Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Preclinical Evidence for the Pharmacological Actions of Glycyrrhizic Acid: A Comprehensive Review

Author(s): Muneeb U. Rehman*, Adil Farooq, Rayeesa Ali, Sana Bashir, Nazirah Bashir, Samia Majeed, Syed Taifa, Sheikh Bilal Ahmad, Azher Arafah, Aga Syed Sameer*, Rehan Khan, Wajhul Qamar, Saiema Rasool and Anas Ahmad

Volume 21, Issue 6, 2020

Page: [436 - 465] Pages: 30

DOI: 10.2174/1389200221666200620204914

Price: $65

Abstract

Glycyrrhiza glabra L. (Family: Fabaceae) is one of the important traditional medicinal plant used extensively in folk medicine. It is known for its ethnopharmacological value in curing a wide variety of ailments. Glycyrrhizin, an active compound of G. glabra, possesses anti-inflammatory activity due to which it is mostly used in traditional herbal medicine for the treatment and management of chronic diseases. The present review is focused extensively on the pharmacology, pharmacokinetics, toxicology, and potential effects of Glycyrrhizic Acid (GA). A thorough literature survey was conducted to identify various studies that reported on the GA on PubMed, Science Direct and Google Scholar.

Keywords: Glycyrrhiza glabra, liquorice, glycyrrhizin, medicinal plant, fabaceae, anti-inflammatory.

Graphical Abstract

[1]
Fiore, C. 2005.
[2]
Fiore, C.; Eisenhut, M.; Krausse, R.; Ragazzi, E.; Pellati, D.; Armanini, D.; Bielenberg, J. Antiviral effects of Glycyrrhiza species. Phytother. Res., 2008, 22(2), 141-148.
[http://dx.doi.org/10.1002/ptr.2295] [PMID: 17886224]
[3]
Carmines, E.L.; Lemus, R.; Gaworski, C.L. Toxicologic evaluation of licorice extract as a cigarette ingredient. Food Chem. Toxicol., 2005, 43(9), 1303-1322.
[http://dx.doi.org/10.1016/j.fct.2005.01.012] [PMID: 15878225]
[4]
Isbrucker, R.A.; Burdock, G.A. Risk and safety assessment on the consumption of Licorice root (Glycyrrhiza sp.), its extract and powder as a food ingredient, with emphasis on the pharmacology and toxicology of glycyrrhizin. Regul. Toxicol. Pharmacol., 2006, 46(3), 167-192.
[http://dx.doi.org/10.1016/j.yrtph.2006.06.002] [PMID: 16884839]
[5]
Tamir, S.; Eizenberg, M.; Somjen, D.; Izrael, S.; Vaya, J. Estrogen-like activity of glabrene and other constituents isolated from licorice root. J. Steroid Biochem. Mol. Biol., 2001, 78(3), 291-298.
[http://dx.doi.org/10.1016/S0960-0760(01)00093-0] [PMID: 11595510]
[6]
Li, W.; Asada, Y.; Yoshikawa, T. Flavonoid constituents from Glycyrrhiza glabra hairy root cultures. Phytochemistry, 2000, 55(5), 447-456.
[http://dx.doi.org/10.1016/S0031-9422(00)00337-X] [PMID: 11140606]
[7]
Tykarska, E.; Czarczyńska-Goslińska, B.; Lulek, J. Kwas glicyryzynowy i glicyretynowy w nowoczesnej technologii farmaceutycznej. Czas. Aptek., 2012, 19, 43.
[8]
Food Chemicals Codex, 5th ed; National Academy Press: Washington, DC, 2003, p. 25.
[9]
Zeng, C.X.; Yang, Q.; Hu, Q. A comparison of the distribution of two glycyrrhizic acid epimers in rat tissues. Eur. J. Drug Metab. Pharmacokinet., 2006, 31(4), 253-258.
[http://dx.doi.org/10.1007/BF03190464] [PMID: 17315535]
[10]
Jeong, H.G.; You, H.J.; Park, S.J.; Moon, A.R.; Chung, Y.C.; Kang, S.K.; Chun, H.K. Hepatoprotective effects of 18β-glycyrrhetinic acid on carbon tetrachloride-induced liver injury: inhibition of cytochrome P450 2E1 expression. Pharmacol. Res., 2002, 46(3), 221-227.
[http://dx.doi.org/10.1016/S1043-6618(02)00121-4] [PMID: 12220964]
[11]
Aly, A.M.; Al-Alousi, L.; Salem, H.A. Licorice: a possible anti-inflammatory and anti-ulcer drug AAPS pharm. Sci. Tech. (Paris), 2005, 6, 74.
[12]
Smolarczyk, R.; Cichoń, T.; Matuszczak, S.; Mitrus, I.; Lesiak, M.; Kobusińska, M.; Kamysz, W.; Jarosz, M.; Sieroń, A.; Szala, S. The role of Glycyrrhizin, an inhibitor of HMGB1 protein, in anticancer therapy. Arch. Immunol. Ther. Exp. (Warsz.), 2012, 60(5), 391-399.
[http://dx.doi.org/10.1007/s00005-012-0183-0] [PMID: 22922889]
[13]
Krausse, R.; Bielenberg, J.; Blaschek, W.; Ullmann, U. In vitro anti-Helicobacter pylori activity of Extractum liquiritiae, glycyrrhizin and its metabolites. J. Antimicrob. Chemother., 2004, 54(1), 243-246.
[http://dx.doi.org/10.1093/jac/dkh287] [PMID: 15190039]
[14]
Ashfaq, U.A.; Masoud, M.S.; Nawaz, Z.; Riazuddin, S. Glycyrrhizin as antiviral agent against hepatitis C Virus. J. Transl. Med., 2011, 9, 112.
[http://dx.doi.org/10.1186/1479-5876-9-112] [PMID: 21762538]
[15]
Akman, T.; Guven, M.; Aras, A.B.; Ozkan, A.; Sen, H.M.; Okuyucu, A.; Kalkan, Y.; Sehitoglu, I.; Silan, C.; Cosar, M. The neuroprotective effect of glycyrrhizic acid on an experimental model of focal cerebral ischemia in rats. Inflammation, 2015, 38(4), 1581-1588.
[http://dx.doi.org/10.1007/s10753-015-0133-1] [PMID: 25687639]
[16]
Shibata, N.; Shimokawa, T.; Jiang, Z.; Jeong, Y.; Ohno, T.; Kimura, G.; Yoshikawa, Y.; Koga, K.; Murakami, M.; Takada, K. Characteristics of intestinal absorption and disposition of glycyrrhizin in mice. Biopharm. Drug Dispos., 2000, 21(3), 95-101.
[http://dx.doi.org/10.1002/1099-081X(200004)21:3<95:AID-BDD221>3.0.CO;2-9] [PMID: 11113882]
[17]
Zuidhoff, H.W.; Rijsbergen, J.M.V. Whitening efficacy of frequently used whitenning ingredients. CandT, 2001, 116(1), 53-59.
[18]
Alonso, J. Tratado de Fitofarmacos y Nutraceuticos; Corpus: Barcelona, 2004, pp. 905-911.
[19]
Roy, S.D.; Karmakar, P.R.; Dash, S.; Chakraborty, J.; Das, B. Hair growth stimulating effect and phytochemical evaluation of hydro-alcoholic extract of Glycyrrhiza glabra. Global J. res. Med. Plants and Indigen. Med., 2014, 3(2), 40-47.
[20]
Armanini, D.; Karbowiak, I.; Funder, J.W. Affinity of liquorice derivatives for mineralocorticoid and glucocorticoid receptors. Clin. Endocrinol. (Oxf.), 1983, 19(5), 609-612.
[http://dx.doi.org/10.1111/j.1365-2265.1983.tb00038.x] [PMID: 6315264]
[21]
Ohuchi, K.; Tsurufuji, A. A study of the anti-inflammatory mechanism of glycyrrhizin. Mino. Med. Rev., 1982, 27, 188-193.
[22]
Okimasu, E.; Moromizato, Y.; Watanabe, S.; Sasaki, J.; Shiraishi, N.; Morimoto, Y.M.; Miyahara, M.; Utsumi, K. Inhibition of phospholipase A2 and platelet aggregation by glycyrrhizin, an antiinflammation drug. Acta Med. Okayama, 1983, 37(5), 385-391.
[PMID: 6689106]
[23]
Wang, Z.Y.; Nixon, D.W. Licorice and cancer. Nutr. Cancer, 2001, 39(1), 1-11.
[http://dx.doi.org/10.1207/S15327914nc391_1] [PMID: 11588889]
[24]
Nagai, T.; Egashira, T.; Yamanaka, Y.; Kohno, M. The protective effect of glycyrrhizin against injury of the liver caused by ischemia-reperfusion. Arch. Environ. Contam. Toxicol., 1991, 20(3), 432-436.
[http://dx.doi.org/10.1007/BF01064416] [PMID: 1650169]
[25]
Van Rossum, T.G.; Vulto, A.G.; Hop, W.C.; Schalm, S.W. Glycyrrhizin induced reduction of ALT in European patients with chronic hepatitis C. Am. J. Gastroenterol., 2001, 96, 2432-2437.
[26]
Mao, Y.M.; Zeng, M.D.; Chen, Y. Magnesium isoglycyrrhizinate in the treatment of chronic liver diseases: a randomized, double-blind, multi-doses, active drug controlled, multicenter study. Zhonghua Gan Zang Bing Za Zhi, 2009, 17(11), 847-851.
[27]
Xiao, Z.W.; Zhang, W.; Ma, L.; Qiu, Z.W. Therapeutic effect of magnesium isoglycyrrhizinate in rats on lung injury induced by paraquat poisoning. Eur. Rev. Med. Pharmacol. Sci., 2014, 18(3), 311-320.
[PMID: 24563429]
[28]
Mori, K.; Sakai, H.; Suzuki, S.; Akutsu, Y.; Ishikawa, M.; Imaizumi, M.; Tada, K.; Aihara, M.; Sawada, Y.; Yokoyama, M. Effects of glycyrrhizin (SNMC: Stronger Neo-Minophagen C) in hemophilia patients with HIV-1 infection. Tohoku J. Exp. Med., 1990, 162(2), 183-193.
[http://dx.doi.org/10.1620/tjem.162.183] [PMID: 2129071]
[29]
Koga, K.; Kawashima, S.; Shibata, N.; Takada, K.; Murakami, M. Preparation and rectal absorption of highly concentrated glycyrrhizin solution. Biol. Pharm. Bull., 2003, 26(9), 1299-1305.
[http://dx.doi.org/10.1248/bpb.26.1299] [PMID: 12951475]
[30]
Omar, H.R.; Komarova, I.; El-Ghonemi, M.; Fathy, A.; Rashad, R.; Abdelmalak, H.D.; Yerramadha, M.R.; Ali, Y.; Helal, E.; Camporesi, E.M. Licorice abuse: time to send a warning message. Ther. Adv. Endocrinol. Metab., 2012, 3(4), 125-138.
[http://dx.doi.org/10.1177/2042018812454322] [PMID: 23185686]
[31]
Asl, M.N.; Hosseinzadeh, H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother. Res., 2008, 22(6), 709-724.
[http://dx.doi.org/10.1002/ptr.2362] [PMID: 18446848]
[32]
Ploeger, B.; Mensinga, T.; Sips, A.; Seinen, W.; Meulenbelt, J.; DeJongh, J. The pharmacokinetics of glycyrrhizic acid evaluated by physiologically based pharmacokinetic modeling. Drug Metab. Rev., 2001, 33(2), 125-147.
[http://dx.doi.org/10.1081/DMR-100104400] [PMID: 11495500]
[33]
Shibata, N.; Ohno, T.; Shimokawa, T.; Hu, Z.; Yoshikawa, Y.; Koga, K.; Murakami, M.; Takada, K. Application of pressure-controlled colon delivery capsule to oral administration of glycyrrhizin in dogs. J. Pharm. Pharmacol., 2001, 53(4), 441-447.
[http://dx.doi.org/10.1211/0022357011775730] [PMID: 11341360]
[34]
Sasaki, K.; Yonebayashi, S.; Yoshida, M.; Shimizu, K.; Aotsuka, T.; Takayama, K. Improvement in the bioavailability of poorly absorbed glycyrrhizin via various non-vascular administration routes in rats. Int. J. Pharm., 2003, 265(1-2), 95-102.
[http://dx.doi.org/10.1016/S0378-5173(03)00407-1] [PMID: 14522122]
[35]
Koga, K.; Tomoyama, M.; Ohyanagi, K.; Takada, K. Pharmacokinetics of glycyrrhizin in normal and albumin-deficient rats. Biopharm. Drug Dispos., 2008, 29(7), 373-381.
[http://dx.doi.org/10.1002/bdd.619] [PMID: 18548521]
[36]
Gunnarsdóttir, S.; Jóhannesson, T. Glycyrrhetic acid in human blood after ingestion of glycyrrhizic acid in licorice. Pharmacol. Toxicol., 1997, 81(6), 300-302.
[PMID: 9444673]
[37]
Ohtake, N.; Kido, A.; Kubota, K.; Tsuchiya, N.; Morita, T.; Kase, Y.; Takeda, S. A possible involvement of 3-monoglucuronyl-glycyrrhetinic acid, a metabolite of glycyrrhizin (GL), in GL-induced pseudoaldosteronism. Life Sci., 2007, 80(17), 1545-1552.
[http://dx.doi.org/10.1016/j.lfs.2007.01.033] [PMID: 17331546]
[38]
Kocevar Glavac, N.; Kreft, S. Excretion profile of glycyrrhizin metabolite in human urine. Food Chem., 2012, 131, 305-308.
[http://dx.doi.org/10.1016/j.foodchem.2011.08.081]
[39]
Kocevar Glavac, N.; Injac, R.; Kreft, S. Determination of 18b-glycyrrhetinic acid in human urine after ingestion of glycyrrhizin. Chromatographia, 2010, 71, 917-921.
[http://dx.doi.org/10.1365/s10337-010-1526-9]
[40]
Zou, L.W.; Li, Y.G.; Wang, P.; Zhou, K.; Hou, J.; Jin, Q.; Hao, D.C.; Ge, G.B.; Yang, L. Design, synthesis, and structure-activity relationship study of glycyrrhetinic acid derivatives as potent and selective inhibitors against human carboxylesterase 2. Eur. J. Med. Chem., 2016, 112, 280-288.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.020] [PMID: 26900660]
[41]
Beseda, I.; Czollner, L.; Shah, P.S.; Khunt, R.; Gaware, R.; Kosma, P.; Stanetty, C.; Del Ruiz-Ruiz, M.C.; Amer, H.; Mereiter, K.; Da Cunha, T.; Odermatt, A.; Classen-Houben, D.; Jordis, U. Synthesis of glycyrrhetinic acid derivatives for the treatment of metabolic diseases. Bioorg. Med. Chem., 2010, 18(1), 433-454.
[http://dx.doi.org/10.1016/j.bmc.2009.10.036] [PMID: 19914836]
[42]
Schwarz, S.; Csuk, R. Synthesis and antitumour activity of glycyrrhetinic acid derivatives. Bioorg. Med. Chem., 2010, 18(21), 7458-7474.
[http://dx.doi.org/10.1016/j.bmc.2010.08.054] [PMID: 20932766]
[43]
Schwarz, S.; Lucas, S.D.; Sommerwerk, S.; Csuk, R. Amino derivatives of glycyrrhetinic acid as potential inhibitors of cholinesterases. Bioorg. Med. Chem., 2014, 22(13), 3370-3378.
[http://dx.doi.org/10.1016/j.bmc.2014.04.046] [PMID: 24853320]
[44]
Vibha, J.B.; Choudhary, K. A Study on Pharmacokinetics and therapeutic efficacy of glycyrrhiza glabra: a miracle medicinal herb. Bot. Res. Int., 2009, 2(3), 157-163.
[45]
van Uum, S.H. Liquorice and hypertension. Neth. J. Med., 2005, 63(4), 119-120.
[PMID: 15869038]
[46]
Olukoga, A.; Donaldson, D. Liquorice and its health implications. J. R. Soc. Promot. Health, 2000, 120(2), 83-89.
[http://dx.doi.org/10.1177/146642400012000203] [PMID: 10944880]
[47]
Sontia, B.; Mooney, J.; Gaudet, L.; Touyz, R.M. Pseudohyperaldosteronism, liquorice, and hypertension. J. Clin. Hypertens. (Greenwich), 2008, 10(2), 153-157.
[http://dx.doi.org/10.1111/j.1751-7176.2008.07470.x] [PMID: 18256580]
[48]
Flores-Robles, B.J.; Sandoval, A.R.; Dardon, J.D.; Blas, C.A. 2013.
[49]
van Beers, E.J.; Stam, J.; van den Bergh, W.M. Licorice consumption as a cause of posterior reversible encephalopathy syndrome: a case report. Crit. Care, 2011, 15(1), R64.
[http://dx.doi.org/10.1186/cc10040] [PMID: 21332974]
[50]
Penninkilampi, R.; Eslick, E.M.; Eslick, G.D. The association between consistent licorice ingestion, hypertension and hypokalaemia: a systematic review and meta-analysis. J. Hum. Hypertens., 2017, 31(11), 699-707.
[http://dx.doi.org/10.1038/jhh.2017.45] [PMID: 28660884]
[51]
Tacconi, P.; Paribello, A.; Cannas, A.; Marrosu, M.G. Carpal tunnel syndrome triggered by excessive licorice consumption. J. Peripher. Nerv. Syst., 2009, 14(1), 64-65.
[http://dx.doi.org/10.1111/j.1529-8027.2009.00207.x] [PMID: 19335541]
[52]
Santaella, R.M.; Fraunfelder, F.W. Ocular adverse effects associated with systemic medications: recognition and management. Drugs, 2007, 67(1), 75-93.
[http://dx.doi.org/10.2165/00003495-200767010-00006] [PMID: 17209665]
[53]
O’Connell, R.L.; White, I.R.; White, J.M.; McFadden, J.P. Liquorice extract in a cosmetic product causing contact allergy. Contact Dermat., 2008, 59(1), 52.
[http://dx.doi.org/10.1111/j.1600-0536.2008.01339.x] [PMID: 18598306]
[54]
Radhakrishnan, N.; Phil, M.; Gnanamani, A.; Sadulla, S. Effect of licorice (Glycyhrriza glabra Linn.), a skin-whitening agent on black molly (Poecilia latipinnaa). J. Appl. Cosm., 2005, 23, 149-158.
[55]
Gupta, M.; Kanti Sasmal, S.; Karmakar, N.; Sasmal, S.; Chowdhury, S. Experimental evaluation of antioxidant action of aqueous extract of Glycyrrhiza glabra Linn. roots in potassium dichromate induced oxidative stress by assessment of reactive oxygen species levels. Inter. J. Pharmacognosy and Phytochem. Res., 2016, 8(8), 1325-1333.
[56]
Rahman, S.; Sultana, S. Chemopreventive activity of glycyrrhizin on lead acetate mediated hepatic oxidative stress and its hyperproliferative activity in Wistar rats. Chem. Biol. Interact., 2006, 160(1), 61-69.
[http://dx.doi.org/10.1016/j.cbi.2005.12.003] [PMID: 16426592]
[57]
Arjumand, W.; Sultana, S. Glycyrrhizic acid: a phytochemical with a protective role against cisplatin-induced genotoxicity and nephrotoxicity. Life Sci., 2011, 89(13-14), 422-429.
[http://dx.doi.org/10.1016/j.lfs.2011.06.016] [PMID: 21803049]
[58]
Kawai, Y.; Nakao, T.; Kunimura, N.; Kohda, Y.; Gemba, M. Relationship of intracellular calcium and oxygen radicals to Cisplatin-related renal cell injury. J. Pharmacol. Sci., 2006, 100(1), 65-72.
[http://dx.doi.org/10.1254/jphs.FP0050661] [PMID: 16410676]
[59]
Zhang, J.G.; Lindup, W.E. Role of mitochondria in cisplatin-induced oxidative damage exhibited by rat renal cortical slices. Biochem. Pharmacol., 1993, 45(11), 2215-2222.
[http://dx.doi.org/10.1016/0006-2952(93)90192-Y] [PMID: 8517862]
[60]
Afifi, M.E.M. Effect of camel’s milk on cisplatin-induced nephrotoxicity in Swiss albino mice. Am. J. Biochem. Biotechnol., 2010, 6(2), 141-147.
[http://dx.doi.org/10.3844/ajbbsp.2010.141.147]
[61]
Li, X.L.; Zhou, A.G.; Zhang, L.; Chen, W.J. Antioxidant status and immune activity of glycyrrhizin in allergic rhinitis mice. Int. J. Mol. Sci., 2011, 12(2), 905-916.
[http://dx.doi.org/10.3390/ijms12020905] [PMID: 21541033]
[62]
Lee, C.H.; Park, S.W.; Kim, Y.S.; Kang, S.S.; Kim, J.A.; Lee, S.H.; Lee, S.M. Protective mechanism of glycyrrhizin on acute liver injury induced by carbon tetrachloride in mice. Biol. Pharm. Bull., 2007, 30(10), 1898-1904.
[http://dx.doi.org/10.1248/bpb.30.1898] [PMID: 17917259]
[63]
Planagumà, A.; Clària, J.; Miquel, R.; López-Parra, M.; Titos, E.; Masferrer, J.L.; Arroyo, V.; Rodés, J. The selective cyclooxygenase-2 inhibitor SC-236 reduces liver fibrosis by mechanisms involving non-parenchymal cell apoptosis and PPARgamma activation. FASEB J., 2005, 19(9), 1120-1122.
[http://dx.doi.org/10.1096/fj.04-2753fje] [PMID: 15876570]
[64]
Nakahira, K.; Takahashi, T.; Shimizu, H.; Maeshima, K.; Uehara, K.; Fujii, H.; Nakatsuka, H.; Yokoyama, M.; Akagi, R.; Morita, K. Protective role of heme oxygenase-1 induction in carbon tetrachloride-induced hepatotoxicity. Biochem. Pharmacol., 2003, 66(6), 1091-1105.
[http://dx.doi.org/10.1016/S0006-2952(03)00444-1] [PMID: 12963497]
[65]
Hu, C.C.; Chen, W.K.; Liao, P.H.; Yu, W.C.; Lee, Y.J. Synergistic effect of cadmium chloride and acetaldehyde on cytotoxicity and its prevention by quercetin and glycyrrhizin. Mutat. Res., 2001, 496(1-2), 117-127.
[http://dx.doi.org/10.1016/S1383-5718(01)00214-5] [PMID: 11551487]
[66]
Di Paola, R.; Menegazzi, M.; Mazzon, E.; Genovese, T.; Crisafulli, C.; Dal Bosco, M.; Zou, Z.; Suzuki, H.; Cuzzocrea, S. Protective effects of glycyrrhizin in a gut hypoxia (ischemia)-reoxygenation (reperfusion) model. Int. Care Med., 2009, 35(4), 687-697.
[http://dx.doi.org/10.1007/s00134-008-1334-y] [PMID: 18953525]
[67]
Polyakov, N.E.; Leshina, T.V.; Salakhutdinov, N.F.; Konovalova, T.A.; Kispert, L.D. Antioxidant and redox properties of supramolecular complexes of carotenoids with β-glycyrrhizic acid. Free Radic. Biol. Med., 2006, 40(10), 1804-1809.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.01.015] [PMID: 16678018]
[68]
Gandhi, N.M.; Maurya, D.K.; Salvi, V.; Kapoor, S.; Mukherjee, T.; Nair, C.K. Radioprotection of DNA by glycyrrhizic acid through scavenging free radicals. J. Radiat. Res. (Tokyo), 2004, 45(3), 461-468.
[http://dx.doi.org/10.1269/jrr.45.461] [PMID: 15613793]
[69]
Reisz, J.A.; Bansal, N.; Qian, J.; Zhao, W.; Furdui, C.M. Effects of ionizing radiation on biological molecules-mechanisms of damage and emerging methods of detection. Antioxid. Redox Signal., 2014, 21(2), 260-292.
[70]
Haleagrahara, N.; Varkkey, J.; Chakravarthi, S. Cardioprotective effects of glycyrrhizic acid against isoproterenol-induced myocardial ischemia in rats. Int. J. Mol. Sci., 2011, 12(10), 7100-7113.
[http://dx.doi.org/10.3390/ijms12107100] [PMID: 22072938]
[71]
Damle, M. Glycyrrhiza glabra (Liquorice) - a potent medicinal herb. Inter. J. Herb. Med., 2014, 2(2), 132-136.
[72]
Fujiki, H.; Sugimura, T. New classes of tumor promoters: teleocidin, aplysiatoxin, and palytoxin. Adv. Cancer Res., 1987, 49, 223-264.
[73]
Ishida, T.; Mizushina, Y.; Yagi, S. Inhibitory effects of glycyrrhetinic acid on DNA polymerase and inflammatory activities., 2012.
[74]
Honda, H.; Nagai, Y.; Matsunaga, T.; Saitoh, S.; Akashi-Takamura, S.; Hayashi, H.; Fujii, I.; Miyake, K.; Muraguchi, A.; Takatsu, K. Glycyrrhizin and isoliquiritigenin suppress the LPS sensor toll-like receptor 4/MD-2 complex signaling in a different manner. J. Leukoc. Biol., 2012, 91(6), 967-976.
[http://dx.doi.org/10.1189/jlb.0112038] [PMID: 22422925]
[75]
Schröfelbauer, B.; Raffetseder, J.; Hauner, M.; Wolkerstorfer, A.; Ernst, W.; Szolar, O.H.J. Glycyrrhizin, the main active compound in liquorice, attenuates pro-inflammatory responses by interfering with membrane-dependent receptor signalling. Biochem. J., 2009, 421(3), 473-482.
[http://dx.doi.org/10.1042/BJ20082416] [PMID: 19442240]
[76]
Fujisawa, Y.; Sakamoto, M.; Matsushita, M.; Fujita, T.; Nishioka, K. Glycyrrhizin inhibits the lytic pathway of complement-possible mechanism of its anti-inflammatory effect on liver cells in viral hepatitis. Microbiol. Immunol., 2000, 44(9), 799-804.
[http://dx.doi.org/10.1111/j.1348-0421.2000.tb02566.x] [PMID: 11092245]
[77]
Takei, M.; Kobayashi, M.; Herndon, D.N.; Pollard, R.B.; Suzuki, F. Glycyrrhizin inhibits the manifestations of anti-inflammatory responses that appear in association with systemic inflammatory response syndrome (SIRS)-like reactions. Cytokine, 2006, 35(5-6), 295-301.
[http://dx.doi.org/10.1016/j.cyto.2006.10.002] [PMID: 17113306]
[78]
Romagnani, P.; Lasagni, L.; Annunziato, F.; Serio, M.; Romagnani, S. CXC chemokines: the regulatory link between inflammation and angiogenesis. Trends Immunol., 2004, 25(4), 201-209.
[http://dx.doi.org/10.1016/j.it.2004.02.006] [PMID: 15039047]
[79]
Santoni, M.; Bracarda, S.; Nabissi, M.; Massari, F.; Conti, A.; Bria, E.; Tortora, G.; Santoni, G.; Cascinu, S. CXC and CC chemokines as angiogenic modulators in nonhaematological tumors. BioMed Res. Int., 2014, •••2014768758
[http://dx.doi.org/10.1155/2014/768758] [PMID: 24971349]
[80]
Hong, Y.Y.; Melissa, S.W.P.; Yoke, Y.C. The effects of glycyrrhizic acid and glabridin in the regulation of CXCL5 inflammation gene on acceleration of wound healing. Asian Pac. J. Trop. Biomed., 2016, 6(2), 108-113.
[http://dx.doi.org/10.1016/j.apjtb.2015.10.009]
[81]
Yu, J.Y.; Ha, J.Y.; Kim, K.M.; Jung, Y.S.; Jung, J.C.; Oh, S. Anti-Inflammatory activities of licorice extract and its active compounds, glycyrrhizic acid, liquiritin and liquiritigenin, in BV2 cells and mice liver. Molecules, 2015, 20(7), 13041-13054.
[http://dx.doi.org/10.3390/molecules200713041] [PMID: 26205049]
[82]
Samadnejad, A.Z.; Mehrvarz, S.; Naeini, S.A.; Tanideh, N. Healing effect of licorice extract in acetic acid-induced ulcerative colitis in rat. Res. Pharm. Sci., 2012, 7, S837-S845.
[83]
Cho, H.J.; Lim, S.S.; Lee, Y.S.; Kim, J.S.; Lee, C.H.; Kwon, D.Y.; Park, J.H.Y. Hexane/ethanol extract of Glycyrrhiza uralensis licorice exerts potent anti-inflammatory effects in murine macrophages and in mouse skin. Food Chem., 2010, 121, 959-966.
[http://dx.doi.org/10.1016/j.foodchem.2010.01.027]
[84]
Sorsa, T.; Tjäderhane, L.; Konttinen, Y.T.; Lauhio, A.; Salo, T.; Lee, H.M.; Golub, L.M.; Brown, D.L.; Mäntylä, P. Matrix metalloproteinases: contribution to pathogenesis, diagnosis and treatment of periodontal inflammation. Ann. Med., 2006, 38(5), 306-321.
[http://dx.doi.org/10.1080/07853890600800103] [PMID: 16938801]
[85]
Wu, W.Z.; Zhang, F.R. Glycyrrhizin combined with acitretin improve clinical symptom of psoriasis via reducing Th17 cell differentiation and related serum cytokine concentrations. Int. J. Clin. Exp. Med., 2015, 8(9), 16266-16272.
[PMID: 26629143]
[86]
Chen, R.; Li, M.; Zhang, Y.; Zhou, Q.; Shu, H.B. The E3 ubiquitin ligase MARCH8 negatively regulates IL 1β induced NF κB acti-vation by targeting the IL1RAP coreceptor for ubiquitination and degradation. Proc. Natl. Acad. Sci. USA, 2012, 109, 14128-14133.
[87]
Yin, H.; Liu, Z.; Li, F.; Ni, M.; Wang, B.; Qiao, Y.; Xu, X.; Zhang, M.; Zhang, J.; Lu, H.; Zhang, Y. Ginsenoside-Rg1 enhances angiogenesis and ameliorates ventricular remodeling in a rat model of myocardial infarction. J. Mol. Med. (Berl.), 2011, 89(4), 363-375.
[http://dx.doi.org/10.1007/s00109-011-0723-9] [PMID: 21327539]
[88]
Park, K.R.; Nam, D.; Yun, H.M.; Lee, S.G.; Jang, H.J.; Sethi, G.; Cho, S.K.; Ahn, K.S. β-Caryophyllene oxide inhibits growth and induces apoptosis through the suppression of PI3K/AKT/mTOR/S6K1 pathways and ROS-mediated MAPKs activation. Cancer Lett., 2011, 312(2), 178-188.
[http://dx.doi.org/10.1016/j.canlet.2011.08.001] [PMID: 21924548]
[89]
Wang, C.Y.; Kao, T.C.; Lo, W.H.; Yen, G.C. Glycyrrhizic acid and 18β-glycyrrhetinic acid modulate lipopolysaccharide-induced inflammatory response by suppression of NF-κB through PI3K p110δ and p110γ inhibitions. J. Agric. Food Chem., 2011, 59(14), 7726-7733.
[http://dx.doi.org/10.1021/jf2013265] [PMID: 21644799]
[90]
Jitesh, S.; Geetha, R.V. Anti inflammatory activity of Glycrrhiza glabra extract-an in vitro study. J. Pharm. Sci. and Res., 2017, 9(4), 451-452.
[91]
Fu, Y.; Chen, J.; Li, Y.J.; Zheng, Y.F.; Li, P. Antioxidant and anti-inflammatory activities of six flavonoids separated from licorice. Food Chem., 2013, 141(2), 1063-1071.
[http://dx.doi.org/10.1016/j.foodchem.2013.03.089] [PMID: 23790887]
[92]
Chen, H.J.; Kang, S.P.; Lee, I.J.; Lin, Y.L. Glycyrrhetinic acid suppressed NF-κB activation in TNF-α-induced hepatocytes. J. Agric. Food Chem., 2014, 62(3), 618-625.
[http://dx.doi.org/10.1021/jf405352g] [PMID: 24386942]
[93]
Huo, H.Z.; Wang, B.; Liang, Y.K.; Bao, Y.Y.; Gu, Y. Hepatoprotective and antioxidant effects of licorice extract against CCl4-induced oxidative damage in rats. Int. J. Mol. Sci., 2011, 12(10), 6529-6543.
[http://dx.doi.org/10.3390/ijms12106529] [PMID: 22072903]
[94]
Jeong, H.G.; You, H.J.; Park, S.J.; Moon, A.R.; Chung, Y.C.; Kang, S.K.; Chun, H.K. Hepatoprotective effects of 18beta-glycyrrhetinic acid on carbon tetrachloride-induced liver injury: inhibition of cytochrome P450 2E1 expression. Pharmacol. Res., 2002, 46(3), 221-227.
[http://dx.doi.org/10.1016/S1043-6618(02)00121-4] [PMID: 12220964]
[95]
Deleuran, T.; Grønbaek, H.; Vilstrup, H.; Jepsen, P. Cirrhosis and mortality risks of biopsy-verified alcoholic pure steatosis and steatohepatitis: a nationwide registry-based study. Aliment. Pharmacol. Ther., 2012, 35(11), 1336-1342.
[http://dx.doi.org/10.1111/j.1365-2036.2012.05091.x] [PMID: 22490057]
[96]
Haflidadottir, S.; Jonasson, J.G.; Norland, H.; Einarsdottir, S.O.; Kleiner, D.E.; Lund, S.H.; Björnsson, E.S. Long-term follow-up and liver-related death rate in patients with non-alcoholic and alcoholic related fatty liver disease. BMC Gastroenterol., 2014, 14, 166.
[http://dx.doi.org/10.1186/1471-230X-14-166] [PMID: 25260964]
[97]
Jung, J.C.; Lee, Y.H.; Kim, S.H.; Kim, K.J.; Kim, K.M.; Oh, S.; Jung, Y.S. Hepatoprotective effect of licorice, the root of Glycyrrhiza uralensis Fischer, in alcohol-induced fatty liver disease. BMC Complement. Altern. Med., 2016, 16, 19.
[http://dx.doi.org/10.1186/s12906-016-0997-0] [PMID: 26801973]
[98]
Chigurupati, H.; Auddy, B.; Biyani, M.; Stohs, S.J. Hepatoprotective effects of a proprietary glycyrrhizin product during alcohol consumption: a randomized, double-blind, placebo-controlled, crossover study. Phytother. Res., 2016, 30(12), 1943-1953.
[http://dx.doi.org/10.1002/ptr.5699] [PMID: 27539273]
[99]
Li, X.J.; Jiang, Z.Z.; Zhang, L.Y. Triptolide: progress on research in pharmacodynamics and toxicology. J. Ethnopharmacol., 2014, 155(1), 67-79.
[http://dx.doi.org/10.1016/j.jep.2014.06.006] [PMID: 24933225]
[100]
Liu, M.X.; Dong, J.; Yang, Y.J.; Yang, X.L.; Xu, H.B. Progress in research on triptolide. Zhongguo Zhongyao Zazhi, 2005, 30(3), 170-174.
[PMID: 15719629]
[101]
Yang, G.; Wang, L.; Yu, X.; Huang, Y.; Qu, C.; Zhang, Z.; Luo, D.; Lin, J.; Zhou, L.; Su, Z.; Zhang, X.; Chen, H. 2017.
[102]
Trappoliere, M.; Caligiuri, A.; Schmid, M. 2009.
[103]
El-Samaligy, M.S.; Afifi, N.N.; Mahmoud, E.A. Increasing bioavailability of silymarin using a buccal liposomal delivery system: preparation and experimental design investigation. Int. J. Pharm., 2006, 308(1-2), 140-148.
[http://dx.doi.org/10.1016/j.ijpharm.2005.11.006] [PMID: 16356669]
[104]
Wang, D.; Guo, T.Q.; Wang, Z.Y.; Lu, J.H.; Liu, D.P.; Meng, Q.F.; Xie, J.; Zhang, X.L.; Liu, Y.; Teng, L.S. ERKs and mitochondria-related pathways are essential for glycyrrhizic acid-mediated neuroprotection against glutamate-induced toxicity in differentiated PC12 cells. Braz. J. Med. Biol. Res., 2014, 47(9), 773-779.
[http://dx.doi.org/10.1590/1414-431X20143760] [PMID: 25075574]
[105]
Han, X.; Wang, Z.; Wang, M.; Li, J.; Xu, Y.; He, R.; Guan, H.; Yue, Z.; Gong, M. Liver-targeting self-assembled hyaluronic acid-glycyrrhetinic acid micelles enhance hepato-protective effect of silybin after oral administration. Drug Deliv., 2016, 23(5), 1818-1829.
[http://dx.doi.org/10.3109/10717544.2015.1108374] [PMID: 26556526]
[106]
Takakusa, H.; Masumoto, H.; Mitsuru, A.; Okazaki, O.; Sudo, K. Markers of electrophilic stress caused by chemically reactive metabolites in human hepatocytes. Drug Metab. Dispos., 2008, 36(5), 816-823.
[http://dx.doi.org/10.1124/dmd.107.018002] [PMID: 18227147]
[107]
Tsukamoto, S.; Aburatani, M.; Yoshida, T.; Yamashita, Y.; El-Beih, A.A.; Ohta, T. CYP3A4 inhibitors isolated from Licorice. Biol. Pharm. Bull., 2005, 28(10), 2000-2002.
[http://dx.doi.org/10.1248/bpb.28.2000] [PMID: 16204965]
[108]
Wang, Y.G.; Zhou, J.M.; Ma, Z.C.; Li, H.; Liang, Q.D.; Tan, H.L.; Xiao, C.R.; Zhang, B.L.; Gao, Y. Pregnane X receptor mediated-transcription regulation of CYP3A by glycyrrhizin: a possible mechanism for its hepatoprotective property against lithocholic acid-induced injury. Chem. Biol. Interact., 2012, 200(1), 11-20.
[http://dx.doi.org/10.1016/j.cbi.2012.08.023] [PMID: 22982774]
[109]
Orazizadeh, M.; Fakhredini, F.; Mansouri, E.; Khorsandi, L. Effect of glycyrrhizic acid on titanium dioxide nanoparticles-induced hepatotoxicity in rats. Chem. Biol. Interact., 2014, 220, 214-221.
[http://dx.doi.org/10.1016/j.cbi.2014.07.001] [PMID: 25016076]
[110]
Hsiang, C.Y.; Lin, L.J.; Kao, S.T.; Lo, H.Y.; Chou, S.T.; Ho, T.Y. Glycyrrhizin, silymarin, and ursodeoxycholic acid regulate a common hepatoprotective pathway in HepG2 cells. Phytomedicine, 2015, 22(7-8), 768-777.
[http://dx.doi.org/10.1016/j.phymed.2015.05.053] [PMID: 26141764]
[111]
Lin, G.; Nnane, I.P.; Cheng, T.Y. The effects of pretreatment with glycyrrhizin and glycyrrhetinic acid on the retrorsine-induced hepatotoxicity in rats. Toxicon, 1999, 37(9), 1259-1270.
[http://dx.doi.org/10.1016/S0041-0101(98)00263-3] [PMID: 10400287]
[112]
Pang, H.; Huang, T.; Song, J.; Li, D.; Zhao, Y.; Ma, X. Inhibiting HMGB1 with glycyrrhizic acid protects brain injury after DAI via its anti-inflammatory effect., 2016.
[113]
Gong, G.; Yuan, L.B.; Hu, L.; Wu, W.; Yin, L.; Hou, J.L.; Liu, Y.H.; Zhou, L.S. Glycyrrhizin attenuates rat ischemic spinal cord injury by suppressing inflammatory cytokines and HMGB1. Acta Pharmacol. Sin., 2012, 33(1), 11-18.
[http://dx.doi.org/10.1038/aps.2011.151] [PMID: 22158106]
[114]
Traynelis, S.F.; Wollmuth, L.P.; McBain, C.J.; Menniti, F.S.; Vance, K.M.; Ogden, K.K.; Hansen, K.B.; Yuan, H.; Myers, S.J.; Dingledine, R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev., 2010, 62(3), 405-496.
[http://dx.doi.org/10.1124/pr.109.002451] [PMID: 20716669]
[115]
Akaishi, T.; Nakazawa, K.; Sato, K.; Saito, H.; Ohno, Y.; Ito, Y. Hydrogen peroxide modulates whole cell Ca2+ currents through L-type channels in cultured rat dentate granule cells. Neurosci. Lett., 2004, 356(1), 25-28.
[http://dx.doi.org/10.1016/j.neulet.2003.11.012] [PMID: 14746893]
[116]
Chamoun, R.; Suki, D.; Gopinath, S.P.; Goodman, J.C.; Robertson, C. Role of extracellular glutamate measured by cerebral microdialysis in severe traumatic brain injury. J. Neurosurg., 2010, 113(3), 564-570.
[http://dx.doi.org/10.3171/2009.12.JNS09689] [PMID: 20113156]
[117]
Hu, Y.; Li, J.; Liu, P.; Chen, X.; Guo, D.H.; Li, Q.S.; Rahman, K. Protection of SH-SY5Y neuronal cells from glutamate-induced apoptosis by 3,6′-disinapoyl sucrose, a bioactive compound isolated from Radix Polygala. J. Biomed. Biotechnol., 2012, 2012, 1-5.
[http://dx.doi.org/10.1155/2012/728342] [PMID: 21836813]
[118]
El-Najjar, N.; Chatila, M.; Moukadem, H.; Vuorela, H.; Ocker, M.; Gandesiri, M.; Schneider-Stock, R.; Gali-Muhtasib, H. Reactive oxygen species mediate thymoquinone-induced apoptosis and activate ERK and JNK signaling. Apoptosis, 2010, 15(2), 183-195.
[http://dx.doi.org/10.1007/s10495-009-0421-z] [PMID: 19882352]
[119]
Lou, H.; Fan, P.; Perez, R.G.; Lou, H. Neuroprotective effects of linarin through activation of the PI3K/Akt pathway in amyloid-β-induced neuronal cell death. Bioorg. Med. Chem., 2011, 19(13), 4021-4027.
[http://dx.doi.org/10.1016/j.bmc.2011.05.021] [PMID: 21652214]
[120]
Jin, Y.; Yan, E.Z.; Fan, Y.; Guo, X.L.; Zhao, Y.J.; Zong, Z.H.; Liu, Z. Neuroprotection by sodium ferulate against glutamate-induced apoptosis is mediated by ERK and PI3 kinase pathways. Acta Pharmacol. Sin., 2007, 28(12), 1881-1890.
[http://dx.doi.org/10.1111/j.1745-7254.2007.00634.x] [PMID: 18031600]
[121]
Kao, T.C.; Shyu, M.H.; Yen, G.C. Neuroprotective effects of glycyrrhizic acid and 18beta-glycyrrhetinic acid in PC12 cells via modulation of the PI3K/Akt pathway. J. Agric. Food Chem., 2009, 57(2), 754-761.
[http://dx.doi.org/10.1021/jf802864k] [PMID: 19105645]
[122]
Cherng, J.M.; Lin, H.J.; Hung, M.S.; Lin, Y.R.; Chan, M.H.; Lin, J.C. Inhibition of nuclear factor kappaB is associated with neuroprotective effects of glycyrrhizic acid on glutamate-induced excitotoxicity in primary neurons. Eur. J. Pharmacol., 2006, 547(1-3), 10-21.
[http://dx.doi.org/10.1016/j.ejphar.2006.06.080] [PMID: 16952351]
[123]
Teng, L.; Kou, C.; Lu, C.; Xu, J.; Xie, J.; Lu, J.; Liu, Y.; Wang, Z.; Wang, D. Involvement of the ERK pathway in the protective effects of glycyrrhizic acid against the MPP+-induced apoptosis of dopaminergic neuronal cells. Int. J. Mol. Med., 2014, 34(3), 742-748.
[http://dx.doi.org/10.3892/ijmm.2014.1830] [PMID: 24993693]
[124]
Zhu, X.; Chen, C.; Ye, D.; Guan, D.; Ye, L.; Jin, J.; Zhao, H.; Chen, Y.; Wang, Z.; Wang, X.; Xu, Y. Diammonium glycyrrhizinate upregulates PGC-1α and protects against Aβ1-42-induced neurotoxicity. PLoS One, 2012, 7(4)e35823
[http://dx.doi.org/10.1371/journal.pone.0035823] [PMID: 22540007]
[125]
Kim, S.W.; Lim, C.M.; Lee, H.K.; Lee, J.K. The use of stronger neo-minophagen C, a glycyrrhizin-containing preparation, in robust neuroprotection in the postischemic brain. Anat. Cell Biol., 2011, 44(4), 304-313.
[http://dx.doi.org/10.5115/acb.2011.44.4.304] [PMID: 22254159]
[126]
Zhou, J.; Cai, W.; Jin, M.; Xu, J.; Wang, Y.; Xiao, Y.; Hao, L.; Wang, B.; Zhang, Y.; Han, J.; Huang, R. 18β-glycyrrhetinic acid suppresses experimental autoimmune encephalomyelitis through inhibition of microglia activation and promotion of remyelination. Sci. Rep., 2015, 5, 13713.
[http://dx.doi.org/10.1038/srep13713] [PMID: 26329786]
[127]
Abo El-Magd, N.F.; El-Karef, A.; El-Shishtawy, M.M.; Eissa, L.A. Hepatoprotective effects of glycyrrhizin and omega-3 fatty acids on nuclear factor-kappa B pathway in thioacetamide-induced fibrosis in rats. Egyptian J. basic and app. Sci., 2015, 2, 65-74.
[128]
Refahi, S.; Minaei, B.; Haddadi, G.H.; Khoei, S.; Bakhtiarian, A.; Pourissa, M.; Takavar, A. Histopathological evaluation of the effectiveness of glycyrrhizic acid as a radioprotector against the development of radiation-induced lung fibrosis. Iran. J. Radiol., 2016, 13(2)e21012
[http://dx.doi.org/10.5812/iranjradiol.21012] [PMID: 27679696]
[129]
Gao, L.; Tang, H.; He, H.; Liu, J.; Mao, J.; Ji, H.; Lin, H.L.; Wu, T. Glycyrrhizic acid alleviates bleomycin induced pulmonary fibrosis in rats., 2015.
[130]
Chen, S.; Zou, L.; Li, L.; Wu, T. The protective effect of glycyrrhetinic acid on carbon tetrachloride-induced chronic liver fibrosis in mice via upregulation of Nrf2. PLoS One, 2013, 8(1)e53662
[http://dx.doi.org/10.1371/journal.pone.0053662] [PMID: 23341968]
[131]
Guo, X.L.; Liang, B.; Wang, X.W.; Fan, F.G.; Jin, J.; Lan, R.; Yang, J.H.; Wang, X.C.; Jin, L.; Cao, Q. Glycyrrhizic acid attenuates CCl4-induced hepatocyte apoptosis in rats via a p53-mediated pathway. World J. Gastroenterol., 2013, 19(24), 3781-3791.
[http://dx.doi.org/10.3748/wjg.v19.i24.3781] [PMID: 23840116]
[132]
Liang, B.; Guo, X.L.; Jin, J.; Ma, Y.C.; Feng, Z.Q. Glycyrrhizic acid inhibits apoptosis and fibrosis in carbon-tetrachloride-induced rat liver injury. World J. Gastroenterol., 2015, 21(17), 5271-5280.
[http://dx.doi.org/10.3748/wjg.v21.i17.5271] [PMID: 25954100]
[133]
Manns, M.P.; Buti, M.; Gane, E.; Pawlotsky, J.M.; Razavi, H.; Terrault, N.; Younossi, Z. Hepatitis C virus infection. Nat. Rev. Dis. Primers, 2017, 3, 17006.
[http://dx.doi.org/10.1038/nrdp.2017.6] [PMID: 28252637]
[134]
Moore, M.M.; Elpern, D.J.; Carter, D.J. Severe, generalized nummular eczema secondary to interferon alfa-2b plus ribavirin combination therapy in a patient with chronic hepatitis C virus infection. Arch. Dermatol., 2004, 140(2), 215-217.
[http://dx.doi.org/10.1001/archderm.140.2.215] [PMID: 14967798]
[135]
Li, J.; Shen, F.; Guan, C.; Wang, W.; Sun, X.; Fu, X.; Huang, M.; Jin, J.; Huang, Z. Activation of Nrf2 protects against triptolide-induced hepatotoxicity. PLoS One, 2014, 9(7)e100685
[http://dx.doi.org/10.1371/journal.pone.0100685] [PMID: 24988078]
[136]
Li, H.C.; Ma, H.C.; Yang, C.H.; Lo, S.Y. Production and pathogenicity of hepatitis C virus core gene products. World J. Gastroenterol., 2014, 20(23), 7104-7122.
[http://dx.doi.org/10.3748/wjg.v20.i23.7104] [PMID: 24966583]
[137]
Brass, V.; Moradpour, D.; Blum, H.E. Molecular virology of hepatitis C virus (HCV): 2006 update. Int. J. Med. Sci., 2006, 3(2), 29-34.
[http://dx.doi.org/10.7150/ijms.3.29] [PMID: 16614739]
[138]
Snijder, E.J.; Kikkert, M.; Fang, Y. Arterivirus molecular biology and pathogenesis. J. Gen. Virol., 2013, 94(Pt 10), 2141-2163.
[http://dx.doi.org/10.1099/vir.0.056341-0] [PMID: 23939974]
[139]
Meng, X.J. Emerging and re-emerging swine viruses. Transbound. Emerg. Dis., 2012, 59(Suppl. 1), 85-102.
[http://dx.doi.org/10.1111/j.1865-1682.2011.01291.x] [PMID: 22225855]
[140]
Lunney, J.K.; Benfield, D.A.; Rowland, R.R. Porcine reproductive and respiratory syndrome virus: an update on an emerging and re-emerging viral disease of swine. Virus Res., 2010, 154(1-2), 1-6.
[http://dx.doi.org/10.1016/j.virusres.2010.10.009] [PMID: 20951175]
[141]
Duan, E.; Wang, D.; Fang, L.; Ma, J.; Luo, J.; Chen, H.; Li, K.; Xiao, S. Suppression of porcine reproductive and respiratory syndrome virus proliferation by glycyrrhizin. Antiviral Res., 2015, 120, 122-125.
[http://dx.doi.org/10.1016/j.antiviral.2015.06.001] [PMID: 26055123]
[142]
Yang, Q.; Gao, L.; Si, J.; Sun, Y.; Liu, J.; Cao, L.; Feng, W.H. Inhibition of porcine reproductive and respiratory syndrome virus replication by flavaspidic acid AB. Antiviral Res., 2013, 97(1), 66-73.
[http://dx.doi.org/10.1016/j.antiviral.2012.11.004] [PMID: 23178515]
[143]
Kim, H.S.; Kwang, J.; Yoon, I.J.; Joo, H.S.; Frey, M.L. Enhanced replication of porcine reproductive and respiratory syndrome (PRRS) virus in a homogeneous subpopulation of MA-104 cell line. Arch. Virol., 1993, 133(3-4), 477-483.
[http://dx.doi.org/10.1007/BF01313785] [PMID: 8257302]
[144]
(Severe Acute Respiratory Syndrome) International travel and health International travel and health; WHO: Geneva, 2003.
[145]
Wolkerstorfer, A.; Kurz, H.; Bachhofner, N.; Szolar, O.H.J. Glycyrrhizin inhibits influenza A virus uptake into the cell. Antiviral Res., 2009, 83(2), 171-178.
[http://dx.doi.org/10.1016/j.antiviral.2009.04.012] [PMID: 19416738]
[146]
Baltina, L.A.; Zarubaev, V.V.; Baltina, L.A.; Orshanskaya, I.A.; Fairushina, A.I.; Kiselev, O.I.; Yunusov, M.S. Glycyrrhizic acid derivatives as influenza A/H1N1 virus inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(8), 1742-1746.
[http://dx.doi.org/10.1016/j.bmcl.2015.02.074] [PMID: 25801933]
[147]
Hoever, G.; Baltina, L.; Michaelis, M.; Kondratenko, R.; Baltina, L.; Tolstikov, G.A.; Doerr, H.W.; Cinatl, J. Jr Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus. J. Med. Chem., 2005, 48(4), 1256-1259.
[http://dx.doi.org/10.1021/jm0493008] [PMID: 15715493]
[148]
Cinatl, J.; Morgenstern, B.; Bauer, G.; Chandra, P.; Rabenau, H.; Doerr, H.W. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet, 2003, 361(9374), 2045-2046.
[http://dx.doi.org/10.1016/S0140-6736(03)13615-X] [PMID: 12814717]
[149]
Takada, K. Epstein-Barr virus and gastric carcinoma. EBV Report, 1999, 6, 95-100.
[150]
Lin, J.C. Mechanism of action of glycyrrhizic acid in inhibition of Epstein-Barr virus replication in vitro. Antiviral Res., 2003, 59(1), 41-47.
[http://dx.doi.org/10.1016/S0166-3542(03)00030-5] [PMID: 12834859]
[151]
Lin, J.C.; Cherng, J.M.; Hung, M.S.; Baltina, L.A.; Baltina, L.; Kondratenko, R. Inhibitory effects of some derivatives of glycyrrhizic acid against Epstein-Barr virus infection: structure-activity relationships. Antiviral Res., 2008, 79(1), 6-11.
[http://dx.doi.org/10.1016/j.antiviral.2008.01.160] [PMID: 18423902]
[152]
Wang, J.; Chen, X.; Wang, W.; Zhang, Y.; Yang, Z.; Jin, Y.; Ge, H.M.; Li, E.; Yang, G. Glycyrrhizic acid as the antiviral component of Glycyrrhiza uralensis Fisch. against coxsackievirus A16 and enterovirus 71 of hand foot and mouth disease. J. Ethnopharmacol., 2013, 147(1), 114-121.
[http://dx.doi.org/10.1016/j.jep.2013.02.017] [PMID: 23454684]
[153]
2017.
[154]
Soufy, H.; Yassein, S.; Ahmed, A.R.; Khodier, M.H.; Kutkat, M.A.; Nasr, S.M.; Okda, F.A. Antiviral and immune stimulant activities of glycyrrhizin against duck hepatitis virus. Afr. J. Tradit. Complement. Altern. Med., 2012, 9(3), 389-395.
[http://dx.doi.org/10.4314/ajtcam.v9i3.14] [PMID: 23983372]
[155]
Curreli, F.; Friedman-Kien, A.E.; Flore, O. Glycyrrhizic acid alters Kaposi sarcoma-associated herpesvirus latency, triggering p53-mediated apoptosis in transformed B lymphocytes. J. Clin. Invest., 2005, 115(3), 642-652.
[http://dx.doi.org/10.1172/JCI200523334] [PMID: 15765147]
[156]
Kang, H.; Lieberman, P.M. Mechanism of glycyrrhizic acid inhibition of Kaposi’s sarcoma-associated herpesvirus: disruption of CTCF-cohesin-mediated RNA polymerase II pausing and sister chromatid cohesion. J. Virol., 2011, 85(21), 11159-11169.
[http://dx.doi.org/10.1128/JVI.00720-11] [PMID: 21880767]
[157]
Corrigan, C.J.; Kay, A.B. The roles of inflammatory cells in the pathogenesis of asthma and of chronic obstructive pulmonary disease. Am. Rev. Respir. Dis., 1991, 143(5 Pt 1), 1165-1168.
[http://dx.doi.org/10.1164/ajrccm/143.5_Pt_1.1165] [PMID: 2024830]
[158]
Busse, W.W.; Sedgwick, J.B. Eosinophils in asthma. Ann. Allergy, 1992, 68(3), 286-290.
[PMID: 1546825]
[159]
Bonsignore, M.R.; Profita, M.; Gagliardo, R.; Riccobono, L.; Chiappara, G.; Pace, E.; Gjomarkaj, M. Advances in asthma pathophysiology: stepping forward from the Maurizio Vignola experience. Eur. Respir. Rev., 2015, 24(135), 30-39.
[http://dx.doi.org/10.1183/09059180.10011114] [PMID: 25726552]
[160]
Ray, P.; Gupta, H.; Roy, M. , 1980.
[161]
Sharma, P.V. A Treatise on Principles and Practices of Ayurvedic Medicine; Chaukhambha Publishers: India, 2002.
[162]
Park, H.Y.; Park, S.H.; Yoon, H.K.; Han, M.J.; Kim, D.H. Anti-allergic activity of 18beta-glycyrrhetinic acid-3-O-beta-D-glucuronide. Arch. Pharm. Res., 2004, 27(1), 57-60.
[http://dx.doi.org/10.1007/BF02980047] [PMID: 14969340]
[163]
Tamaya, T.; Sato, S.; Okada, H.H. Possible mechanism of steroid action of the plant herb extracts glycyrrhizin, glycyrrhetinic acid, and paeoniflorin: inhibition by plant herb extracts of steroid protein binding in the rabbit. Am. J. Obstet. Gynecol., 1986, 155(5), 1134-1139.
[http://dx.doi.org/10.1016/0002-9378(86)90365-0] [PMID: 3777061]
[164]
Krähenbühl, S.; Hasler, F.; Frey, B.M.; Frey, F.J.; Brenneisen, R.; Krapf, R. Kinetics and dynamics of orally administered 18 beta-glycyrrhetinic acid in humans. J. Clin. Endocrinol. Metab., 1994, 78(3), 581-585.
[http://dx.doi.org/10.1210/jc.78.3.581] [PMID: 8126129]
[165]
Heilmann, P.; Heide, J.; Hundertmark, S.; Schöneshöfer, M. Administration of glycyrrhetinic acid: significant correlation between serum levels and the cortisol/cortisone-ratio in serum and urine. Exp. Clin. Endocrinol. Diabetes, 1999, 107(6), 370-378.
[http://dx.doi.org/10.1055/s-0029-1212128] [PMID: 10543414]
[166]
Ma, C.; Ma, Z.; Liao, X.L.; Liu, J.; Fu, Q.; Ma, S. Immunoregulatory effects of glycyrrhizic acid exerts anti-asthmatic effects via modulation of Th1/Th2 cytokines and enhancement of CD4(+)CD25(+)Foxp3+ regulatory T cells in ovalbumin-sensitized mice. J. Ethnopharmacol., 2013, 148(3), 755-762.
[http://dx.doi.org/10.1016/j.jep.2013.04.021] [PMID: 23632310]
[167]
Sakaguchi, S.; Ono, M.; Setoguchi, R.; Yagi, H.; Hori, S.; Fehervari, Z.; Shimizu, J.; Takahashi, T.; Nomura, T. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol. Rev., 2006, 212, 8-27.
[http://dx.doi.org/10.1111/j.0105-2896.2006.00427.x] [PMID: 16903903]
[168]
Seroogy, C.M.; Gern, J.E. The role of T regulatory cells in asthma. J. Allergy Clin. Immunol., 2005, 116(5), 996-999.
[http://dx.doi.org/10.1016/j.jaci.2005.07.015] [PMID: 16275366]
[169]
Doganci, A.; Eigenbrod, T.; Krug, N.; De Sanctis, G.T.; Hausding, M.; Erpenbeck, V.J.; Haddad, B.; Lehr, H.A.; Schmitt, E.; Bopp, T.; Kallen, K.J.; Herz, U.; Schmitt, S.; Luft, C.; Hecht, O.; Hohlfeld, J.M.; Ito, H.; Nishimoto, N.; Yoshizaki, K.; Kishimoto, T.; Rose-John, S.; Renz, H.; Neurath, M.F.; Galle, P.R.; Finotto, S. The IL-6R alpha chain controls lung CD4+CD25+ Treg development and function during allergic airway inflammation in vivo. J. Clin. Invest., 2005, 115(2), 313-325.
[http://dx.doi.org/10.1172/JCI200522433] [PMID: 15668741]
[170]
Ram, A.; Mabalirajan, U.; Das, M.; Bhattacharya, I.; Dinda, A.K.; Gangal, S.V.; Ghosh, B. Glycyrrhizin alleviates experimental allergic asthma in mice. Int. Immunopharmacol., 2006, 6(9), 1468-1477.
[http://dx.doi.org/10.1016/j.intimp.2006.04.020] [PMID: 16846841]
[171]
Matsui, S.; Sonoda, Y.; Sekiya, T.; Aizu-Yokota, E.; Kasahara, T. Glycyrrhizin derivative inhibits eotaxin 1 production via STAT6 in human lung fibroblasts. Int. Immunopharmacol., 2006, 6(3), 369-375.
[http://dx.doi.org/10.1016/j.intimp.2005.08.025] [PMID: 16428072]
[172]
Hocaoglu, A.B.; Karaman, O.; Erge, D.O.; Erbil, G.; Yilmaz, O.; Bagriyanik, A.; Uzuner, N. Glycyrrhizin and long-term histopathologic changes in a murine model of asthma. Curr. Ther. Res. Clin. Exp., 2011, 72(6), 250-261.
[http://dx.doi.org/10.1016/j.curtheres.2011.11.002] [PMID: 24648593]
[173]
Takei, H.; Baba, Y.; Hisatsune, A.; Katsuki, H.; Miyata, T.; Yokomizo, K.; Isohama, Y. Glycyrrhizin inhibits interleukin-8 production and nuclear factor-kappaB activity in lung epithelial cells, but not through glucocorticoid receptors. J. Pharmacol. Sci., 2008, 106(3), 460-468.
[http://dx.doi.org/10.1254/jphs.FP0072378] [PMID: 18344608]
[174]
Mollica, L.; De Marchis, F.; Spitaleri, A.; Dallacosta, C.; Pennacchini, D.; Zamai, M.; Agresti, A.; Trisciuoglio, L.; Musco, G.; Bianchi, M.E. Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities. Chem. Biol., 2007, 14(4), 431-441.
[http://dx.doi.org/10.1016/j.chembiol.2007.03.007] [PMID: 17462578]
[175]
Bianchi, M.E.; Beltrame, M.; Paonessa, G. Specific recognition of cruciform DNA by nuclear protein HMG1. Science, 1989, 243(4894 Pt 1), 1056-1059.
[http://dx.doi.org/10.1126/science.2922595] [PMID: 2922595]
[176]
Bianchi, M.E.; Agresti, A. HMG proteins: dynamic players in gene regulation and differentiation. Curr. Opin. Genet. Dev., 2005, 15(5), 496-506.
[http://dx.doi.org/10.1016/j.gde.2005.08.007] [PMID: 16102963]
[177]
Yang, Y.; Shi, Q.; Liu, Z.; Li, R.J.; Pan, P.W.; Hou, Y.Y.; Lu, W.G.; Bai, G. The synergistic anti-asthmatic effects of glycyrrhizin and salbutamol. Acta Pharmacol. Sin., 2010, 31(4), 443-449.
[http://dx.doi.org/10.1038/aps.2009.207] [PMID: 20228825]
[178]
Qamar, W.; Khan, R.; Khan, A.Q.; Rehman, M.U.; Lateef, A.; Tahir, M.; Ali, F.; Sultana, S. Alleviation of lung injury by glycyrrhizic acid in benzo(a)pyrene exposed rats: Probable role of soluble epoxide hydrolase and thioredoxin reductase. Toxicology, 2012, 291(1-3), 25-31.
[http://dx.doi.org/10.1016/j.tox.2011.10.012] [PMID: 22051199]
[179]
Kaczmarczyk-Sedlak, I.; Klasik-Ciszewska, S.; Wojnar, W. Glabridin and glycyrrhizic acid show no beneficial effect on the chemical composition and mechanical properties of bones in ovariectomized rats, when administered in moderate dose. Pharmacol. Rep., 2016, 68(5), 1036-1041.
[http://dx.doi.org/10.1016/j.pharep.2016.05.013] [PMID: 27434879]
[180]
Klasik-Ciszewska, S.; Kaczmarczyk-Sedlak, I.; Wojnar, W. Effect of glabridin and glycyrrhizic acid on histomorphometric parameters of bones in ovariectomized rats. Acta. Acta Pol. Pharm., 2016, 73(2), 517-527.
[PMID: 27180445]
[181]
Ramli, E.S.; Suhaimi, F.; Asri, S.F.; Ahmad, F.; Soelaiman, I.N. Glycyrrhizic acid (GCA) as 11β-hydroxysteroid dehydrogenase inhibitor exerts protective effect against glucocorticoid-induced osteoporosis. J. Bone Miner. Metab., 2013, 31(3), 262-273.
[http://dx.doi.org/10.1007/s00774-012-0413-x] [PMID: 23274351]
[182]
Sasaki, H.; Suzuki, N.; Alshwaimi, E.; Xu, Y.; Battaglino, R.; Morse, L.; Stashenko, P. 18β-glycyrrhetinic acid inhibits periodontitis via glucocorticoid-independent nuclear factor-κB inactivation in interleukin-10-deficient mice. J. Periodontal Res., 2010, 45(6), 757-763.
[http://dx.doi.org/10.1111/j.1600-0765.2010.01296.x] [PMID: 20682015]
[183]
Davidson, J.S.; Baumgarten, I.M.; Harley, E.H. Reversible inhibition of intercellular junctional communication by glycyrrhetinic acid. Biochem. Biophys. Res. Commun., 1986, 134(1), 29-36.
[http://dx.doi.org/10.1016/0006-291X(86)90522-X] [PMID: 3947327]
[184]
Davidson, J.S.; Baumgarten, I.M. Glycyrrhetinic acid derivatives: a novel class of inhibitors of gap-junctional intercellular communication. Structure-activity relationships. J. Pharmacol. Exp. Ther., 1988, 246(3), 1104-1107.
[PMID: 3418512]
[185]
Amagaya, S.; Sugishita, E.; Ogihara, Y.; Ogawa, S.; Okada, K.; Aizawa, T. Comparative studies of the stereoisomers of glycyrrhetinic acid on anti-inflammatory activities. J. Pharmacobiodyn., 1984, 7(12), 923-928.
[http://dx.doi.org/10.1248/bpb1978.7.923] [PMID: 6533282]
[186]
Krause, A. 2014.
[187]
Huang, Q.C.; Wang, M.J.; Chen, X.M.; Yu, W.L.; Chu, Y.L.; He, X.H.; Huang, R.Y. Can active components of licorice, glycyrrhizin and glycyrrhetinic acid, lick rheumatoid arthritis? Oncotarget, 2016, 7(2), 1193-1202.
[http://dx.doi.org/10.18632/oncotarget.6200] [PMID: 26498361]
[188]
Al-Abd, A.M.; Al-Abbasi, F.A.; Nofal, S.M.; Khalifa, A.E.; Williams, R.O.; El-Eraky, W.I.; Nagy, A.A.; Abdel-Naim, A.B. Nimesulide improves the symptomatic and disease modifying effects of leflunomide in collagen induced arthritis. PLoS One, 2014, 9(11)e111843
[http://dx.doi.org/10.1371/journal.pone.0111843] [PMID: 25375820]
[189]
Tai, T.; Huang, X.; Su, Y.; Ji, J.; Su, Y.; Jiang, Z.; Zhang, L. Glycyrrhizin accelerates the metabolism of triptolide through induction of CYP3A in rats. J. Ethnopharmacol., 2014, 152(2), 358-363.
[http://dx.doi.org/10.1016/j.jep.2014.01.026] [PMID: 24486211]
[190]
Zhang, W.; Lu, C.; Liu, Z.; Yang, D.; Chen, S.; Cha, A.; Wu, Z.; Lu, A. Therapeutic effect of combined triptolide and glycyrrhizin treatment on rats with collagen induced arthritis. Planta Med., 2007, 73(4), 336-340.
[http://dx.doi.org/10.1055/s-2007-967136] [PMID: 17354165]
[191]
Gui, M.; Li, Y.; Wu, T.; Li, Y.; Huang, Y.; Zhang, H. Xibao Yu Fenzi Mianyixue Zazhi, 2012, 28(9), 915-919. [Effect of glycyrrhetinic acid on the expression of inflammatory factors in fibroblast-like synovial cells from collagen induced arthritis rats]
[PMID: 22980653]
[192]
Kim, K.R.; Jeong, C.K.; Park, K.K.; Choi, J.H.; Yoon, J.H. Park, Lim,S.S.,and Chung,W.Y; Anti-Inflammatory Effects of Licorice and Roasted Licorice Extracts on TPA-Induced Acute Inflammation and Collagen-Induced Arthritis in Mice; J. Biomed. and Biotech: Article, ID, 2010, p. 709378.
[193]
Bafna, P.A.; Balaraman, R. Antioxidant activity of DHC-1, an herbal formulation, in experimentally-induced cardiac and renal damage. Phytother. Res., 2005, 19(3), 216-221.
[http://dx.doi.org/10.1002/ptr.1659] [PMID: 15934019]
[194]
Chin, Y.W.; Jung, H.A.; Liu, Y.; Su, B.N.; Castoro, J.A.; Keller, W.J.; Pereira, M.A.; Kinghorn, A.D. Anti-oxidant constituents of the roots and stolons of licorice (Glycyrrhiza glabra). J. Agric. Food Chem., 2007, 55(12), 4691-4697.
[http://dx.doi.org/10.1021/jf0703553] [PMID: 17516657]
[195]
Ruschitzka, F.; Quaschning, T.; Noll, G.; deGottardi, A.; Rossier, M.F.; Enseleit, F.; Hürlimann, D.; Lüscher, T.F.; Shaw, S.G. Endothelin 1 type a receptor antagonism prevents vascular dysfunction and hypertension induced by 11beta-hydroxysteroid dehydrogenase inhibition: role of nitric oxide. Circulation, 2001, 103(25), 3129-3135.
[http://dx.doi.org/10.1161/01.CIR.103.25.3129] [PMID: 11425780]
[196]
Stewart, P.M.; Wallace, A.M.; Valentino, R.; Burt, D.; Shackleton, C.H.L.; Edwards, C.R.W. Mineralocorticoid activity of liquorice: 11-beta-hydroxysteroid dehydrogenase deficiency comes of age. Lancet, 1987, 2(8563), 821-824.
[http://dx.doi.org/10.1016/S0140-6736(87)91014-2] [PMID: 2889032]
[197]
Epstein, M.T.; Espiner, E.A.; Donald, R.A.; Hughes, H.; Cowles, R.J.; Lun, S. Licorice raises urinary cortisol in man. J. Clin. Endocrinol. Metab., 1978, 47(2), 397-400.
[http://dx.doi.org/10.1210/jcem-47-2-397] [PMID: 233669]
[198]
Armanini, D.; Lewicka, S.; Pratesi, C.; Scali, M.; Zennaro, M.C.; Zovato, S.; Gottardo, C.; Simoncini, M.; Spigariol, A.; Zampollo, V. Further studies on the mechanism of the mineralocorticoid action of licorice in humans. J. Endocrinol. Invest., 1996, 19(9), 624-629.
[http://dx.doi.org/10.1007/BF03349029] [PMID: 8957748]
[199]
Palermo, M.; Shackleton, C.H.; Mantero, F.; Stewart, P.M. Urinary free cortisone and the assessment of 11 beta-hydroxysteroid dehydrogenase activity in man. Clin. Endocrinol. (Oxf.), 1996, 45(5), 605-611.
[http://dx.doi.org/10.1046/j.1365-2265.1996.00853.x] [PMID: 8977758]
[200]
Kjeldsen, K. Hypokalemia and sudden cardiac death. Exp. Clin. Cardiol., 2010, 15(4), e96-e99.
[PMID: 21264075]
[201]
Crean, A.M.; Abdel-Rahman, S-E-D.T.; Greenwood, J.P. A sweet tooth as the root cause of cardiac arrest. Can. J. Cardiol., 2009, 25(10), e357-e358.
[http://dx.doi.org/10.1016/S0828-282X(09)70723-8] [PMID: 19812810]
[202]
Battaglia, V.; Brunati, A.M.; Fiore, C.; Rossi, C.A.; Salvi, M.; Tibaldi, E.; Palermo, M.; Armanini, D.; Toninello, A. Glycyrrhetinic acid as inhibitor or amplifier of permeability transition in rat heart mitochondria. Biochim. Biophys. Acta, 2008, 1778(1), 313-323.
[http://dx.doi.org/10.1016/j.bbamem.2007.10.008] [PMID: 17980701]
[203]
Rodríguez-Sinovas, A.; García-Dorado, D.; Ruiz-Meana, M.; Soler-Soler, J. Protective effect of gap junction uncouplers given during hypoxia against reoxygenation injury in isolated rat hearts. Am. J. Physiol. Heart Circ. Physiol., 2006, 290(2), H648-H656.
[http://dx.doi.org/10.1152/ajpheart.00439.2005] [PMID: 16183732]
[204]
Kilgore, K.S.; Tanhehco, E.J.; Park, J.L.; Naylor, K.B.; Anderson, M.B.; Lucchesi, B.R. Reduction of myocardial infarct size in vivo by carbohydrate-based glycomimetics. J. Pharmacol. Exp. Ther., 1998, 284(1), 427-435.
[PMID: 9435207]
[205]
Parisella, M.L.; Angelone, T.; Gattuso, A.; Cerra, M.C.; Pellegrino, D. Glycyrrhizin and glycyrrhetinic acid directly modulate rat cardiac performance. J. Nutr. Biochem., 2012, 23(1), 69-75.
[http://dx.doi.org/10.1016/j.jnutbio.2010.10.011] [PMID: 21414764]
[206]
Nakagawa, K.; Kishida, H.; Arai, N.; Nishiyama, T.; Mae, T. Licorice flavonoids suppress abdominal fat accumulation and increase in blood glucose level in obese diabetic KK-A(y) mice. Biol. Pharm. Bull., 2004, 27(11), 1775-1778.
[http://dx.doi.org/10.1248/bpb.27.1775] [PMID: 15516721]
[207]
Racková, L.; Jancinová, V.; Petríková, M.; Drábiková, K.; Nosál, R.; Stefek, M.; Kostálová, D.; Prónayová, N.; Kovácová, M. Mechanism of anti-inflammatory action of liquorice extract and glycyrrhizin. Nat. Prod. Res., 2007, 21(14), 1234-1241.
[http://dx.doi.org/10.1080/14786410701371280] [PMID: 18075885]
[208]
Lim, W.Y.; Chia, Y.Y.; Liong, S.Y.; Ton, S.H.; Kadir, K.A.; Husain, S.N. Lipoprotein lipase expression, serum lipid and tissue lipid deposition in orally-administered glycyrrhizic acid-treated rats. Lipids Health Dis., 2009, 8, 31-35.
[http://dx.doi.org/10.1186/1476-511X-8-31] [PMID: 19638239]
[209]
Visavadiya, N.P.; Soni, B.; Dalwadi, N. Evaluation of antioxidant and anti-atherogenic properties of Glycyrrhiza glabra root using in vitro models. Int. J. Food Sci. Nutr., 2009, 60(Suppl. 2), 135-149.
[http://dx.doi.org/10.1080/09637480902877998] [PMID: 19384750]
[210]
Yin, J.; Li, D.; Hu, W.; Meng, Q. Effects of glycyrrhizic acid on cocklebur-induced hepatotoxicity in rat and human hepatocytes. Phytother. Res., 2008, 22(3), 395-400.
[http://dx.doi.org/10.1002/ptr.2336] [PMID: 18058991]
[211]
Rahman, S.; Sultana, S. Glycyrrhizin exhibits potential chemopreventive activity on 12-O-tetradecanoyl phorbol-13-acetate-induced cutaneous oxidative stress and tumor promotion in Swiss albino mice. J. Enzyme Inhib. Med. Chem., 2007, 22(3), 363-369.
[http://dx.doi.org/10.1080/14756360601074094] [PMID: 17674818]
[212]
Ojhaa, S.; Golechhaa, M.; Kumarib, S.; Bhatiaa, J.; Aryaa, D.S. Exp. Toxicol. Pathol., 2013, 65, 219-227.
[http://dx.doi.org/10.1016/j.etp.2011.08.011] [PMID: 21975080]
[213]
Panda, V.S.; Naik, S.R. Cardioprotective activity of Ginkgo biloba Phytosomes in isoproterenol-induced myocardial necrosis in rats: a biochemical and histoarchitectural evaluation. Exp. Toxicol. Pathol., 2008, 60(4-5), 397-404.
[http://dx.doi.org/10.1016/j.etp.2008.03.010] [PMID: 18513933]
[214]
Sharma, M.; Kishore, K.; Gupta, S.K.; Joshi, S.; Arya, D.S. Cardioprotective potential of ocimum sanctum in isoproterenol induced myocardial infarction in rats., 2001.
[215]
Hayashi, H.; Sudo, H. Economic importance of licorice. Plant Biotechnol., 2009, 26, 101-104.
[http://dx.doi.org/10.5511/plantbiotechnology.26.101]
[216]
Matsumori, A.; Nunokawa, Y.; Yamaki, A.; Yamamoto, K.; Hwang, M.W.; Miyamoto, T.; Hara, M.; Nishio, R.; Kitaura-Inenaga, K.; Ono, K. Suppression of cytokines and nitric oxide production, and protection against lethal endotoxemia and viral myocarditis by a new NF-kappaB inhibitor. Eur. J. Heart Fail., 2004, 6(2), 137-144.
[http://dx.doi.org/10.1016/j.ejheart.2003.10.007] [PMID: 14984720]
[217]
Selyutina, O.Y.; Polyakov, N.E.; Korneev, D.V.; Zaitsevc, B.N. Effect of glycyrrhizic acid on hemolysis of red blood cells and properties of cell membranes. Russ. Chem. Bull., 2014, 63(5), 1201-1204.
[http://dx.doi.org/10.1007/s11172-014-0573-z]
[218]
Gluschenko, O.Y.; Polyakov, N.E.; Leshina, T.V. NMR Relaxation Study of Cholesterol Binding with Plant Metabolites. Appl. Magn. Reson., 2011, 41, 283. a
[http://dx.doi.org/10.1007/s00723-011-0258-9]
[219]
Glushchenko, O.Y.; Polyakov, N.E.; Leshina, T.V. Interaction of Glycyrrhizic Acid with the Products of Cholesterol Oxidation: a New View of the Problem of Atherosclerosis. Chemistry for Sustainable Development, 2011, 6, 605-609. b
[220]
Strader, C.D.; Hwa, J.J.; Van Heek, M.; Parker, E.M. Novel molecular targets for the treatment of obesity. Drug Discov. Today, 1998, 3, 250-256.
[http://dx.doi.org/10.1016/S1359-6446(98)01189-1]
[221]
Seidel, J. Epidemiology-definition and classification of obesity.Clinical obesity in adults and children; Kopelman, P.G.; Caterson, I; Dietz, W.H., Ed.; Blackwell: Malden, USA, 2005, pp. 3-11.
[http://dx.doi.org/10.1002/9780470987087.ch1]
[222]
Moro, C.O.; Basile, G. Obesity and medicinal plants. Fitoterapia, 2000, 71(Suppl. 1), S73-S82.
[http://dx.doi.org/10.1016/S0367-326X(00)00177-5] [PMID: 10930716]
[223]
Han, L.; Kimura, Y.; Okuda, H. Anti-obesity effects of natural products. Studies in Natural Products Chem., 2005, 30, 79-110.
[http://dx.doi.org/10.1016/S1572-5995(05)80031-6]
[224]
Chia, Y.Y.; Ton, S.H.; Khalid, B.A.K. Effects of glycyrrhizic acid on peroxime proliferator-activated receptor gamma (PPAR-γ), lipoprotein lipase (LPL), serum lipid and HOMA-IR is rats. PPAR Res., 2009, 6, 125-141.
[225]
Eu, C.H.; Lim, W.Y.; Ton, S.H. bin Abdul Kadir, K. Glycyrrhizic acid improved lipoprotein lipase expression, insulin sensitivity, serum lipid and lipid deposition in high-fat diet-induced obese rats. Lipids Health Dis., 2010, 9, 81-90.
[http://dx.doi.org/10.1186/1476-511X-9-81] [PMID: 20670429]
[226]
Lin, S.P.; Tsai, S.Y.; Hou, Y.C.; Chao, P.D. Glycyrrhizin and licorice significantly affect the pharmacokinetics of methotrexate in rats. J. Agric. Food Chem., 2009, 57(5), 1854-1859.
[http://dx.doi.org/10.1021/jf8029918] [PMID: 19209930]
[227]
Pollare, T.; Vessby, B.; Lithell, H. Lipoprotein lipase activity in skeletal muscle is related to insulin sensitivity. Arterioscler. Thromb., 1991, 11(5), 1192-1203.
[http://dx.doi.org/10.1161/01.ATV.11.5.1192] [PMID: 1911706]
[228]
Maurya, S.K.; Srivastava, A.K. Glycyrrhizic acid attenuates the expression of HMG-CoA reductase mRNA in high fructose diet induced dyslipidemic hamsters. Prague Med. Rep., 2011, 112(1), 29-37.
[PMID: 21470496]
[229]
Afnan, Q.; Kaiser, P.J.; Rafiq, R.A.; Nazir, L.A.; Bhushan, S.; Bhardwaj, S.C.; Sandhir, R.; Tasduq, S.A. Glycyrrhizic acid prevents ultraviolet-B-induced photodamage: a role for mitogen-activated protein kinases, nuclear factor kappa B and mitochondrial apoptotic pathway. Exp. Dermatol., 2016, 25(6), 440-446.
[http://dx.doi.org/10.1111/exd.12964] [PMID: 26836460]
[230]
Farrukh, M.R.; Ul-Nissar, A.; Peerzada, K.J.; Afnan, Q.; Sharma, P.R.; Bhushan, S.; Tasduq, S.A. 2015.
[231]
Afnan, Q.; Adil, M.D.; Nissar-Ul, A.; Rafiq, A.R.; Amir, H.F.; Kaiser, P.; Gupta, V.K.; Vishwakarma, R.; Tasduq, S.A. Glycyrrhizic acid (GA), a triterpenoid saponin glycoside alleviates ultraviolet-B irradiation-induced photoaging in human dermal fibroblasts. Phytomedicine, 2012, 19(7), 658-664.
[http://dx.doi.org/10.1016/j.phymed.2012.03.007] [PMID: 22516896]
[232]
Xiong, H.; Xu, Y.; Tan, G.; Han, Y.; Tang, Z.; Xu, W.; Zeng, F.; Guo, Q. Glycyrrhizin ameliorates imiquimod-induced psoriasis-like skin lesions in BALB/c mice and inhibits TNF-α-induced ICAM-1 expression via NF-κB/MAPK in HaCaT cells. Cell. Physiol. Biochem., 2015, 35(4), 1335-1346.
[http://dx.doi.org/10.1159/000373955] [PMID: 25720416]
[233]
Jung, G.D.; Yang, J.Y.; Song, E.S.; Par, J.W. Stimulation of melanogenesis by glycyrrhizin in B16 melanoma cells. Exp. Mol. Med., 2001, 33(3), 131-135.
[http://dx.doi.org/10.1038/emm.2001.23] [PMID: 11642548]
[234]
Rossi, T.; Benassi, L.; Magnoni, C.; Ruberto, A.I.; Coppi, A. Effects of Glycyrrhizin on UVB-irradiated Melanoma Cells in vivo, 2005.
[235]
Nestle, F.O.; Kaplan, D.H.; Barker, J. Psoriasis. N. Engl. J. Med., 2009, 361(5), 496-509.
[http://dx.doi.org/10.1056/NEJMra0804595] [PMID: 19641206]
[236]
Ivosevic-Zaper, J.; Hofmann, M.; Kakadjanova, A.; Valesky, E.; Meissner, M.; Bereiter-Hahn, J.; Kaufmann, R.; Bernd, A.; Kippenberger, S. Topically applied glycyrrhizic acid causes hair removal in rats. Pharm. Biol., 2014, 52(10), 1362-1365.
[http://dx.doi.org/10.3109/13880209.2014.884608] [PMID: 24785361]
[237]
Kiratipaiboon, C.; Tengamnuay, P.; Chanvorachote, P. Glycyrrhizic acid attenuates stem cell-like phenotypes of human dermal papilla cells. Phytomedicine, 2015, 22(14), 1269-1278.
[http://dx.doi.org/10.1016/j.phymed.2015.11.002] [PMID: 26626191]
[238]
Conner, E.M.; Brand, S.J.; Davis, J.M.; Kang, D.Y.; Grisham, M.B. Role of reactive metabolites of oxygen and nitrogen in inflammatory bowel disease: toxins, mediators, and modulators of gene expression. Inflamm. Bowel Dis., 1996, 2(2), 133-147.
[http://dx.doi.org/10.1097/00054725-199606000-00011] [PMID: 23282521]
[239]
Buffinton, G.D.; Doe, W.F. Depleted mucosal antioxidant defences in inflammatory bowel disease. Free Radic. Biol. Med., 1995, 19(6), 911-918.
[http://dx.doi.org/10.1016/0891-5849(95)94362-H] [PMID: 8582668]
[240]
Yuan, H.; Ji, W.S.; Wu, K.X.; Jiao, J.X.; Sun, L.H.; Feng, Y.T. Anti-inflammatory effect of Diammonium Glycyrrhizinate in a rat model of ulcerative colitis. World J. Gastroenterol., 2006, 12(28), 4578-4581.
[http://dx.doi.org/10.3748/wjg.v12.i28.4578] [PMID: 16874877]
[241]
Mulders, S.M.; Bichet, D.G.; Rijss, J.P.; Kamsteeg, E.J.; Arthus, M.F.; Lonergan, M.; Fujiwara, M.; Morgan, K.; Leijendekker, R.; van der Sluijs, P.; van Os, C.H.; Deen, P.M. An aquaporin-2 water channel mutant which causes autosomal dominant nephrogenic diabetes insipidus is retained in the Golgi complex. J. Clin. Invest., 1998, 102(1), 57-66.
[http://dx.doi.org/10.1172/JCI2605] [PMID: 9649557]
[242]
Tamarappoo, B.K.; Verkman, A.S. Defective aquaporin-2 trafficking in nephrogenic diabetes insipidus and correction by chemical chaperones. J. Clin. Invest., 1998, 101(10), 2257-2267.
[http://dx.doi.org/10.1172/JCI2303] [PMID: 9593782]
[243]
Kwon, T.H.; Frøkiaer, J.; Han, J.S.; Knepper, M.A.; Nielsen, S. Decreased abundance of major Na(+) transporters in kidneys of rats with ischemia-induced acute renal failure. Am. J. Physiol. Renal Physiol., 2000, 278(6), F925-F939.
[http://dx.doi.org/10.1152/ajprenal.2000.278.6.F925] [PMID: 10836980]
[244]
Kim, S.W.; Jeon, Y.S.; Lee, J.U.; Kang, D.G.; Kook, H.; Ahn, K.Y.; Kim, S.Z.; Cho, K.W.; Kim, N.H.; Han, J.S.; Choi, K.C. Diminished adenylate cyclase activity and aquaporin 2 expression in acute renal failure rats. Kidney Int., 2000, 57(4), 1643-1650.
[http://dx.doi.org/10.1046/j.1523-1755.2000.00008.x] [PMID: 10760099]
[245]
Lee, J.; Kang, D.G.; Kim, Y. Increased expression and shuttling of aquaporin-2 water channels in the kidney in DOCA-salt hypertensive rats. Clin. Exp. Hypertens., 2000, 22(5), 531-541.
[http://dx.doi.org/10.1081/CEH-100100089] [PMID: 10937843]
[246]
Fernández-Llama, P.; Andrews, P.; Turner, R.; Saggi, S.; Dimari, J.; Kwon, T.H.; Nielsen, S.; Safirstein, R.; Knepper, M.A. Decreased abundance of collecting duct aquaporins in post-ischemic renal failure in rats. J. Am. Soc. Nephrol., 1999, 10(8), 1658-1668.
[PMID: 10446933]
[247]
Nielsen, S.; Kwon, T.H.; Christensen, B.M.; Promeneur, D.; Frøkiaer, J.; Marples, D. Physiology and pathophysiology of renal aquaporins. J. Am. Soc. Nephrol., 1999, 10(3), 647-663.
[PMID: 10073616]
[248]
Jonassen, T.E.; Promeneur, D.; Christensen, S.; Petersen, J.S.; Nielsen, S. Decreased vasopressin-mediated renal water reabsorption in rats with chronic aldosterone-receptor blockade. Am. J. Physiol. Renal Physiol., 2000, 278(2), F246-F256.
[http://dx.doi.org/10.1152/ajprenal.2000.278.2.F246] [PMID: 10662729]
[249]
Kang, D.G.; Sohn, E.J.; Mun, Y.J.; Woo, W.H.; Lee, H.S. Glycyrrhizin ameliorates renal function defects in the early-phase of ischemia-induced acute renal failure. Phytother. Res., 2003, 17(8), 947-951.
[http://dx.doi.org/10.1002/ptr.1270] [PMID: 13680831]
[250]
Whorwood, C.B.; Sheppard, M.C.; Stewart, P.M. Licorice inhibits 11 beta-hydroxysteroid dehydrogenase messenger ribonucleic acid levels and potentiates glucocorticoid hormone action. Endocrinology, 1993, 132(6), 2287-2292.
[http://dx.doi.org/10.1210/endo.132.6.8504732] [PMID: 8504732]
[251]
Zhao, H.; Zhao, M.; Wang, Y.; Li, F.C.; Zhang, Z.G. Glycyrrhizic Acid Attenuates Sepsis-Induced Acute Kidney Injury by Inhibiting NF-κB Signaling Pathway; Evidence-Based Complementary and Alter. Med, 2016, p. 8219287.
[252]
Abdugafurova, M.A.; Li, V.S.; Sherstnev, M.P.; Atanaev, T.B.; Isamukhamedov, A.Sh.; Bachmanova, G.I. Vopr. Med. Khim., 1990, 36(5), 29-31. [Antioxidative properties of glycyrrhyzic acid salts and their effect on the liver monooxygenase system]
[PMID: 2251786]
[253]
Zhang, H.; Zhang, R.; Chen, J.; Shi, M.; Li, W.; Zhang, X. High Mobility Group Box1 Inhibitor Glycyrrhizic Acid Attenuates Kidney Injury in Streptozotocin-Induced Diabetic Rats. Kidney Blood Press. Res., 2017, 42(5), 894-904.
[http://dx.doi.org/10.1159/000485045] [PMID: 29241180]
[254]
Wu, F.; Jin, Z.; Jin, J. Hypoglycemic effects of glabridin, a polyphenolic flavonoid from licorice, in an animal model of diabetes mellitus. Mol. Med. Rep., 2013, 7(4), 1278-1282.
[http://dx.doi.org/10.3892/mmr.2013.1330] [PMID: 23426874]
[255]
Xu-ying, W.; Ming, L.; Xiao-dong, L.; Ping, H. Hepatoprotective and anti-hepatocarcinogenic effects of glycyrrhizin and matrine. Chem.Biol. Int., 2009, 181, 15-19.
[256]
Su, X.; Wu, L.; Hu, M.; Dong, W.; Xu, M.; Zhang, P. Glycyrrhizic acid: A promising carrier material for anticancer therapy. Biomed. Pharmacother., 2017, 95, 670-678.
[http://dx.doi.org/10.1016/j.biopha.2017.08.123] [PMID: 28886526]
[257]
Selyutina, O.Y.; Polyakov, N.E. Glycyrrhizic acid as a multifunctional drug carrier - From physicochemical properties to biomedical applications: A modern insight on the ancient drug. Int. J. Pharm., 2019, 559, 271-279.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.047] [PMID: 30690130]
[258]
Khan, R.; Rehman, M.U.; Khan, A.Q.; Tahir, M.; Sultana, S. Glycyrrhizic acid suppresses 1,2-dimethylhydrazine-induced colon tumorigenesis in Wistar rats: Alleviation of inflammatory, proliferation, angiogenic, and apoptotic markers. Environ. Toxicol., 2018, 33(12), 1272-1283.
[http://dx.doi.org/10.1002/tox.22635] [PMID: 30255981]
[259]
He, S.Q.; Gao, M.; Fu, Y.F.; Zhang, Y.N. Glycyrrhizic acid inhibits leukemia cell growth and migration via blocking AKT/mTOR/STAT3 signaling. Int. J. Clin. Exp. Pathol., 2015, 8(5), 5175-5181.
[PMID: 26191214]
[260]
Oleyourryk, G.J.; Messing, E.M. Screening of prostate cancer.Prostate cancer; biology, diagnosis and management; Oxford University Press Inc.: New York, 2001, pp. 71-83.
[261]
Killian, C.S.; Corral, D.A.; Kawinski, E.; Constantine, R.I. Mitogenic response of osteoblast cells to PSA suggests an activation of latent TGF-® and a proteolytic modulation of cell adhesionreceptors. Biochem. Biophys. Res. Commun., 1993, 192, 940-947.
[http://dx.doi.org/10.1006/bbrc.1993.1506] [PMID: 7683467]
[262]
Romanov, V.I.; Whyard, T.; Adler, H.L.; Waltzer, W.C.; Zucker, S. Prostate cancer cell adhesion to bone marrow endothelium:the role of PSA. Cancer Res., 2004, 64, 2083-2090.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3487] [PMID: 15026347]
[263]
Weber, M.M.; Waghray, A.; Bello, D. PSA, a serine protease, facilitates human prostate cancer cell invasion. Clin. Cancer Res., 1995, 1, 1089-1109.
[PMID: 9815898]
[264]
Lilja, H.; Piironen, T.P.; Rittenhouse, H.G.; Mikolajczyk, S.D.; Slawin, K.M. PSA.Comprehensive textbook of genitourinary oncology; Lippincott Williams and Wilkins Publishers: Baltimore, 2000, pp. 638-650.
[265]
Denmeade, S.R.; Isaacs, J.T. Development of prostate cancer treatment: the good news. Prostate, 2004, 58(3), 211-224.
[http://dx.doi.org/10.1002/pros.10360] [PMID: 14743459]
[266]
Yaginuma, T.; Izumi, R.; Yasui, H.; Arai, T.; Kawabata, M. Effect of traditional herbal medicine on serum testosterone levelsand its induction of regular ovulation in hyperandrogenic andoligomenorrheic women. Nippon Sanka Fujinka Gakkai Zasshi, 1982, 34, 939-944.
[PMID: 7108310]
[267]
Sakamoto, K.; Wakabayashi, K. Inhibitory effect of glycyrrhetinic acid on testosterone production in rat gonads. Endocrinol. Jpn., 1988, 35(2), 333-342.
[http://dx.doi.org/10.1507/endocrj1954.35.333] [PMID: 2850159]
[268]
Takeuchi, T.; Nishii, O.; Okamura, T.; Yaginuma, T. Effect of paeoniflorin, glycyrrhizin and glycyrrhetic acid on ovarian androgen production. Am. J. Chin. Med., 1991, 19(1), 73-78.
[http://dx.doi.org/10.1142/S0192415X91000119] [PMID: 1897494]
[269]
Latif, S.A.; Conca, T.J.; Morris, D.J. The effects of the liquorice derivative, glycyrrhetinic acid, on hepatic3 and 3 - hydroxysteroid dehydrogenases and 5 and ®-reductase pathwaysof metabolism of aldosterone in male rats. Steroids, 1990, 55, 52-58.
[http://dx.doi.org/10.1016/0039-128X(90)90024-6] [PMID: 2326827]
[270]
Thirugnanam, S.; Xu, L.; Ramaswamy, K.; Gnanasekar, M. Glycyrrhizin induces apoptosis in prostate cancer cell lines DU-145 and LNCaP. Oncol. Rep., 2008, 20(6), 1387-1392.
[PMID: 19020719]
[271]
Chen, S.; Wang, K.; Wan, Y.J. Retinoids activate RXR/CAR-mediated pathway and induce CYP3A. Biochem. Pharmacol., 2010, 79(2), 270-276.
[http://dx.doi.org/10.1016/j.bcp.2009.08.012] [PMID: 19686701]
[272]
Huang, L.; Huang, M.; Li, Y.H.; Li, R.M.; Zeng, Y.; Kuang, S.Y.; Zhang, L.; Wang, Y.T.; Bi, H.C. Up-regulatation of CYP3A expression through pregnent X receptor by praeruptorin D isolated from Peucedanum praeruptorum Dunn. J. Ethnopharmacol., 2013, 148(2), 596-602.
[http://dx.doi.org/10.1016/j.jep.2013.05.008] [PMID: 23702042]
[273]
Tu, J.H.; Hu, D.L.; Dai, L.L.; Sun, Y.; Fan, L.; Zhang, M.; Tan, Z.R.; Chen, Y.; Li, Z.; Zhou, H.H. Effect of glycyrrhizin on CYP2C19 and CYP3A4 activity in healthy volunteers with different CYP2C19 genotypes. Xenobiotica, 2010, 40(6), 393-399. b
[http://dx.doi.org/10.3109/00498251003748095] [PMID: 20350051]
[274]
Tu, J.H.; He, Y.J.; Chen, Y.; Fan, L.; Zhang, W.; Tan, Z.R.; Huang, Y.F.; Guo, D.; Hu, D.L.; Wang, D.; Zhou, H-H. Effect of glycyrrhizin on the activity of CYP3A enzyme in humans. Eur. J. Clin. Pharmacol., 2010, 66(8), 805-810. a
[http://dx.doi.org/10.1007/s00228-010-0814-5] [PMID: 20393696]
[275]
Nabekura, T.; Yamaki, T.; Ueno, K.; Kitagawa, S. Inhibition of P-glycoprotein and multidrug resistance protein 1 by dietary phytochemicals. Cancer Chemother. Pharmacol., 2008, 62(5), 867-873.
[http://dx.doi.org/10.1007/s00280-007-0676-4] [PMID: 18204840]
[276]
Hou, Y.C.; Lin, S.P.; Chao, P.D. Liquorice reduced cyclosporine bioavailability by activating P-glycoprotein and CYP 3A. Food Chem., 2012, 135(4), 2307-2312.
[http://dx.doi.org/10.1016/j.foodchem.2012.07.061] [PMID: 22980806]
[277]
Zhao, X.; Wu, Y.; Wang, D. Effects of Glycyrrhizic Acid on the Pharmacokinetics of Pristimerin in Rats and its Potential Mechanism. Eur. J. Drug Metab. Pharmacokinet., 2017.
[PMID: 28631076]
[278]
Feng, X.; Ding, L.; Qiu, F. Potential drug interactions associated with glycyrrhizin and glycyrrhetinic acid; Drug Metab. Rev. Informa Healthcare USA, Inc., 2015, p. 1029634.
[http://dx.doi.org/10.3109/03602532.2015.1029634]
[279]
Katoh, M.; Yoshioka, Y.; Nakagawa, N.; Yokoi, T. Effects of Japanese herbal medicine, Kampo, on human UGT1A1 activity. Drug Metab. Pharmacokinet., 2009, 24(3), 226-234.
[http://dx.doi.org/10.2133/dmpk.24.226] [PMID: 19571434]
[280]
Nakagawa, N.; Katoh, M.; Yoshioka, Y.; Nakajima, M.; Yokoi, T. Inhibitory effects of Kampo medicine on human UGT2B7 activity. Drug Metab. Pharmacokinet., 2009, 24(6), 490-499.
[http://dx.doi.org/10.2133/dmpk.24.490] [PMID: 20045984]
[281]
Huang, Y.P.; Cao, Y.F.; Fang, Z.Z.; Zhang, Y.Y.; Hu, C.M.; Sun, X.Y.; Yu, Z.W.; Zhu, X.; Hong, M.; Yang, L.; Sun, H.Z. Glycyrrhetinic acid exhibits strong inhibitory effects towards UDP-glucuronosyltransferase (UGT) 1A3 and 2B7. Phytother. Res., 2013, 27(9), 1358-1361.
[http://dx.doi.org/10.1002/ptr.4875] [PMID: 23148031]
[282]
Rowland, A.; Miners, J.O.; Mackenzie, P.I. The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int. J. Biochem. Cell Biol., 2013, 45(6), 1121-1132.
[http://dx.doi.org/10.1016/j.biocel.2013.02.019] [PMID: 23500526]
[283]
Silva, R.; Vilas-Boas, V.; Carmo, H. 2014.
[284]
Zhou, S.F. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr. Drug Metab., 2008, 9(4), 310-322.
[http://dx.doi.org/10.2174/138920008784220664] [PMID: 18473749]
[285]
Mizuhara, Y.; Takizawa, Y.; Ishihara, K.; Asano, T.; Kushida, H.; Morota, T.; Kase, Y.; Takeda, S.; Aburada, M.; Nomura, M.; Yokogawa, K. The influence of the sennosides on absorption of glycyrrhetic acid in rats. Biol. Pharm. Bull., 2005, 28(10), 1897-1902.
[http://dx.doi.org/10.1248/bpb.28.1897] [PMID: 16204942]
[286]
Chen, L.; Yang, J.; Davey, A.K.; Chen, Y.X.; Wang, J.P.; Liu, X.Q. Effects of diammonium glycyrrhizinate on the pharmacokinetics of aconitine in rats and the potential mechanism. Xenobiotica, 2009, 39(12), 955-963.
[http://dx.doi.org/10.3109/00498250903271997] [PMID: 19831503]
[287]
Lee, Y.; Jeong, S.; Kim, W.; Kim, H.; Yoon, J.H.; Jeong, S.H.; Jung, Y. Glycyrrhizin enhances therapeutic activity of a colon-specific methylprednisolone prodrug against experimental colitis. Dig. Dis. Sci., 2013, 58(5), 1226-1234.
[http://dx.doi.org/10.1007/s10620-012-2495-7] [PMID: 23192646]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy