Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Letter Article

Efficient and Green Synthesis of Bis(indolyl)Methanes using Thiamine Hydrochloride as an Organocatalyst: A Parallel Scrutiny of Microwave Irradiation versus Ultrasonicator Heating in Water

Author(s): Nitin M. Thorat*, Kiran D. Dhawale, Sandeep B. Kasar, Manali S. Thopate, Limbraj R. Patil and Shankar R. Thopate

Volume 17, Issue 8, 2020

Page: [679 - 684] Pages: 6

DOI: 10.2174/1570179417666200620215101

Price: $65

Abstract

Thiamine hydrochloride is reported to be a highly competent promoter for the synthesis of bis(indolyl)methanes under solvent free conditions using microwave irradiation and ultrasonicator heating in aqueous media. Vitamin B1 is an economical, non-toxic, nonflammable and water soluble green organocatalyst. Moreover, the simple approach, easily operational, short reaction time, high yield and using a little quantity of thiamine hydrochloride makes this method an alternative approach. Present protocol is a simple and eco-friendly approach for the synthesis of bis(indolyl)methanes under microwave and ultrasonicator conditions.

Keywords: Microwave condition, ultrasonicator condition, green catalyst, vitamin B1, one-pot synthesis, solvent free condition.

Graphical Abstract

[1]
Anastas, P.T.; Williamson, T.C. Green chemistry: Frontiers in benign chemical syntheses and processes; Oxford Science Publications: New York, 1998.
[2]
Matlack, A.S. Introduction to green chemistry; Marcel Dekker, Inc.: New York, 2001.
[3]
Poliakoff, M.; Anastas, P. A principled stance. Nature, 2001, 413(6853), 257.
[http://dx.doi.org/10.1038/35095133 ] [PMID: 11565009]
[4]
De Simone, J.M. Practical approaches to green solvents. Science, 2002, 297(5582), 799-803.
[http://dx.doi.org/10.1126/science.1069622 ] [PMID: 12161645]
[5]
(a) Chandrasekhar, S.; Gopalaiah, K. Ketones to amides via a formal Beckmann rearrangement in ‘one pot’: A solvent-free reaction promoted by anhydrous oxalic acid. Possible analogy with the Schmidt reactio. Tetrahedron Lett. 2003, 44, 7437.
[http://dx.doi.org/10.1016/j.tetlet.2003.08.038]
(b) Suresh, A.; Saini, Kumar, D.; and Sandhu, J. S Multi-component ecofriendly synthesis of 3,4-dihydropyrimidine-2-(1H)-ones using an organocatalyst Lactic acid. Green Chem. Lett. Rev 2009, 2, 29.
[http://dx.doi.org/10.1080/17518250902973833]
(c) de Vasconcelos, A.; Oliveira, P.S.; Ritter, M.; Freitag, R.A.; Romano, R.L.; Quina, F.H.; Pizzuti, L.; Pereira, C.M.P.; Stefanello, F.M.; Barschak, A.G.J. BIOCHEM. Mol. Toxicol., 2012, 26, 155.
[http://dx.doi.org/10.1002/jbt.20424]
[6]
Babu, G.; Sridhar, N.; Perumal, P.T. A convenient method of synthesis of bis-indolylmethanes: Indium trichloride catalyzed reactions of indole with aldehydes and Schiff’s bases. Synth. Commun., 2000, 30, 1609-1614.
[http://dx.doi.org/10.1080/00397910008087197]
[7]
Kamal, A.; Qureshi, A. Syntheses of some substituted di-indolylmethanes in aqueous medium at room temperature A. Kamal. A. Ali Qureshi Tetrahedron, 1963, 19, 513-520.
[http://dx.doi.org/10.1016/S0040-4020(01)98540-0]
[8]
Nagarajan, R.; Perumal, P.T. InCl3 and In (OTf)3 catalyzed reactions: synthesis of 3-acetyl indoles, bis-indolylmethane and indolylquinoline derivatives. Tetrahedron, 2002, 58, 1229-1232.
[http://dx.doi.org/10.1016/S0040-4020(01)01227-3]
[9]
Ji, S.J.; Wang, S.Y.; Zhang, Y.; Loh, T.P. Facile synthesis of bis (indolyl) methanes using catalytic amount of iodine at room temperature under solvent free conditions. Tetrahedron, 2004, 60, 2051-2055.
[http://dx.doi.org/10.1016/j.tet.2003.12.060]
[10]
Nagarajan, R.; Perumal, P.T. Potassium Hydrogen Sulfate-Catalyzed Reactions of Indoles: A Mild, Expedient Synthesis of Bis-indolylmethanes. Chem. Lett., 2004, 33, 288-289.
[http://dx.doi.org/10.1246/cl.2004.288]
[11]
Zolfigol, M.A.; Salehi, P.; Shiri, M.; Sayadi, A.; Abdoli, A.; Keypour, H.; Rezaeivala, M.; Niknam, K.; Kolvari, E. A simple and efficient route for the synthesis of di and tri(bis(indolyl) methanes) as new triarylmethanes. Mol. Divers., 2008, 12(3-4), 203-207.
[http://dx.doi.org/10.1007/s11030-008-9091-y ] [PMID: 18841491]
[12]
Ramesh, C.; Ravindranath, N.; Das, B.J. Introduction to green chemistry, 2003.
[13]
Chakrabarty, M.; Gosh, N.; Basak, R.; Harigaya, Y. Dry reaction of indoles with carbonyl compounds on montmorillonite K10 clay: a mild, expedient synthesis of diindolylalkanes and vibrindole A. Tetrahedron Lett., 2002, 43, 4075-4078.
[http://dx.doi.org/10.1016/S0040-4039(02)00682-2]
[14]
Kumar, D. Suresh; Sandhu, J.S., CuSO4•5H2O: A novel and efficient catalyst for the synthesis of bis-indolylmethanes. J. Indian Chem. Soc., 2009, 86, 488-490.
[15]
Mathavan, S.; Kannan, K.; Yamajala, R.B.R.D. Thiamine hydrochloride as a recyclable organocatalyst for the synthesis of bis(indolyl)methanes, tris(indolyl)methanes, 3,3-di(indol-3-yl)indolin-2-ones and biscoumarins. Org. Biomol. Chem., 2019, 17(44), 9620-9626.
[http://dx.doi.org/10.1039/C9OB02090J ] [PMID: 31664290]
[16]
(a) Shiri, M.; Zolfigol, M.A.; Kruger, H.G.; Tanbakouchian, Z. Bis- and trisindolylmethanes (BIMs and TIMs). Chem Rev. 2010, 110(4), 2250-2293.
[http://dx.doi.org/10.1021/cr900195a] [PMID: 20041637]
(b) Praveen, P.J.; Parameswaran, P.S.; Majik, M.S. Bis(indolyl)methane Alkaloids: Isolation, bioactivity, and syntheses. Synthesis, 2015, 47, 1827
[http://dx.doi.org/10.1055/s-0034-1380415]
(c) Sarva, S.; Harinath, J.S.; Sthanikam, S.P.; Ethiraj, S.; Vaithiyalingam, M.; Cirandur, S.R. Synthesis, antibacterial and anti-inflammatory activity of bis(indolyl)methanes. Chin. Chem. Lett. 2016, 27, 16-20.
[http://dx.doi.org/10.1016/j.cclet.2015.08.012]
(d) Gu, Y.C.; Hu, R.M.; Li, M.M.; Xu, D.Z. Iron‐containing ionic liquid as an efficient and recyclable catalyst for the synthesis of C3‐substituted indole derivatives. Appl. Organomet. Chem., 2019, 33, 4782.
[http://dx.doi.org/10.1002/aoc.4782]
[17]
(a) Diana, P.; Carbone, A.; Barraja, P.; Martorana, A.; Gia, O. DallaVia,L. and Cirrincione, G., 3,5-Bis(30 -indolyl)pyrazoles, analogues of marine alkaloid nortopsentin: Synthesis and antitumor properties. Bioorg. Med. Chem. Lett 2007, 17, 6134
[http://dx.doi.org/10.1016/j.bmcl.2007.09.042 ] [PMID: 17911018]
(b) Bharate, S.B.; Bharate, J.B.; Khan, S.I.; Tekwani, B.L.; Jacob, M.R.; Mudududdla, R.; Yadav, R.R.; Singh, B.; Sharma, P.R.; Maity, S.; Singh, B.; Khan, I.A.; Vishwakarma, R.A. Discovery of 3,3′-diindolylmethanes as potent antileishmanial agents. Eur. J. Med. Chem 2013, 63, 435-443.
[http://dx.doi.org/10.1016/j.ejmech.2013.02.024] [PMID: 23517732]
cSashidhara, K.V.; Kumar, A.; Kumar, M.; Srivastava, A.; Puri, A. Synthesis and antihyperlipidemic activity of novel coumarin bisindole derivatives. Bioorg. Med. Chem. Lett., 2010, 20(22), 6504-6507.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.055] [PMID: 20932744]
dKamal, A.; Srikanth, Y.V.V.; Ramaiah, M.J.M.; Khan, M.N.; Kashi Reddy, M.; Ashraf, M.; Lavanya, A.; Pushpavalli, S.N.C.V.L.; Pal-Bhadra, M. Synthesis, anticancer activity and apoptosis inducing ability of bisindole linked pyrrolo[2,1-c][1,4]benzodiazepine conjugates. Bioorg. Med. Chem. Lett., 2012, 22(1), 571-578.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.080 ] [PMID: 22104151]
[18]
Thorat, N.M.; Kote, S.R.; Thopate, S.R. An efficient and green synthesis of flavones using natural organic acids as promoter under solvent-free condition. Lett. Org. Chem., 2014, 11, 601-605.
[http://dx.doi.org/10.2174/157017861108140613163214]
[19]
Thopate, S.R.; Kote, S.R.; Rohokale, S.V.; Thorat, N.M. Citric acid catalysed Beckmann rearrangement under solvent free conditions. J. Chem. Res., 2011, 35, 124-125.
[http://dx.doi.org/10.3184/174751911X557296]
[20]
Thorat, N.M.; Thopate, S.R. Natural Organic Acids Promoted Synthesis of 3, 4-Dihydropyrimidin-2 (1H)-ones/thiones Under Solvent-free Conditions. Lett. Org. Chem., 2015, 12, 210-216.
[http://dx.doi.org/10.2174/1570178612666150108003629]
[21]
Rohokale, S.V.; Kote, S.R.; Deshmukh, S.R.; Thopate, S.R. Natural organic acids promoted Beckmann rearrangement: Green and expeditious synthesis of amides under solvent-free conditions. Chem. Pap., 2014, 68, 575-578.
[http://dx.doi.org/10.2478/s11696-013-0481-y]
[22]
Thorat, N.M.; Dengale, R.A.; Thopate, S.R.; Rohokale, S.V. ammonium acetate promoted rapid and efficient synthesis of γ-benzopyranones and 3, 4-dihydropyrimidin-2(1h)-ones/thiones under solvent-free conditions: a parallel scrutiny of microwave irradiation versus conventional heating. Lett. Org. Chem., 2015, 12, 574-583.
[http://dx.doi.org/10.2174/1570178612666150624172950]
[23]
Hojati, S.F.; Zeinali, T.; Nematdoust, Z. A novel method for synthesis of bis(indolyl)methanes using 1,3-Dibromo-5,5-dimethylhydantoin as a highly efficient catalyst under solvent-free conditions. Bull. Korean Chem. Soc., 2013, 34, 117-120.
[http://dx.doi.org/10.5012/bkcs.2013.34.1.117]
[24]
Kasar, S.B.; Thopate, S.R. Synthesis of bis(indolyl)methanes using naturally occurring. Biodegradable itaconic acid as a green and reusable catalyst. Curr. Org. Synth., 2018, 15, 110-115.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy