Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Molecular Docking and QSAR Studies of Coumarin Derivatives as NMT Inhibitors: Simple Structural Features as Potential Modulators of Antifungal Activity

Author(s): Sapna Jain Dabade, Dheeraj Mandloi* and Amritlal Bajaj

Volume 17, Issue 10, 2020

Page: [1293 - 1308] Pages: 16

DOI: 10.2174/1570180817999200617105711

Price: $65

Abstract

Background: Treatments of fungal diseases, including Candidiasis, remain not up to scratch in spite of the mounting catalog of synthetic antifungal agents. These have served as the impetus for investigating new antifungal agents based on natural products. Consequently, genetic algorithm-multiple linear regression (GA-MLR) based QSAR (Quantitative Structure-Activity Relationship) studies of coumarin analogues along with molecular docking were carried out.

Methods: Coumarin analogues with their MIC values were used to generate the training and test sets of compounds for QSAR models development; the analogues were also docked into the binding pocket of NMT (MyristoylCoA: protein N-myristoyltransferase).

Results and Discussion: The statistical parameters for internal and external validation of QSAR analysis (R2 = 0.830, Q2 = 0.758, R2Pred = 0.610 and R2m overall = 0.683 ), Y Randomization, Ridge trace, VIF, tolerance and model criteria of Golbraikh and Tropsha data illustrate the robustness of the best proposed QSAR model. Most of the analogues bind to the electrostatic, hydrophobic clamp and display hydrogen bonding with amino acid residues of NMT. Interestingly, the most active coumarin analogue (MolDock score of -189.257) was docked deeply within the binding pocket of NMT, thereby displaying hydrogen bonding with Tyr107, Leu451, Leu450, Gln226, Cys393 and Leu394 amino acid residues.

Conclusion: The combinations of descriptors from various descriptor subsets in QSAR analysis have highlighted the role of atomic properties such as polarizability and atomic van der Waals volume to explain the inhibitory activity. The models and related information may pave the way for important insight into the designing of putative NMT inhibitors for Candida albicans.

Keywords: QSAR, coumarin analogue, GA-MLR, molecular docking, Candida albicans, NMT inhibitors.

Graphical Abstract

[1]
Kostova, I. Synthetic and natural coumarins as cytotoxic agents. Curr. Med. Chem. Anticancer Agents, 2005, 5(1), 29-46.
[http://dx.doi.org/10.2174/1568011053352550] [PMID: 15720259]
[2]
Mouri, T.; Yano, T.; Kochi, S.; Ando, T.; Hori, M. Synthesis and antifungal activity of new 3, 4, 7-trisubstituted coumarins. J. Pestic. Sci., 2005, 30, 209-213.
[http://dx.doi.org/10.1584/jpestics.30.209]
[3]
Wu, L.; Wang, X.; Xu, W.; Farzaneh, F.; Xu, R. The structure and pharmacological functions of coumarins and their derivatives. Curr. Med. Chem., 2009, 16(32), 4236-4260.
[http://dx.doi.org/10.2174/092986709789578187] [PMID: 19754420]
[4]
Pereira, T.M.; Franco, D.P.; Vitorio, F.; Kummerle, A.E. Coumarin compounds in medicinal chemistry: Some important examples from the last years. Curr. Top. Med. Chem., 2018, 18(2), 124-148.
[http://dx.doi.org/10.2174/1568026618666180329115523] [PMID: 29595110]
[5]
Molero, G.; Díez-Orejas, R.; Navarro-García, F.; Monteoliva, L.; Pla, J.; Gil, C.; Sánchez-Pérez, M.; Nombela, C. Candida albicans: Genetics, dimorphism and pathogenicity. Int. Microbiol., 1998, 1(2), 95-106.
[PMID: 10943347]
[6]
Chang, Y.L.; Yu, S.J.; Heitman, J.; Wellington, M.; Chen, Y.L. New facets of antifungal therapy. Virulence, 2017, 8(2), 222-236.
[http://dx.doi.org/10.1080/21505594.2016.1257457] [PMID: 27820668]
[7]
Dismukes, W.E. Introduction to antifungal drugs. Clin. Infect. Dis., 2000, 30(4), 653-657.
[http://dx.doi.org/10.1086/313748] [PMID: 10770726]
[8]
Daele, R.V.; Spriet, I.; Wauters, J.; Maertens, J.; Mercier, T.; Hecke, S.V. Bruggemann, R. Antifungal drugs: What brings the future? Med. Mycol., 2019, 57, 28-43.
[9]
Hobson, R.P. The global epidemiology of invasive Candida infections--is the tide turning? J. Hosp. Infect., 2003, 55(3), 159-168.
[http://dx.doi.org/10.1016/j.jhin.2003.08.012] [PMID: 14572481]
[10]
Brown, G.D.; Denning, D.W.; Gow, N.A.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med., 2012, 4(165), 165rv13
[http://dx.doi.org/10.1126/scitranslmed.3004404] [PMID: 23253612]
[11]
Di Mambro, T.; Guerriero, I.; Aurisicchio, L.; Magnani, M.; Marra, E. The yin and yang of current antifungal therapeutic strategies: how can we harness our natural defenses? Front. Pharmacol., 2019, 10, 80.
[http://dx.doi.org/10.3389/fphar.2019.00080] [PMID: 30804788]
[12]
Garbino, J.; Kolarova, L.; Rohner, P.; Lew, D.; Pichna, P.; Pittet, D. Secular trends of candidemia over 12 years in adult patients at a tertiary care hospital. Medicine (Baltimore), 2002, 81(6), 425-433.
[http://dx.doi.org/10.1097/00005792-200211000-00003] [PMID: 12441899]
[13]
Gubbins, P.O.; Anaissie, E.J. Antifungal therapies.Clinical Mycology, ; 2nd ed.; Anaissie, E.; McGinnis, M.R.; Pfaller, M.A., Eds.; . Elsevier: London, United Kingdom, , 2009, pp. 161-195.
[http://dx.doi.org/10.1016/B978-1-4160-5680-5.00007-4]
[14]
Lai, C.C.; Tan, C.K.; Huang, Y.T.; Shao, P.L.; Hsueh, P.R. Current challenges in the management of invasive fungal infections. J. Infect. Chemother., 2008, 14(2), 77-85.
[http://dx.doi.org/10.1007/s10156-007-0595-7] [PMID: 18622668]
[15]
Vandeputte, P.; Ferrari, S.; Coste, A.T. Antifungal resistance and new strategies to control fungal infections. Int. J. Microbiol., 2012, 2012, 713687
[http://dx.doi.org/10.1155/2012/713687] [PMID: 22187560]
[16]
Fisher, M.C.; Hawkins, N.J.; Sanglard, D.; Gurr, S.J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science, 2018, 360(6390), 739-742.
[http://dx.doi.org/10.1126/science.aap7999]
[17]
Sheng, C.; Zhang, W. New lead structures in antifungal drug discovery. Curr. Med. Chem., 2011, 18(5), 733-766.
[http://dx.doi.org/10.2174/092986711794480113] [PMID: 21182484]
[18]
Ngo, H.X.; Garneau-Tsodikova, S.; Green, K.D. A complex game of hide and seek: The search for new antifungals. MedChemComm, 2016, 7(7), 1285-1306.
[http://dx.doi.org/10.1039/C6MD00222F] [PMID: 27766140]
[19]
Mazu, T.K.; Bricker, B.A.; Flores-Rozas, H.; Ablordeppey, S.Y. The mechanistic targets of antifungal agents: an overview. Mini Rev. Med. Chem., 2016, 16(7), 555-578.
[http://dx.doi.org/10.2174/1389557516666160118112103] [PMID: 26776224]
[20]
Weinberg, R.A.; McWherter, C.A.; Freeman, S.K.; Wood, D.C.; Gordon, J.I.; Lee, S.C. Genetic studies reveal that myristoylCoA:protein N-myristoyltransferase is an essential enzyme in Candida albicans. Mol. Microbiol., 1995, 16(2), 241-250.
[http://dx.doi.org/10.1111/j.1365-2958.1995.tb02296.x] [PMID: 7565086]
[21]
Devadas, B.; Freeman, S.K.; Zupec, M.E.; Lu, H.F.; Nagarajan, S.R.; Kishore, N.S.; Lodge, J.K.; Kuneman, D.W.; McWherter, C.A.; Vinjamoori, D.V.; Getman, D.P.; Gordon, J.I.; Sikorski, J.A.; Sikorski, J.A. Design and synthesis of novel imidazole-substituted dipeptide amides as potent and selective inhibitors of Candida albicans myristoylCoA:protein N-myristoyltransferase and identification of related tripeptide inhibitors with mechanism-based antifungal activity. J. Med. Chem., 1997, 40(16), 2609-2625.
[http://dx.doi.org/10.1021/jm970094w] [PMID: 9258368]
[22]
Prasad, K.K.; Toraskar, M.P.; Kadam, V.J. N-myristoyltransferase: A novel target. Mini Rev. Med. Chem., 2008, 8(2), 142-149.
[http://dx.doi.org/10.2174/138955708783498159] [PMID: 18289097]
[23]
McCarthy, M.W.; Kontoyiannis, D.P.; Cornely, O.A.; Perfect, J.R.; Walsh, T.J. Novel agents and drug targets to meet the challenges of resistant fungi. J. Infect. Dis., , 2017, 216(suppl_3), S474-S483.
[http://dx.doi.org/10.1093/infdis/jix130] [PMID: 28911042]
[24]
Wang, F.; Wu, F.X.; Li, C.Z.; Jia, C.Y.; Su, S.W.; Hao, G.F.; Yang, G.F. ACID: a free tool for drug repurposing using consensus inverse docking strategy. J. Cheminform., 2019, 11, 73.
[http://dx.doi.org/10.1186/s13321-019-0394-z]
[25]
Wu, F.X.; Wang, F.; Yang, J.F.; Jiang, W.; Wang, M.Y.; Jia, C.Y.; Hao, G.F.; Yang, G.F. AIMMS suite: A web server dedicated for prediction of drug resistance on protein mutation. Brief. Bioinform., 2018, 21(1), 318-328.
[http://dx.doi.org/10.1093/bib/bby113] [PMID: 30496338]
[26]
Jia, C.Y.; Li, J.Y.; Hao, G.F.; Yang, G.F. A drug-likeness toolbox facilitates ADMET study in drug discovery. Drug Discov. Today, 2020, 25(1), 248-258.
[http://dx.doi.org/10.1016/j.drudis.2019.10.014] [PMID: 31705979]
[27]
Lin, H.Y.; Chen, X.; Chen, J. N.; Wang, D.W.; Wu, F. X.; Lin, S. Y.; Zhan, C. G.; Wu, J. W.; Yang, W. C. crystal structure of 4- hydroxyphenylpyruvate dioxygenase in complex with substrate reveals a new starting point for herbicide discovery Research,, 2019, 1-11.
[28]
Wadood, A.; Ahmed, N.; Shah, L.; Ahmad, A.; Hassan, H.; Shams, S. In-silico drug design: An approach which revolutionarized the drug discovery process. In: Drug. Des. Del;; , 2013; 1, , . (1)
[29]
Cronin, M.D. Recent Advances in QSAR Studies: Methods and Applications.Quantitative Structure–Activity Relationships (QSAR)-Application and Methodology Challenges and Advances in Computational Chemistry and Physics; Puzyn, T.; Leszczynski, Z; Cronin, M.D., Ed.; Springer: Heidelberg, 2010, Vol. 8, pp. 3-11.
[30]
Topliss, J.G. Some observations on classical QSAR. Perspect. Drug Discov. Des., 1993, 1(2), 253-268.
[http://dx.doi.org/10.1007/BF02174527]
[31]
Yee, L.C.; Wei, Y.C. Current Modeling Methods Used in QSAR/QSPR (Statistical Modeling of Molecular Descriptors in QSAR/QSPR, First Edition) Dehmer, M.; Varmuza, K.; Bonchev, D.; Eds., Wiley-VCH Verlag; ; , 2012.
[32]
Selassie, C.D. History of Quantitative Structure-Activity Relationships. Burger’s Medicinal Chemistry and Drug Discovery, 6th ed; Abraham, D.J., Ed.; John Wiley & Sons: New York, 2003, Vol. 1, pp. 1-48.
[http://dx.doi.org/10.1002/0471266949.bmc001]
[33]
Ferreira, L.G.; Dos Santos, R.N.; Oliva, G.; Andricopulo, A.D. Molecular docking and structure-based drug design strategies. Molecules, 2015, 20(7), 13384-13421.
[http://dx.doi.org/10.3390/molecules200713384] [PMID: 26205061]
[34]
Saikia, S.; Bordoloi, M. Molecular docking: Challenges, advances and its use in drug discovery perspective. Curr. Drug Targets, 2019, 20(5), 501-521.
[http://dx.doi.org/10.2174/1389450119666181022153016] [PMID: 30360733]
[35]
Pinzi, L.; Rastelli, G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int. J. Mol. Sci., 2019, 20(18), 1-23.
[http://dx.doi.org/10.3390/ijms20184331] [PMID: 31487867]
[36]
Silva, D.R.; Sardi, J.C.O.; Freires, I.A.; Silva, A.C.B.; Rosalen, P.L. In silico approaches for screening molecular targets in Candida albicans: A proteomic insight into drug discovery and development. Eur. J. Pharmacol., 2019, 842, 64-69.
[http://dx.doi.org/10.1016/j.ejphar.2018.10.016] [PMID: 30326213]
[37]
Satyanarayana, V.S.V.; Sreevani, P.; Sivakumar, A.; Vijayakumar, V. Synthesis and antimicrobial activity of new Schiff bases containing coumarin moiety and their spectral characterization. ARKIVOC, 2008, 17, 221-233.
[38]
Chaudhary, K.K.; Mishra, N. A review on molecular docking: Novel tool for drug discovery. JSM Chem., 2016, 4(3), 1029.
[39]
Shi, Y.; Zhou, C.H. Synthesis and evaluation of a class of new coumarin triazole derivatives as potential antimicrobial agents. Bioorg. Med. Chem. Lett., 2011, 21(3), 956-960.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.059] [PMID: 21215620]
[40]
Peng, X.M.; Kumar, K.V.; Damu, G.L.V.; Zhou, C.H. Coumarin-derived azolyl ethanols: Synthesis, antimicrobial evaluation and preliminary action mechanism. Sci. China Chem., 2016, 59(7), 878-894.
[http://dx.doi.org/10.1007/s11426-015-0351-0]
[41]
Tropsha, A. Best Practices for QSAR model development, validation, and exploitation. Mol. Inform., 2010, 29(6-7), 476-488.
[http://dx.doi.org/10.1002/minf.201000061] [PMID: 27463326]
[42]
Roy, K. Kar. S.; Das, R. A Primer on QSAR/QSPR Modeling, Statistical Methods in QSAR/QSPR; Springer Cham Heidelberg, 2015.
[43]
ChemDraw Ultra 8.0.3 Cambridge Soft Chemical Structure Drawing Standard . 2010.
[44]
Chem3D Draw version 8.0.3 Cambridge Soft molecular modeling and analysis tool . 2010.
[45]
VCCLAB (Virtual Computational Chemistry Laboratory). . http://www.vcclab.org/
[46]
Davide, B.; Todeschini, R. A novel variable reduction method adapted from space-filling designs. Chemom. Intell. Lab. Syst., 2014, 136, 147-154.
[http://dx.doi.org/10.1016/j.chemolab.2014.05.010]
[47]
NanoBRIDGES software: Open access tools to perform QSAR and nano-QSAR modeling. Chemometrics and Intelligent Laboratory Systems,, http://teqip.jdvu.ac.in/QSAR_Tools/
[48]
Ambure, P.; Aher, R.B.; Gajewicz, A.; Puzyn, T. NanoBRIDGES” Software: Open access tools to perform QSAR and nano-QSAR modeling. Chemom. Intell. Lab. Syst., 2015, 147, 1-13.
[http://dx.doi.org/10.1016/j.chemolab.2015.07.007]
[49]
Rogers, D.; Hopfinger, A.J. application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. J. Chem. Inf. Comput. Sci., 1994, 34, 854.
[http://dx.doi.org/10.1021/ci00020a020]
[50]
Saxena, A.K.; Prathipati, P. Comparison of MLR, PLS and GA-MLR in QSAR analysis. SAR QSAR Environ. Res., 2003, 14(5-6), 433-445.
[http://dx.doi.org/10.1080/10629360310001624015] [PMID: 14758986]
[51]
Veerasamy, R.; Rajak, H.; Jain, A.; Sivadasan, S.; Varghese, C.P.; Agrawal, R.K. Validation of QSAR Models - Strategies and Importance. Int. J. Drug Des. Discov., 2011, 2(3), 511-519.
[52]
Gramatica, P. Principles of QSAR models validation: Internal and external. QSAR Comb. Sci., 2007, 26(5), 694-701.
[http://dx.doi.org/10.1002/qsar.200610151]
[53]
Golbraikh, A.; Tropsha, A. Beware of q2! J. Mol. Graph. Model., 2002, 20(4), 269-276.
[http://dx.doi.org/10.1016/S1093-3263(01)00123-1] [PMID: 11858635]
[54]
Tropsha, A.; Gramatica, P.; Gombar, V.K. The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb. Sci., 2003, 22(1), 69-77.
[http://dx.doi.org/10.1002/qsar.200390007]
[55]
Roy, K.; Mitra, I. On the use of the metric rm2 as an effective tool for validation of QSAR models in computational drug design and predictive toxicology. Mini Rev. Med. Chem., 2012, 12(6), 491-504.
[http://dx.doi.org/10.2174/138955712800493861] [PMID: 22587764]
[56]
Eriksson, L.; Jaworska, J.; Worth, A.P.; Cronin, M.T.D.; McDowell, R.M.; Gramatica, P. Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ. Health Perspect., 2003, 111(10), 1361-1375.
[http://dx.doi.org/10.1289/ehp.5758] [PMID: 12896860]
[57]
NCSS. statistical analysis software, , https://www.ncss.com
[58]
Chaterjee, S.; Hadi, A.S. Regression Analysis by Examples, 3rd ed; Wiley: New York, 2000.
[59]
Bolboac, S.D.; Lorentz, J. Quantitative structure-activity relationships: Linear regression modelling and validation strategies by example. Biomath (Sofia), 2013, 2, 1-11.
[http://dx.doi.org/10.11145/j.biomath.2013.09.089]
[60]
Roy, K.; Mitra, I. On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design. Comb. Chem. High Throughput Screen., 2011, 14(6), 450-474.
[http://dx.doi.org/10.2174/138620711795767893] [PMID: 21521150]
[61]
Molegro Virtual Docker 6.0. Software . 2010.
[62]
Thomsen, R.; Christensen, M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321.
[http://dx.doi.org/10.1021/jm051197e] [PMID: 16722650]
[63]
Perfect, J.R. The antifungal pipeline: A reality check. Nat. Rev. Drug Discov., 2017, 16(9), 603-616.
[http://dx.doi.org/10.1038/nrd.2017.46] [PMID: 28496146]
[64]
Dudley, R.W. A brief review of antifungal drugs old and new. Mod. Appl. Pharm. Pharmacol., 2018, 2(1), 1-3.
[http://dx.doi.org/10.31031/MAPP.2018.02.000530]
[65]
Georgopapadakou, N.H. Antifungals targeted to protein modification: Focus on protein N-myristoyltransferase. Expert Opin. Investig. Drugs, 2002, 11(8), 1117-1125.
[http://dx.doi.org/10.1517/13543784.11.8.1117] [PMID: 12150705]
[66]
Pratim Roy, P.; Paul, S.; Mitra, I.; Roy, K. On two novel parameters for validation of predictive QSAR models. Molecules, 2009, 14(5), 1660-1701.
[http://dx.doi.org/10.3390/molecules14051660] [PMID: 19471190]
[67]
Quinn, G.P.; Keough, M.J. Experimental Design and Data Analysis for Biologists; Cambridge University Press: UK, 2002, pp. 124-174.
[http://dx.doi.org/10.1017/CBO9780511806384]
[68]
Myers, R.H. Classical and Modern Regression with Applications, 2nd ed; PWS-Kent, 1990.
[69]
Rawlings, J.O.; Pantula, J.G.; Dickey, D.A.; Applied Regression Analysis, D.A. A Research Tool, 2nd ed; Springer-Verlag: New York, 1998.
[70]
Neter, J.; Kutner, M.H.; Nachtsheim, C.J.; Wasserman, W. Applied Linear Statistical Models, 4th ed; Irwin: Illinois, 1996.
[71]
Hoerl, A.E.; Kennard, R.W. Ridge regression applications to nonorthogonal problems. Technometrics, 1970, 12(1), 69-82.
[http://dx.doi.org/10.1080/00401706.1970.10488635]
[72]
Todeschini, R.; Gramatica, P. The Whim Theory: New 3D molecular descriptors for QSAR in environmental modelling. SAR QSAR Environ. Res., 1997, 7(1-4), 89-115.
[http://dx.doi.org/10.1080/10629369708039126] [PMID: 9501508]
[73]
Todeschini, R.; Consonni, V. Molecular descriptors for chemoinformatics.Methods and Principles in Medicinal Chemistry; ; Mannhold, R.; Kubinyi, H.; Folkers, G., Eds.; Wiley – VCH Verlag GmbH & Company: Weinheim,. , 2009, vol.2 , p. p. 1257..
[74]
Todeschini, R.; Consonni, V.; Mannhold, R. Handbook of Molecular descriptors.Methods and Principles in Medicinal Chemistry Weinheim: Wiley - VCH Germany; Kubinyi, H; Timmerman, H., Ed.; , 2000, Vol. 11, p. 667.
[75]
Pagadala, N.S.; Syed, K.; Tuszynski, J. Software for molecular docking: A review. Biophys. Rev., 2017, 9(2), 91-102.
[http://dx.doi.org/10.1007/s12551-016-0247-1] [PMID: 28510083]

© 2024 Bentham Science Publishers | Privacy Policy