Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Computational Studies on Mechanisms of Hypervalent Iodine(III)-Promoted Dearomatization of Phenols

Author(s): Hanliang Zheng and Xiao-Song Xue*

Volume 24, Issue 18, 2020

Page: [2106 - 2117] Pages: 12

DOI: 10.2174/1385272824999200620223218

Price: $65

Abstract

Hypervalent iodine-promoted dearomatization of phenols has received intense attention. This mini-review summarizes recent computational mechanistic studies of phenolic dearomatizations promoted by hypervalent iodine(III) reagents or catalysts. The first part of this review describes mechanisms of racemic dearomatization of phenols, paying special attention to the associative and dissociative pathways. The second part focuses on mechanisms and selectivities of diastereo- or enantio-selective dearomatization of phenols.

Keywords: Hypervalent iodine reagent, dearomatization, mechanism, DFT-calculation, catalysis, selectivity.

Graphical Abstract

[1]
Pouységu, L.; Deffieux, D.; Quideau, S. Hypervalent iodine-mediated phenol dearomatization in natural product synthesis. Tetrahedron, 2010, 66, 2235-2261.
[http://dx.doi.org/10.1016/j.tet.2009.12.046]
[2]
Roche, S.P.; Porco, J.A., Jr Dearomatization strategies in the synthesis of complex natural products. Angew. Chem. Int. Ed. Engl., 2011, 50(18), 4068-4093.
[http://dx.doi.org/10.1002/anie.201006017] [PMID: 21506209]
[3]
Zhuo, C-X.; Zhang, W.; You, S-L. Catalytic asymmetric dearomatization reactions. Angew. Chem. Int. Ed. Engl., 2012, 51(51), 12662-12686.
[http://dx.doi.org/10.1002/anie.201204822] [PMID: 23208999]
[4]
Sun, W.; Li, G.; Hong, L.; Wang, R. Asymmetric dearomatization of phenols. Org. Biomol. Chem., 2016, 14(7), 2164-2176.
[http://dx.doi.org/10.1039/C5OB02526E] [PMID: 26740241]
[5]
Wu, W.T.; Zhang, L.; You, S.L. Catalytic Asymmetric Dearomatization (CADA) reactions of phenol and aniline derivatives. Chem. Soc. Rev., 2016, 45(6), 1570-1580.
[http://dx.doi.org/10.1039/C5CS00356C] [PMID: 26796922]
[6]
Xia, Z.L.; Xu, Q.F.X.; Zheng, C.; You, S.L. Chiral phosphoric acid-catalyzed asymmetric dearomatization reactions. Chem. Soc. Rev., 2020, 49(1), 286-300.
[http://dx.doi.org/10.1039/C8CS00436F] [PMID: 31829319]
[7]
You, S.L. Asymmetric Dearomatization Reactions; Wiley-VCH: Weinheim, 2016.
[http://dx.doi.org/10.1002/9783527698479]
[8]
Lalic, G.; Corey, E.J. An effective enantioselective route to the platensimycin core. Org. Lett., 2007, 9(23), 4921-4923.
[http://dx.doi.org/10.1021/ol702323s] [PMID: 17929829]
[9]
Nicolaou, K.C.; Edmonds, D.J.; Li, A.; Tria, G.S. Asymmetric total syntheses of platensimycin. Angew. Chem. Int. Ed. Engl., 2007, 46(21), 3942-3945.
[http://dx.doi.org/10.1002/anie.200700586] [PMID: 17444571]
[10]
McGrath, N.A.; Bartlett, E.S.; Sittihan, S.; Njardarson, J.T. A concise ring-expansion route to the compact core of platensimycin. Angew. Chem. Int. Ed. Engl., 2009, 48(45), 8543-8546.
[http://dx.doi.org/10.1002/anie.200903347] [PMID: 19798708]
[11]
Li, F.; Tartakoff, S.S.; Castle, S.L. Total synthesis of (-)-acutumine. J. Am. Chem. Soc., 2009, 131(19), 6674-6675.
[http://dx.doi.org/10.1021/ja9024403] [PMID: 19397370]
[12]
Mejorado, L.H.; Pettus, T.R.R. Total synthesis of (+)-rishirilide B: development and application of general processes for enantioselective oxidative dearomatization of resorcinol derivatives. J. Am. Chem. Soc., 2006, 128(49), 15625-15631.
[http://dx.doi.org/10.1021/ja062987w] [PMID: 17147370]
[13]
Cox, C.; Danishefsky, S.J. Synthesis of the functionalized tricyclic core of lactonamycin by oxidative dearomatization. Org. Lett., 2000, 2(22), 3493-3496.
[http://dx.doi.org/10.1021/ol006531+] [PMID: 11082017]
[14]
Quideau, S.; Lebon, M.; Lamidey, A.M. Enantiospecific synthesis of the antituberculosis marine sponge metabolite (+)-puupehenone. The arenol oxidative activation route. Org. Lett., 2002, 4(22), 3975-3978.
[http://dx.doi.org/10.1021/ol026855t] [PMID: 12599506]
[15]
Tisdale, E.J.; Vong, B.G.; Li, H.; Kim, S.H.; Chowdhury, C.; Theodorakis, E.A. Total synthesis of seco-lateriflorone. Tetrahedron, 2003, 59, 6873-6887.
[http://dx.doi.org/10.1016/S0040-4020(03)00862-7]
[16]
Wood, J.L.; Graeber, J.K.; Njardarson, J.T. Application of phenolic oxidation chemistry in synthesis: preparation of the BCE ring system of rryanodine. Tetrahedron, 2003, 59, 8855-8858.
[http://dx.doi.org/10.1016/j.tet.2003.05.001]
[17]
Mejorado, L.H.; Hoarau, C.; Pettus, T.R.R. Diastereoselective dearomatization of resorcinols directed by a lactic acid tether: unprecedented enantioselective access to p-quinols. Org. Lett., 2004, 6(10), 1535-1538.
[http://dx.doi.org/10.1021/ol0498592] [PMID: 15128229]
[18]
Zhu, J.; Grigoriadis, N.P.; Lee, J.P.; Porco, J.A. Synthesis of the azaphilones using copper-mediated enantioselective oxidative dearomatization. J. Am. Chem. Soc., 2005, 127(26), 9342-9343.
[http://dx.doi.org/10.1021/ja052049g] [PMID: 15984841]
[19]
Carreño, M.C.; López, M.G.; Urbano, A. Oxidative de-aromatization of para-alkyl phenols into para-peroxyquinols and para-quinols mediated by oxone as a source of singlet oxygen. Angew. Chem. Int. Ed. Engl., 2006, 45(17), 2737-2741.
[http://dx.doi.org/10.1002/anie.200504605] [PMID: 16548026]
[20]
Hoarau, C.; Pettus, T.R.R. General synthesis for chiral 4-alkyl-4-hydroxycyclohexenones. Org. Lett., 2006, 8(13), 2843-2846.
[http://dx.doi.org/10.1021/ol061000s] [PMID: 16774271]
[21]
Zhu, J.; Porco, J.A. Asymmetric syntheses of (-)-mitorubrin and related azaphilone natural products. Org. Lett., 2006, 8(22), 5169-5171.
[http://dx.doi.org/10.1021/ol062233m] [PMID: 17048870]
[22]
Barradas, S.; Carreño, M.C.; López, M.G.; Latorre, A.; Urbano, A. Direct stereocontrolled synthesis of polyoxygenated hydrobenzofurans and hydrobenzopyrans from p-peroxy quinols. Org. Lett., 2007, 9(24), 5019-5022.
[http://dx.doi.org/10.1021/ol702236e] [PMID: 17973482]
[23]
Dai, M.; Danishefsky, S.J. A concise synthesis of the cortistatin core. Tetrahedron Lett., 2008, 49(47), 6610-6612.
[http://dx.doi.org/10.1016/j.tetlet.2008.09.018] [PMID: 19924219]
[24]
Zhdankin, V.V. Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds; John Wiley and Sons, 2013.
[http://dx.doi.org/10.1002/9781118341155]
[25]
Yoshimura, A.; Zhdankin, V.V. Advances in synthetic applications of hypervalent iodine compounds. Chem. Rev., 2016, 116(5), 3328-3435.
[http://dx.doi.org/10.1021/acs.chemrev.5b00547] [PMID: 26861673]
[26]
Kita, Y.; Wirth, T. Hypervalent Iodine Chemistry; Springer International Publishing: Berlin, 2016.
[27]
Jacquemot, G.; Canesi, S. Oxidative ipso-rearrangement performed by a hypervalent iodine reagent and its application. J. Org. Chem., 2012, 77(17), 7588-7594.
[http://dx.doi.org/10.1021/jo301408j] [PMID: 22866905]
[28]
Desjardins, S.; Andrez, J.C.; Canesi, S. A stereoselective oxidative polycyclization process mediated by a hypervalent iodine reagent. Org. Lett., 2011, 13(13), 3406-3409.
[http://dx.doi.org/10.1021/ol201149u] [PMID: 21619047]
[29]
Dohi, T.; Nakae, T.; Ishikado, Y.; Kato, D.; Kita, Y. New synthesis of spirocycles by utilizing in situ forming hypervalent iodine species. Org. Biomol. Chem., 2011, 9(20), 6899-6902.
[http://dx.doi.org/10.1039/c1ob06199b] [PMID: 21892505]
[30]
Yu, Z.; Ju, X.; Wang, J.; Yu, W. Iodobenzene-mediated intramolecular oxidative coupling of substituted 4-hydroxyphenyl-N-phenylbenzamides for the synthesis of spirooxindoles. Synthesis, 2011, 2011(6), 860-866.
[http://dx.doi.org/10.1055/s-0030-1259444]
[31]
Hempel, C.; Weckenmann, N.M.; Moessmer, C.M.; Nachtsheim, B.J. A hypervalent iodine-mediated spirocyclization of 2-(4-hydroxybenzamido) acrylates--unexpected formation of δ-spirolactones. Org. Biomol. Chem., 2012, 10(47), 9325-9329.
[http://dx.doi.org/10.1039/c2ob26815a] [PMID: 23117367]
[32]
Zheng, C.; Wang, L.; Li, J.; Wang, L.; Wang, D.Z. Ortho-dearomatization of phenols creating all-carbon spiro-bicycles. Org. Lett., 2013, 15(16), 4046-4049.
[http://dx.doi.org/10.1021/ol401863k] [PMID: 23909662]
[33]
Jin, C.Y.; Du, J.Y.; Zeng, C.; Zhao, X.H.; Cao, Y.X.; Zhang, X.Z.; Lu, X.Y.; Fan, C.A. Hypervalent iodine(III)-mediated oxidative dearomatizing cyclization of arylamines. Adv. Synth. Catal., 2014, 356, 2437-2444.
[http://dx.doi.org/10.1002/adsc.201400191]
[34]
Canesi, S.; Belmont, P.; Bouchu, D.; Rousset, L.; Ciufolini, M.A. Efficient oxidative spirocyclization of phenolic sulfonamides. Tetrahedron Lett., 2002, 43, 5193-5195.
[http://dx.doi.org/10.1016/S0040-4039(02)00949-8]
[35]
Mizutani, H.; Takayama, J.; Soeda, Y.; Honda, T. Facile synthesis of enantiopure (−)-TAN1251A. Tetrahedron Lett., 2002, 43, 2411-2414.
[http://dx.doi.org/10.1016/S0040-4039(02)00296-4]
[36]
Wardrop, D.J.; Burge, M.S.; Zhang, W.; Ortíz, J.A. π-Face selective azaspirocyclization of ω-(methoxyphenyl)-N-methoxyalkylamides. Tetrahedron Lett., 2003, 44, 2587-2591.
[http://dx.doi.org/10.1016/S0040-4039(03)00227-2]
[37]
Wardrop, D.J.; Burge, M.S. Nitrenium ion azaspirocyclization-spirodienone cleavage: a new synthetic strategy for the stereocontrolled preparation of highly substituted lactams and N-hydroxy lactams. J. Org. Chem., 2005, 70(25), 10271-10284.
[http://dx.doi.org/10.1021/jo051252r] [PMID: 16323835]
[38]
Dohi, T.; Maruyama, A.; Minamitsuji, Y.; Takenaga, N.; Kita, Y. First hypervalent iodine(III)-catalyzed C-N bond forming reaction: catalytic spirocyclization of amides to N-fused spirolactams. Chem. Commun. (Camb.), 2007, 2007(12), 1224-1226.
[http://dx.doi.org/10.1039/B616510A] [PMID: 17356763]
[39]
Dohi, T.; Takenaga, N.; Fukushima, K.; Uchiyama, T.; Kato, D.; Motoo, S.; Fujioka, H.; Kita, Y. Designer μ-oxo-bridged hypervalent iodine(III) organocatalysts for greener oxidations. Chem. Commun. (Camb.), 2010, 46(41), 7697-7699.
[http://dx.doi.org/10.1039/c0cc03213a] [PMID: 20877828]
[40]
Liang, H.; Ciufolini, M.A. Synthetic aspects of the oxidative amidation of phenols. Tetrahedron, 2010, 66, 5884-5892.
[http://dx.doi.org/10.1016/j.tet.2010.05.020]
[41]
Liang, H.; Ciufolini, M.A. Oxidative spirocyclization of phenolic sulfonamides: scope and applications. Chemistry, 2010, 16(44), 13262-13270.
[http://dx.doi.org/10.1002/chem.201001402] [PMID: 20931573]
[42]
Bodipati, N.; Peddinti, R.K. Hypervalent iodine mediated synthesis of carbamate protected p-quinone monoimine ketals and p-benzoquinone monoketals. Org. Biomol. Chem., 2012, 10(23), 4549-4553.
[http://dx.doi.org/10.1039/c2ob25089f] [PMID: 22565414]
[43]
Wang, L.; Fan, R. Divergent construction of nitrogen-containing polycyclic compounds with a dearomatization strategy. Org. Lett., 2012, 14(14), 3596-3599.
[http://dx.doi.org/10.1021/ol301282p] [PMID: 22780335]
[44]
Ye, Y.; Zhang, L.; Fan, R. Application of dearomatization strategy on the synthesis of furoquinolinone and angelicin derivatives. Org. Lett., 2012, 14(8), 2114-2117.
[http://dx.doi.org/10.1021/ol300648t] [PMID: 22480214]
[45]
Moschitto, M.J.; Anthony, D.R.; Lewis, C.A. Syntheses of arnottin I and arnottin II. J. Org. Chem., 2015, 80(6), 3339-3342.
[http://dx.doi.org/10.1021/acs.joc.5b00107] [PMID: 25748275]
[46]
Shirley, H.J.; Bray, C.D. Spiroketal formation by cascade oxidative dearomatization: an approach to the phorbaketal skeleton. Eur. J. Org. Chem., 2016, 2016, 1504-1507.
[http://dx.doi.org/10.1002/ejoc.201501370]
[47]
Karam, O.; Martin, A.; Jouannetaud, M.P.; Jacquesy, J.C. Synthesis of hydroindolenones and hydroquinolenones by hypervalent iodine oxidation of mono or bicyclic phenols. Tetrahedron Lett., 1999, 40, 4183-4186.
[http://dx.doi.org/10.1016/S0040-4039(99)00718-2]
[48]
Karam, O.; Mingot, A.M.; Jouannetaud, M.P.; Jacquesy, J.C.; Cousson, A. Efficient oxidative ipso-fluorination of para-substituted phenols using pyridinium polyhydrogen fluoride in combination with hypervalent iodine(III) reagents. Tetrahedron, 2004, 60, 6629-6638.
[http://dx.doi.org/10.1016/j.tet.2004.05.083]
[49]
Basset, L.; Mingot, A.M.; Jouannetaud, M.P.; Jacquesy, J.C. Access to new 4-fluorocyclohexa-2,5-dienimines using hypervalent iodine and pyridinium polyhydrogen fluoride. Tetrahedron Lett., 2008, 49, 1551-1554.
[http://dx.doi.org/10.1016/j.tetlet.2007.12.082]
[50]
Dohi, T.; Maruyama, A.; Takenaga, N.; Senami, K.; Minamitsuji, Y.; Fujioka, H.; Caemmerer, S.B.; Kita, Y. A chiral hypervalent iodine(III) reagent for enantioselective dearomatization of phenols. Angew. Chem. Int. Ed. Engl., 2008, 47(20), 3787-3790.
[http://dx.doi.org/10.1002/anie.200800464] [PMID: 18393265]
[51]
Boppisetti, J.K.; Birman, V.B. Asymmetric oxidation of o-alkylphenols with chiral 2-(o-iodoxyphenyl)-oxazolines. Org. Lett., 2009, 11(6), 1221-1223.
[http://dx.doi.org/10.1021/ol8029092] [PMID: 19231848]
[52]
Quideau, S.; Lyvinec, G.; Marguerit, M.; Bathany, K.; Ozanne-Beaudenon, A.; Buffeteau, T.; Cavagnat, D.; Chénedé, A. Asymmetric hydroxylative phenol dearomatization through in situ generation of iodanes from chiral iodoarenes and m-CPBA. Angew. Chem. Int. Ed. Engl., 2009, 48(25), 4605-4609.
[http://dx.doi.org/10.1002/anie.200901039] [PMID: 19449349]
[53]
Uyanik, M.; Yasui, T.; Ishihara, K. Enantioselective Kita oxidative spirolactonization catalyzed by in situ generated chiral hypervalent iodine(III) species. Angew. Chem. Int. Ed. Engl., 2010, 49(12), 2175-2177.
[http://dx.doi.org/10.1002/anie.200907352] [PMID: 20196156]
[54]
Dohi, T.; Takenaga, N.; Nakae, T.; Toyoda, Y.; Yamasaki, M.; Shiro, M.; Fujioka, H.; Maruyama, A.; Kita, Y. Asymmetric dearomatizing spirolactonization of naphthols catalyzed by spirobiindane-based chiral hypervalent iodine species. J. Am. Chem. Soc., 2013, 135(11), 4558-4566.
[http://dx.doi.org/10.1021/ja401074u] [PMID: 23445490]
[55]
Uyanik, M.; Yasui, T.; Ishihara, K. Hydrogen bonding and alcohol effects in asymmetric hypervalent iodine catalysis: enantioselective oxidative dearomatization of phenols. Angew. Chem. Int. Ed. Engl., 2013, 52(35), 9215-9218.
[http://dx.doi.org/10.1002/anie.201303559] [PMID: 23873650]
[56]
Bosset, C.; Coffinier, R.; Peixoto, P.A.; El Assal, M.; Miqueu, K.; Sotiropoulos, J-M.; Pouységu, L.; Quideau, S. Asymmetric hydroxylative phenol dearomatization promoted by chiral binaphthylic and biphenylic iodanes. Angew. Chem. Int. Ed. Engl., 2014, 53(37), 9860-9864.
[http://dx.doi.org/10.1002/anie.201403571] [PMID: 25047148]
[57]
Zhang, D.Y.; Xu, L.; Wu, H.; Gong, L.Z. Chiral iodine-catalyzed dearomatizative spirocyclization for the enantioselective construction of an all-carbon stereogenic center. Chemistry, 2015, 21(29), 10314-10317.
[http://dx.doi.org/10.1002/chem.201501583] [PMID: 26095392]
[58]
Murray, S.J.; Ibrahim, H. Asymmetric Kita spirolactonisation catalysed by anti-dimethanoanthracene-based iodoarenes. Chem. Commun. (Camb.), 2015, 51(12), 2376-2379.
[http://dx.doi.org/10.1039/C4CC09724F] [PMID: 25563665]
[59]
Yoshida, Y.; Magara, A.; Mino, T.; Sakamoto, M. Facile Synthesis of amino acid-derived novel chiral hypervalent iodine(V) reagents and their applications. Tetrahedron Lett., 2016, 57, 5103-5107.
[http://dx.doi.org/10.1016/j.tetlet.2016.10.016]
[60]
Dohi, T.; Sasa, H.; Miyazaki, K.; Fujitake, M.; Takenaga, N.; Kita, Y. Chiral atropisomeric 8,8′-diiodobinaphthalene for asymmetric dearomatizing spirolactonizations in hypervalent iodine oxidations. J. Org. Chem., 2017, 82(22), 11954-11960.
[http://dx.doi.org/10.1021/acs.joc.7b02037] [PMID: 28982239]
[61]
Hempel, C.; Maichle-Mössmer, C.; Pericàs, M.A.; Nachtsheim, B.J. Modular synthesis of triazole-based chiral iodoarenes for enantioselective spirocyclizations. Adv. Synth. Catal., 2017, 359, 2931-2941.
[http://dx.doi.org/10.1002/adsc.201700246]
[62]
Ogasawara, M.; Sasa, H.; Hu, H.; Amano, Y.; Nakajima, H.; Takenaga, N.; Nakajima, K.; Kita, Y.; Takahashi, T.; Dohi, T. Atropisomeric chiral diiododienes (Z,Z)-2,3-di(1-iodoalkylidene)tetralins: synthesis, enantiomeric resolution, and application in asymmetric catalysis. Org. Lett., 2017, 19(15), 4102-4105.
[http://dx.doi.org/10.1021/acs.orglett.7b01876] [PMID: 28726416]
[63]
Uyanik, M.; Sasakura, N.; Mizuno, M.; Ishihara, K. Enantioselective synthesis of masked benzoquinones using designer chiral hypervalent organoiodine(III) catalysis. ACS Catal., 2017, 7, 872-876.
[http://dx.doi.org/10.1021/acscatal.6b03380]
[64]
Jain, N.; Xu, S.; Ciufolini, M.A. Asymmetric oxidative cycloetherification of naphtholic alcohols. Chemistry, 2017, 23(19), 4542-4546.
[http://dx.doi.org/10.1002/chem.201700667] [PMID: 28194827]
[65]
Companys, S.; Peixoto, P.A.; Bosset, C.; Chassaing, S.; Miqueu, K.; Sotiropoulos, J.M.; Pouységu, L.; Quideau, S. Asymmetric alkynylation of β-ketoesters and naphthols promoted by new chiral biphenylic iodanes. Chemistry, 2017, 23(54), 13309-13313.
[http://dx.doi.org/10.1002/chem.201703238] [PMID: 28715080]
[66]
El Assal, M.; Peixoto, P.A.; Coffinier, R.; Garnier, T.; Deffieux, D.; Miqueu, K.; Sotiropoulos, J-M.; Pouységu, L.; Quideau, S. Synthesis of scyphostatin analogues through hypervalent iodine-mediated phenol dearomatization. J. Org. Chem., 2017, 82(22), 11816-11828.
[http://dx.doi.org/10.1021/acs.joc.7b02366] [PMID: 28991470]
[67]
Ding, Q.; He, H.; Cai, Q. Chiral aryliodine-catalyzed asymmetric oxidative C-N bond formation via desymmetrization strategy. Org. Lett., 2018, 20(15), 4554-4557.
[http://dx.doi.org/10.1021/acs.orglett.8b01849] [PMID: 30036067]
[68]
Yoshida, Y.; Kanashima, Y.; Mino, T.; Sakamoto, M. Asymmetric syntheses and applications of planar chiral hypervalent iodine(V) reagents with crown ether backbones. Tetrahedron, 2019, 75, 3840-3849.
[http://dx.doi.org/10.1016/j.tet.2019.06.008]
[69]
Abazid, A.H.; Nachtsheim, B.J. A Triazole-substituted aryl iodide with omnipotent reactivity in enantioselective oxidations. Angew. Chem. Int. Ed. Engl., 2020, 59(4), 1479-1484.
[http://dx.doi.org/10.1002/anie.201912023] [PMID: 31600009]
[70]
Volp, K.A.; Harned, A.M. Chiral aryl iodide catalysts for the enantioselective synthesis of para-quinols. Chem. Commun. (Camb.), 2013, 49(29), 3001-3003.
[http://dx.doi.org/10.1039/c3cc00013c] [PMID: 23463273]
[71]
Hashimoto, T.; Shimazaki, Y.; Omatsu, Y.; Maruoka, K. Indanol-based chiral organoiodine catalysts for enantioselective hydrative dearomatization. Angew. Chem. Int. Ed. Engl., 2018, 57(24), 7200-7204.
[http://dx.doi.org/10.1002/anie.201803889] [PMID: 29700910]
[72]
Cheong, P.H.Y.; Legault, C.Y.; Um, J.M.; Ölçüm, N.C.; Houk, K.N. Quantum mechanical investigations of organocatalysis: mechanisms, reactivities, and selectivities. Chem. Rev., 2011, 111(8), 5042-5137.
[http://dx.doi.org/10.1021/cr100212h] [PMID: 21707120]
[73]
Sperger, T.; Sanhueza, I.A.; Kalvet, I.; Schoenebeck, F. Computational Studies of synthetically relevant homogeneous organometallic catalysis involving Ni, Pd, Ir, and Rh: an overview of commonly employed DFT methods and mechanistic insights. Chem. Rev., 2015, 115(17), 9532-9586.
[http://dx.doi.org/10.1021/acs.chemrev.5b00163] [PMID: 26207572]
[74]
Ahn, S.; Hong, M.; Sundararajan, M.; Ess, D.H.; Baik, M.H. Design and optimization of catalysts based on mechanistic insights derived from quantum chemical reaction modeling. Chem. Rev., 2019, 119(11), 6509-6560.
[http://dx.doi.org/10.1021/acs.chemrev.9b00073] [PMID: 31066549]
[75]
Harvey, J.N.; Himo, F.; Maseras, F.; Perrin, L. Scope and challenge of computational methods for studying mechanism and reactivity in homogeneous catalysis. ACS Catal., 2019, 9, 6803-6813.
[http://dx.doi.org/10.1021/acscatal.9b01537]
[76]
Vogiatzis, K.D.; Polynski, M.V.; Kirkland, J.K.; Townsend, J.; Hashemi, A.; Liu, C.; Pidko, E.A. Computational approach to molecular catalysis by 3d transition metals: challenges and opportunities. Chem. Rev., 2019, 119(4), 2453-2523.
[http://dx.doi.org/10.1021/acs.chemrev.8b00361] [PMID: 30376310]
[77]
Ariafard, A. A Density Functional Theory (DFT) mechanistic study of gold(I)-catalyzed alkynylation of the indole and pyrrole substrates, using a hypervalent iodine reagent. ACS Catal., 2014, 4, 2896-2907.
[http://dx.doi.org/10.1021/cs500613t]
[78]
Frei, R.; Wodrich, M.D.; Hari, D.P.; Borin, P.A.; Chauvier, C.; Waser, J. Fast and highly chemoselective alkynylation of thiols with hypervalent iodine reagents enabled through a low energy barrier concerted mechanism. J. Am. Chem. Soc., 2014, 136(47), 16563-16573.
[http://dx.doi.org/10.1021/ja5083014] [PMID: 25365776]
[79]
Sreenithya, A.; Sunoj, R.B. Mechanistic insights on iodine(III) promoted metal-free dual C-H activation involved in the formation of a spirocyclic bis-oxindole. Org. Lett., 2014, 16(23), 6224-6227.
[http://dx.doi.org/10.1021/ol503161g] [PMID: 25420189]
[80]
Beaulieu, S.; Legault, C.Y. Mechanistic insights on the iodine(III)-mediated α-oxidation of ketones. Chemistry, 2015, 21(31), 11206-11211.
[http://dx.doi.org/10.1002/chem.201501177] [PMID: 26118902]
[81]
Zhou, B.; Xue, X.S.; Cheng, J.P. Theoretical study of Lewis acid activation models for hypervalent fluoroiodane reagent: the generality of “F-coordination” activation model. Tetrahedron Lett., 2017, 58, 1287-1291.
[http://dx.doi.org/10.1016/j.tetlet.2017.02.040]
[82]
Yan, T.; Zhou, B.; Xue, X.S.; Cheng, J.P. Mechanism and origin of the unexpected chemoselectivity in fluorocyclization of o-styryl benzamides with a hypervalent fluoroiodane reagent. J. Org. Chem., 2016, 81(19), 9006-9011.
[http://dx.doi.org/10.1021/acs.joc.6b01642] [PMID: 27602695]
[83]
Zhou, B.; Yan, T.; Xue, X.S.; Cheng, J.P. Mechanism of silver-mediated geminal difluorination of styrenes with a fluoroiodane reagent: insights into Lewis-acid-activation model. Org. Lett., 2016, 18(23), 6128-6131.
[http://dx.doi.org/10.1021/acs.orglett.6b03134] [PMID: 27934395]
[84]
Jiang, H.; Sun, T.Y.; Wang, X.; Xie, Y.; Zhang, X.; Wu, Y.D.; Schaefer, H.F. A twist of the twist mechanism, 2-iodoxybenzoic acid (IBX)-mediated oxidation of alcohol revisited: theory and experiment. Org. Lett., 2017, 19(24), 6502-6505.
[http://dx.doi.org/10.1021/acs.orglett.7b03167] [PMID: 29166031]
[85]
Sreenithya, A.; Patel, C.; Hadad, C.M.; Sunoj, R.B. Hypercoordinate iodine catalysts in enantioselective transformation: the role of catalyst folding in stereoselectivity. ACS Catal., 2017, 7, 4189-4196.
[http://dx.doi.org/10.1021/acscatal.7b00975]
[86]
Zhang, J.; Szabó, K.J.; Himo, F. Metathesis mechanism of zinc-catalyzed fluorination of alkenes with hypervalent fluoroiodine. ACS Catal., 2017, 7, 1093-1100.
[http://dx.doi.org/10.1021/acscatal.6b02731]
[87]
Mai, B.K.; Szabó, K.J.; Himo, F. Mechanisms of Rh-catalyzed oxyfluorination and oxytrifluoromethylation of diazocarbonyl compounds with hypervalent fluoroiodine. ACS Catal., 2018, 8, 4483-4492.
[http://dx.doi.org/10.1021/acscatal.8b00667]
[88]
Tian, J.; Luo, F.; Zhang, C.; Huang, X.; Zhang, Y.; Zhang, L.; Kong, L.; Hu, X.; Wang, Z.X.; Peng, B. selective ortho C-H cyanoalkylation of (diacetoxyiodo)arenes through [3,3]-sigmatropic rearrangement. Angew. Chem. Int. Ed., 2018, 57, 9078-9082.
[http://dx.doi.org/10.1002/anie.201803455] [PMID: 29797535]
[89]
Zhou, B.; Haj, M.K.; Jacobsen, E.N.; Houk, K.N.; Xue, X.S. Mechanism and origins of chemo- and stereoselectivities of aryl iodide-catalyzed asymmetric difluorinations of β-substituted styrenes. J. Am. Chem. Soc., 2018, 140(45), 15206-15218.
[http://dx.doi.org/10.1021/jacs.8b05935] [PMID: 30350956]
[90]
Farshadfar, K.; Chipman, A.; Yates, B.F.; Ariafard, A. DFT mechanistic investigation into BF3-catalyzed alcohol oxidation by a hypervalent iodine(III) compound. ACS Catal., 2019, 9, 6510-6521.
[http://dx.doi.org/10.1021/acscatal.9b01599]
[91]
Shu, S.; Li, Y.; Jiang, J.; Ke, Z.; Liu, Y. Mechanism of hypervalent iodine promoted fluorocyclization of unsaturated alcohols: metathesis via double acids activation. J. Org. Chem., 2019, 84(1), 458-462.
[http://dx.doi.org/10.1021/acs.joc.8b02741] [PMID: 30499297]
[92]
Sreenithya, A.; Hadad, C.M.; Sunoj, R.B. Hypercoordinate iodine for catalytic asymmetric diamination of styrene: insights into the mechanism, role of solvent, and stereoinduction. Chem. Sci. (Camb.), 2019, 10(29), 7082-7090.
[http://dx.doi.org/10.1039/C9SC01513B] [PMID: 31588276]
[93]
Chipman, A.; Farshadfar, K.; Smith, J.A.; Yates, B.F.; Ariafard, A. DFT-based comparison between mechanistic aspects of amine and alcohol oxidation mediated by IBX. J. Org. Chem., 2020, 85(2), 515-525.
[http://dx.doi.org/10.1021/acs.joc.9b02583] [PMID: 31876155]
[94]
Harned, A.M. Asymmetric oxidative dearomatizations promoted by hypervalent iodine(III) reagents: an opportunity for rational catalyst design? Tetrahedron Lett., 2014, 55(34), 4681-4689.
[http://dx.doi.org/10.1016/j.tetlet.2014.06.051] [PMID: 25147412]
[95]
Sreenithya, A.; Surya, K.; Sunoj, R.B. Hypercoordinate iodine(III) promoted reactions and catalysis: an update on current mechanistic understanding. WIREs Comput. Mol. Sci., 2017, 7(3)e1299
[http://dx.doi.org/10.1002/wcms.1299]
[96]
Kürti, L.; Herczegh, P.; Visy, J.; Simonyi, M.; Antus, S.; Pelter, A. New insights into the mechanism of phenolic oxidation with phenyliodonium(III) reagents. J. Chem. Soc., Perkin Trans. 1, 1999, 1999(40), 379-380.
[http://dx.doi.org/10.1039/a809206k]
[97]
Harned, A.M. Concerning the mechanism of iodine(III)-mediated oxidative dearomatization of phenols. Org. Biomol. Chem., 2018, 16(13), 2324-2329.
[http://dx.doi.org/10.1039/C8OB00463C] [PMID: 29542797]
[98]
Tang, T.; Harned, A.M. Experimental evidence for the formation of cationic intermediates during iodine(III)-mediated oxidative dearomatization of phenols. Org. Biomol. Chem., 2018, 16(37), 8249-8252.
[http://dx.doi.org/10.1039/C8OB01652F] [PMID: 30191933]
[99]
Ganji, B.; Ariafard, A. DFT mechanistic investigation into phenol dearomatization mediated by an iodine(III) reagent. Org. Biomol. Chem., 2019, 17(14), 3521-3528.
[http://dx.doi.org/10.1039/C9OB00028C] [PMID: 30892343]
[100]
Pouységu, L.; Chassaing, S.; Dejugnac, D.; Lamidey, A.M.; Miqueu, K.; Sotiropoulos, J-M.; Quideau, S. Highly diastereoselective synthesis of orthoquinone monoketals through λ3-iodane-mediated oxidative dearomatization of phenols. Angew. Chem. Int. Ed. Engl., 2008, 47(19), 3552-3555.
[http://dx.doi.org/10.1002/anie.200705816] [PMID: 18383488]
[101]
Zheng, H.; Sang, Y.; Houk, K.N.; Xue, X.S.; Cheng, J.P. Mechanism and origins of enantioselectivities in spirobiindane-based hypervalent iodine(III)-Induced asymmetric dearomatizing spirolactonizations. J. Am. Chem. Soc., 2019, 141(40), 16046-16056.
[http://dx.doi.org/10.1021/jacs.9b08243] [PMID: 31514501]
[102]
Gallos, J.; Varvoglis, A.; Alcock, N.W. Oxo-bridged compounds of iodine(III): syntheses, structure, and properties of µ-oxo-bis.[trifluoroacetato (phenyl)iodine]. J. Chem. Soc., Perkin Trans. 1, 1985, 1985, 757-763.
[http://dx.doi.org/10.1039/P19850000757]
[103]
Takenaga, N.; Uchiyama, T.; Kato, D.; Fujiok, H.; Dohi, T.; Kita, Y. Efficient phenolic oxidations to construct ortho-spirolactone structures using oxo-bridged hypervalent iodine(III) compound. Heterocycles, 2010, 82, 1327-1336.
[http://dx.doi.org/10.3987/COM-10-S(E)79]
[104]
Dohi, T.; Uchiyama, T.; Yamashita, D.; Washimi, N.; Kita, Y. Efficient phenolic oxidations using μ-oxo-bridged phenyliodine trifluoroacetate. Tetrahedron Lett., 2011, 52, 2212-2215.
[http://dx.doi.org/10.1016/j.tetlet.2010.12.037]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy