Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

Butterfly Structure: A Privileged Scaffold Targeting Tubulin-Colchicine Binding Site

Author(s): Yingge Wang, Yongfang Yao, Hai-Liang Zhu* and Yongtao Duan*

Volume 20, Issue 17, 2020

Page: [1505 - 1508] Pages: 4

DOI: 10.2174/1568026620999200616132924

Abstract

Butterfly-shaped structure, as a novel scaffold with an attractive and certain shape, has been widely used in new drug discovery. Tubulin, composing of α- and β-tubulin heterodimers, plays a key role in mitosis and cell division which are regarded as an excellent target for cancer therapy. Currently, a series of butterfly shape diaryl heterocyclic compounds have been reported with strong potential against the tubulin-colchicine binding site. It is with one ring buried in the β subunit, another ring interacts with the α subunit and the main body is located in the flat pocket. Here, we firstly introduce the concept of butterfly structure for the tubulin inhibitors, focusing on the latest advancements in a variety of molecules bearing butterfly structure, and then highlight the challenges and future direction of butterfly structure- based tubulin-colchicine binding site inhibitors.

Keywords: Butterfly structure, Cancer, Diaryl heterocyclic, Tubulin-colchicine Binding site, Inhibitors, β-lactam.

Next »
[1]
Liu, W.; Wang, X.; Zhu, H.; Duan, Y. Precision tumor medicine and drug targets. Curr. Top. Med. Chem., 2019, 19(17), 1488-1489.
[http://dx.doi.org/10.2174/156802661917190828111130] [PMID: 31592750]
[2]
Duan, Y.; Zhu, H. The advance in important target proteins. Curr. Top. Med. Chem., 2019, 19(15), 1275.
[http://dx.doi.org/10.2174/156802661915190827162456] [PMID: 31526338]
[3]
Choudhary, S.; Silakari, O. Butterfly structure: a scaffold of therapeutic importance. Future Med. Chem., 2020, 12(3), 179-182.
[http://dx.doi.org/10.4155/fmc-2019-0313] [PMID: 31782310]
[4]
Duan, Y.; Liu, W.; Tian, L.; Mao, Y.; Song, C. Targeting tubulin-colchicine site for cancer therapy: inhibitors, antibody- drug conjugates and degradation agents. Curr. Top. Med. Chem., 2019, 19(15), 1289-1304.
[http://dx.doi.org/10.2174/1568026619666190618130008] [PMID: 31210108]
[5]
Ravelli, R.B.; Gigant, B.; Curmi, P.A.; Jourdain, I.; Lachkar, S.; Sobel, A.; Knossow, M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature, 2004, 428(6979), 198-202.
[http://dx.doi.org/10.1038/nature02393] [PMID: 15014504]
[6]
Duan, Y.T.; Man, R.J.; Tang, D.J.; Yao, Y.F.; Tao, X.X.; Yu, C.; Liang, X.Y.; Makawana, J.A.; Zou, M.J.; Wang, Z.C.; Zhu, H.L. Design, synthesis and antitumor activity of novel link-bridge and b-ring modified combretastatin a-4 (ca-4) analogues as potent antitubulin agents. Sci. Rep., 2016, 6, 25387.
[http://dx.doi.org/10.1038/srep25387] [PMID: 27138035]
[7]
Duan, Y-T.; Sang, Y-L.; Makawana, J.A.; Teraiya, S.B.; Yao, Y-F.; Tang, D-J.; Tao, X-X.; Zhu, H-L. Discovery and molecular modeling of novel 1-indolyl acetate--5-nitroimidazole targeting tubulin polymerization as antiproliferative agents. Eur. J. Med. Chem., 2014, 85, 341-351.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.082] [PMID: 25105922]
[8]
Beale, T.M.; Allwood, D.M.; Bender, A.; Bond, P.J.; Brenton, J.D.; Charnock-Jones, D.S.; Ley, S.V.; Myers, R.M.; Shearman, J.W.; Temple, J.; Unger, J.; Watts, C.A.; Xian, J. A-ring dihalogenation increases the cellular activity of combretastatin-templated tetrazoles. ACS Med. Chem. Lett., 2012, 3(3), 177-181.
[http://dx.doi.org/10.1021/ml200149g] [PMID: 24900453]
[9]
Zuo, D.; Guo, D.; Jiang, X.; Guan, Q.; Qi, H.; Xu, J.; Li, Z.; Yang, F.; Zhang, W.; Wu, Y. 3-(3-Hydroxy-4-methoxyphenyl)-4-(3,4,5-trimethoxyphenyl)-1,2,5-selenadiazole (G-1103), a novel combretastatin A-4 analog, induces G2/M arrest and apoptosis by disrupting tubulin polymerization in human cervical HeLa cells and fibrosarcoma HT-1080 cells. Chem. Biol. Interact., 2015, 227, 7-17.
[http://dx.doi.org/10.1016/j.cbi.2014.12.016] [PMID: 25529822]
[10]
Sun, J.; Chen, L.; Liu, C.; Wang, Z.; Zuo, D.; Pan, J.; Qi, H.; Bao, K.; Wu, Y.; Zhang, W. Synthesis and biological evaluations of 1,2-diaryl pyrroles as analogues of combretastatin A-4. Chem. Biol. Drug Des., 2015, 86(6), 1541-1547.
[http://dx.doi.org/10.1111/cbdd.12617] [PMID: 26202587]
[11]
Madadi, N.R.; Penthala, N.R.; Howk, K.; Ketkar, A.; Eoff, R.L.; Borrelli, M.J.; Crooks, P.A. Synthesis and biological evaluation of novel 4,5-disubstituted 2H-1,2,3-triazoles as cis-constrained analogues of combretastatin A-4. Eur. J. Med. Chem., 2015, 103, 123-132.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.041] [PMID: 26352674]
[12]
Li, Y-H.; Zhang, B.; Yang, H-K.; Li, Q.; Diao, P-C.; You, W-W.; Zhao, P-L. Design, synthesis, and biological evaluation of novel alkylsulfanyl-1,2,4-triazoles as cis-restricted combretastatin A-4 analogues. Eur. J. Med. Chem., 2017, 125, 1098-1106.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.051] [PMID: 27810596]
[13]
Mustafa, M.; Abdelhamid, D.; Abdelhafez, E.M.N.; Ibrahim, M.A.A.; Gamal-Eldeen, A.M.; Aly, O.M. Synthesis, antiproliferative, anti-tubulin activity, and docking study of new 1,2,4-triazoles as potential combretastatin analogues. Eur. J. Med. Chem., 2017, 141, 293-305.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.063] [PMID: 29031074]
[14]
Yao, Y-F.; Wang, Z-C.; Wu, S-Y.; Li, Q.F.; Yu, C.; Liang, X-Y.; Lv, P-C.; Duan, Y-T.; Zhu, H-L. Identification of novel 1-indolyl acetate-5-nitroimidazole derivatives of combretastatin A-4 as potential tubulin polymerization inhibitors. Biochem. Pharmacol., 2017, 137, 10-28.
[http://dx.doi.org/10.1016/j.bcp.2017.04.026] [PMID: 28456516]
[15]
Stefański, T.; Mikstacka, R.; Kurczab, R.; Dutkiewicz, Z.; Kucińska, M.; Murias, M.; Zielińska-Przyjemska, M.; Cichocki, M.; Teubert, A.; Kaczmarek, M.; Hogendorf, A.; Sobiak, S. Design, synthesis, and biological evaluation of novel combretastatin A-4 thio derivatives as microtubule targeting agents. Eur. J. Med. Chem., 2018, 144, 797-816.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.050] [PMID: 29291446]
[16]
Chernysheva, N.B.; Maksimenko, A.S.; Andreyanov, F.A.; Kislyi, V.P.; Strelenko, Y.A.; Khrustalev, V.N.; Semenova, M.N.; Semenov, V.V. Regioselective synthesis of 3,4-diaryl-5-unsubstituted isoxazoles, analogues of natural cytostatic combretastatin A4. Eur. J. Med. Chem., 2018, 146, 511-518.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.070] [PMID: 29407976]
[17]
Hong, Y.; Zhao, Y.; Yang, L.; Gao, M.; Li, L.; Man, S.; Wang, Z.; Guan, Q.; Bao, K.; Zuo, D.; Wu, Y.; Zhang, W. Design, synthesis and biological evaluation of 3,4-diaryl-1,2,5-oxadiazole-2/5-oxides as highly potent inhibitors of tubulin polymerization. Eur. J. Med. Chem., 2019, 178, 287-296.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.036] [PMID: 31195170]
[18]
Ty, N.; Pontikis, R.; Chabot, G.G.; Devillers, E.; Quentin, L.; Bourg, S.; Florent, J.C. Synthesis and biological evaluation of enantiomerically pure cyclopropyl analogues of combretastatin A4. Bioorg. Med. Chem., 2013, 21(5), 1357-1366.
[http://dx.doi.org/10.1016/j.bmc.2012.11.056] [PMID: 23369686]
[19]
Greene, T.F.; Wang, S.; Greene, L.M.; Nathwani, S.M.; Pollock, J.K.; Malebari, A.M.; McCabe, T.; Twamley, B.; O’Boyle, N.M.; Zisterer, D.M.; Meegan, M.J. Synthesis and Biochemical Evaluation of 3-Phenoxy-1,4-diarylazetidin-2-ones as Tubulin-Targeting Antitumor Agents. J. Med. Chem., 2016, 59(1), 90-113.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01086] [PMID: 26680364]
[20]
Zhou, P.; Liu, Y.; Zhou, L.; Zhu, K.; Feng, K.; Zhang, H.; Liang, Y.; Jiang, H.; Luo, C.; Liu, M.; Wang, Y. Potent antitumor activities and structure basis of the chiral β-lactam bridged analogue of combretastatin A-4 binding to tubulin. J. Med. Chem., 2016, 59(22), 10329-10334.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01268] [PMID: 27805821]
[21]
Ashraf, M.; Shaik, T.B.; Malik, M.S.; Syed, R.; Mallipeddi, P.L.; Vardhan, M.V.P.S.V.; Kamal, A. Design and synthesis of cis-restricted benzimidazole and benzothiazole mimics of combretastatin A-4 as antimitotic agents with apoptosis inducing ability. Bioorg. Med. Chem. Lett., 2016, 26(18), 4527-4535.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.044] [PMID: 27515320]
[22]
Kumar, B.; Sharma, P.; Gupta, V.P.; Khullar, M.; Singh, S.; Dogra, N.; Kumar, V. Synthesis and biological evaluation of pyrimidine bridged combretastatin derivatives as potential anticancer agents and mechanistic studies. Bioorg. Chem., 2018, 78, 130-140.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.027] [PMID: 29554587]
[23]
Dumontet, C.; Jordan, M.A. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat. Rev. Drug Discov., 2010, 9(10), 790-803.
[http://dx.doi.org/10.1038/nrd3253] [PMID: 20885410]
[24]
Canta, A.; Chiorazzi, A.; Cavaletti, G. Tubulin: a target for antineoplastic drugs into the cancer cells but also in the peripheral nervous system. Curr. Med. Chem., 2009, 16(11), 1315-1324.
[http://dx.doi.org/10.2174/092986709787846488] [PMID: 19355888]
[25]
Li, L.; Jiang, S.; Li, X.; Liu, Y.; Su, J.; Chen, J. Recent advances in trimethoxyphenyl (TMP) based tubulin inhibitors targeting the colchicine binding site. Eur. J. Med. Chem., 2018, 151, 482-494.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.011] [PMID: 29649743]
[26]
Chen, H.; Lin, Z.; Arnst, K.E.; Miller, D.D.; Li, W. Tubulin inhibitor-based antibody-drug conjugates for cancer therapy. Molecules, 2017, 22(8), 1281.
[http://dx.doi.org/10.3390/molecules22081281] [PMID: 28763044]
[27]
Thomas, A.; Teicher, B.A.; Hassan, R. Antibody-drug conjugates for cancer therapy. Lancet Oncol., 2016, 17(6), e254-e262.
[http://dx.doi.org/10.1016/S1470-2045(16)30030-4] [PMID: 27299281]
[28]
Xia, L.; Liu, W.; Song, Y.; Zhu, H.; Duan, Y. The Present and Future of Novel Protein Degradation Technology. Curr. Top. Med. Chem., 2019, 19(20), 1784-1788.
[http://dx.doi.org/10.2174/1568026619666191011162955] [PMID: 31644408]

© 2024 Bentham Science Publishers | Privacy Policy