/10.1093/bioinformatics/bty531] [PMID: 30535306]
[19]
Douglas GM, Hansen R, Jones CMA, et al. Multi-omics differentially classify disease state and treatment outcome in pediatric Crohn’s disease. Microbiome 2018; 6(1): 13.
[http://dx.doi.org/10.1186/s40168-018-0398-3] [PMID: 29335008]
[20]
Doostparast Torshizi A, Petzold LR. Graph-based semi-supervised learning with genomic data integration using condition-responsive genes applied to phenotype classification. J Am Med Inform Assoc 2018; 25(1): 99-108.
[http://dx.doi.org/10.1093/jamia/ocx032] [PMID: 28505320]
[21]
Zaim SR, Li Q, Schissler AG, Lussier YA. Emergence of pathway-level composite biomarkers from converging gene set signals of heterogeneous transcriptomic responses. Pac Symp Biocomput 2018; 23: 484-95.
[http://dx.doi.org/10.1142/9789813235533_0044] [PMID: 29218907]
[22]
[23]
Bycroft C, Freeman C, Petkova D, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 2018; 562(7726): 203-9.
[http://dx.doi.org/10.1038/s41586-018-0579-z] [PMID: 30305743]
[24]
Kedra J, Radstake T, Pandit A, et al. Current status of use of big data and artificial intelligence in RMDs: a systematic literature review informing EULAR recommendations. RMD Open 2019; 5(2) e001004
[http://dx.doi.org/10.1136/rmdopen-2019-001004] [PMID: 31413871]
[25]
Ngiam KY, Khor IW. Big data and machine learning algorithms for health-care delivery. Lancet Oncol 2019; 20(5): e262-73.
[http://dx.doi.org/10.1016/S1470-2045(19)30149-4] [PMID: 31044724]
[26]
Mintz Y, Brodie R. Introduction to artificial intelligence in medicine. Minim Invasive Ther Allied Technol 2019; 28(2): 73-81.
[http://dx.doi.org/10.1080/13645706.2019.1575882] [PMID: 30810430]
[27]
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017; 542(7639): 115-8.
[http://dx.doi.org/10.1038/nature21056] [PMID: 28117445]
[28]
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016; 316(22): 2402-10.
[http://dx.doi.org/10.1001/jama.2016.17216] [PMID: 27898976]
[29]
Brattain LJ, Telfer BA, Dhyani M, Grajo JR, Samir AE. Machine learning for medical ultrasound: status, methods, and future opportunities. Abdom Radiol (NY) 2018; 43(4): 786-99.
[http://dx.doi.org/10.1007/s00261-018-1517-0] [PMID: 29492605]
[30]
Nichols JA, Herbert Chan HW, Baker MAB. Machine learning: applications of artificial intelligence to imaging and diagnosis. Biophys Rev 2019; 11(1): 111-8.
[http://dx.doi.org/10.1007/s12551-018-0449-9] [PMID: 30182201]
[31]
Giger ML. Machine Learning in Medical Imaging. J Am Coll Radiol 2018; 15(3 Pt B): 512-20.
[http://dx.doi.org/10.1016/j.jacr.2017.12.028] [PMID: 29398494]
[32]
Somashekhar SP, Sepúlveda MJ, Puglielli S, et al. Watson for Oncology and breast cancer treatment recommendations: agreement with an expert multidisciplinary tumor board. Ann Oncol 2018; 29(2): 418-23.
[http://dx.doi.org/10.1093/annonc/mdx781] [PMID: 29324970]
[33]
Dilsizian SE, Siegel EL. Artificial intelligence in medicine and cardiac imaging: harnessing big data and advanced computing to provide personalized medical diagnosis and treatment. Curr Cardiol Rep 2014; 16(1): 441.
[http://dx.doi.org/10.1007/s11886-013-0441-8] [PMID: 24338557]
[34]
First FDA Approval For Clinical Cloud-Based Deep Learning In Healthcare. [Online] 2017. Available at: https://www.forbes.com/sites/bernardmarr/2017/01/20/first-fda-approval-for-clinical-cloud-based-deep-learning-in-healthcare/#8e32c6e161c8
[35]
Biankin AV, Piantadosi S, Hollingsworth SJ. Patient-centric trials for therapeutic development in precision oncology. Nature 2015; 526(7573): 361-70.
[http://dx.doi.org/10.1038/nature15819] [PMID: 26469047]
[36]
Stubbs A, Filannino M, Soysal E, Henry S, Uzuner Ö. Cohort selection for clinical trials: n2c2 2018 shared task track 1. J Am Med Inform Assoc 2019; 26(11): 1163-71.
[http://dx.doi.org/10.1093/jamia/ocz163] [PMID: 31562516]
[37]
Kalinin AA, Higgins GA, Reamaroon N, et al. Deep learning in pharmacogenomics: from gene regulation to patient stratification. Pharmacogenomics 2018; 19(7): 629-50.
[http://dx.doi.org/10.2217/pgs-2018-0008] [PMID: 29697304]
[38]
Tatonetti NP, Fernald GH, Altman RB. A novel signal detection algorithm for identifying hidden drug-drug interactions in adverse event reports. J Am Med Inform Assoc 2012; 19(1): 79-85.
[http://dx.doi.org/10.1136/amiajnl-2011-000214] [PMID: 21676938]
[39]
Qato DM, Wilder J, Schumm LP, Gillet V, Alexander GC. Changes in Prescription and Over-the-Counter Medication and Dietary Supplement Use Among Older Adults in the United States, 2005 vs 2011. JAMA Intern Med 2016; 176(4): 473-82.
[http://dx.doi.org/10.1001/jamainternmed.2015.8581] [PMID: 26998708]
[40]
Ferdousi R, Safdari R, Omidi Y. Computational prediction of drug-drug interactions based on drugs functional similarities. J Biomed Inform 2017; 70: 54-64.
[http://dx.doi.org/10.1016/j.jbi.2017.04.021] [PMID: 28465082]
[41]
Ryu JY, Kim HU, Lee SY. Deep learning improves prediction of drug-drug and drug-food interactions. Proc Natl Acad Sci USA 2018; 115(18): E4304-11.
[http://dx.doi.org/10.1073/pnas.1803294115] [PMID: 29666228]
[42]
Zhang W, Chen Y, Liu F, Luo F, Tian G, Li X. Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data. BMC Bioinformatics 2017; 18(1): 18.
[http://dx.doi.org/10.1186/s12859-016-1415-9] [PMID: 28056782]
[43]
Hwang TJ, Carpenter D, Lauffenburger JC, Wang B, Franklin JM, Kesselheim AS. Failure of investigational drugs in late-stage clinical development and publication of trial results. JAMA Intern Med 2016; 176(12): 1826-33.
[http://dx.doi.org/10.1001/jamainternmed.2016.6008] [PMID: 27723879]
[44]
Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat Biotechnol 2015; 33(8): 831-8.
[http://dx.doi.org/10.1038/nbt.3300] [PMID: 26213851]
[45]
Rajkomar A, Oren E, Chen K, et al. Scalable and accurate deep learning with electronic health records. NPJ Digit Med 2018; 1: 18.
[http://dx.doi.org/10.1038/s41746-018-0029-1] [PMID: 31304302]
[46]
Amorim E, van der Stoel M, Nagaraj SB, et al. Quantitative EEG reactivity and machine learning for prognostication in hypoxic-ischemic brain injury. Clin Neurophysiol 2019; 130(10): 1908-16.
[http://dx.doi.org/10.1016/j.clinph.2019.07.014] [PMID: 31419742]
[47]
Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med 2019; 25(6): 954-61.
[http://dx.doi.org/10.1038/s41591-019-0447-x] [PMID: 31110349]
[48]
Chauhan S, Vig L, De Filippo De Grazia M, Corbetta M, Ahmad S, Zorzi M. A Comparison of Shallow and Deep Learning Methods for Predicting Cognitive Performance of Stroke Patients From MRI Lesion Images. Front Neuroinform 2019; 13: 53.
[http://dx.doi.org/10.3389/fninf.2019.00053] [PMID: 31417388]
[49]
Lee CY, Chen YP. Machine learning on adverse drug reactions for pharmacovigilance. Drug Discov Today 2019; 24(7): 1332-43.
[http://dx.doi.org/10.1016/j.drudis.2019.03.003] [PMID: 30876845]
[50]
Koohy H. The rise and fall of machine learning methods in biomedical research. Version 2 f1000Res 2012; Nov 10 [revised 2018 Jan 2]; . 6
[51]
Vamathevan J, Clark D, Czodrowski P, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov 2019; 18(6): 463-77.
[http://dx.doi.org/10.1038/s41573-019-0024-5] [PMID: 30976107]
[52]
Orri M, Lipset CH, Jacobs BP, Costello AJ, Cummings SR. Web-based trial to evaluate the efficacy and safety of tolterodine ER 4 mg in participants with overactive bladder: REMOTE trial. Contemp Clin Trials 2014; 38(2): 190-7.
[http://dx.doi.org/10.1016/j.cct.2014.04.009] [PMID: 24792229]
[53]
Hirsch IB, Martinez J, Dorsey ER, et al. Incorporating Site-less Clinical Trials Into Drug Development: A Framework for Action. Clin Ther 2017; 39(5): 1064-76.
[http://dx.doi.org/10.1016/j.clinthera.2017.03.018] [PMID: 28413148]
[54]
Baca-Motes K, Edwards AM, Waalen J, et al. Digital recruitment and enrollment in a remote nationwide trial of screening for undiagnosed atrial fibrillation: Lessons from the randomized, controlled mSToPS trial. Contemp Clin Trials Commun 2019; 14 100318
[http://dx.doi.org/10.1016/j.conctc.2019.100318] [PMID: 30656241]
[55]
Miotto R, Li L, Kidd BA, Dudley JT. Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records. Sci Rep 2016; 6: 26094.
[http://dx.doi.org/10.1038/srep26094] [PMID: 27185194]
[56]
The Digital Health Innovation Plan. [Online] 2017. Available at: https://www.fda.gov/media/106331/download
[57]
The FDA’s Technology Modernization Action Plan. [Online] 2019. Available at https://www.fda.gov/about-fda/reports/fdas-technology-modernization-action-plan
[58]
The EMA Regulatory Science to 2025: Strategic Reflection. [Online] 2019. Available at: https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/ema-regulatory-science-2025-strategic-reflection_en.pdf
[59]
Nellåker C, Alkuraya FS, Baynam G, et al. Minerva Consortium. Enabling Global Clinical Collaborations on Identifiable Patient Data: The Minerva Initiative. Front Genet 2019; 10: 611.
[http://dx.doi.org/10.3389/fgene.2019.00611] [PMID: 31417602]
[60]
Shah P, Kendall F, Khozin S, et al. Artificial intelligence and machine learning in clinical development: a translational perspective. NPJ Digit Med 2019; 2: 69.
[http://dx.doi.org/10.1038/s41746-019-0148-3] [PMID: 31372505]
[61]
Bertagnolli MM, Sartor O, Chabner BA, et al. Advantages of a Truly Open-Access Data-Sharing Model. N Engl J Med 2017; 376(12): 1178-81.
[http://dx.doi.org/10.1056/NEJMsb1702054] [PMID: 28328337]
[62]
Ferri M, Abdallah K. Preparing for responsible sharing of clinical trial data. N Engl J Med 2014; 370(5): 484-5.
[http://dx.doi.org/10.1056/NEJMc1314515] [PMID: 24476448]
[63]
Novartis expands alliance with Science 37 to advance virtual clinical trials program. [Online] 2018. Available at: https://www.novartis.com/news/media-releases/novartis-expands-alliance-science-37-advance-virtual-clinical-trials-program
[64]
George D, Lehrach W, Kansky K, et al. A generative vision model that trains with high data efficiency and breaks text-based CAPTCHAs. Science 2017; 358(6368) eaag2612
[http://dx.doi.org/10.1126/science.aag2612] [PMID: 29074582]
[65]
Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel JY, Van Calster B. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J Clin Epidemiol 2019; 110: 12-22.
[http://dx.doi.org/10.1016/j.jclinepi.2019.02.004] [PMID: 30763612]
[66]
Ching T, Himmelstein DS, Beaulieu-Jones BK, et al. Opportunities and obstacles for deep learning in biology and medicine. J R Soc Interface 2018; 15(141) 20170387
[http://dx.doi.org/10.1098/rsif.2017.0387] [PMID: 29618526]
[67]
Esteva A, Robicquet A, Ramsundar B, et al. A guide to deep learning in healthcare. Nat Med 2019; 25(1): 24-9.
[http://dx.doi.org/10.1038/s41591-018-0316-z] [PMID: 30617335]
[68]
Norgeot B, Glicksberg BS, Butte AJ. A call for deep-learning healthcare. Nat Med 2019; 25(1): 14-5.
[http://dx.doi.org/10.1038/s41591-018-0320-3] [PMID: 30617337]
[69]
CONSORT-AI and SPIRIT-AI Steering Group. Reporting guidelines for clinical trials evaluating artificial intelligence interventions are needed. Nat Med 2019; 25(10): 1467-8.
[http://dx.doi.org/10.1038/s41591-019-0603-3] [PMID: 31551578]
[70]
Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med 2019; 25(1): 44-56.
[http://dx.doi.org/10.1038/s41591-018-0300-7] [PMID: 30617339]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy