Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Gut Barrier Proteins Mediate Liver Regulation by the Effects of Serotonin on the Non-Alcoholic Fatty Liver Disease

Author(s): Ke Zhang, Xue Li, Xian Wang, Hongyu Zheng, Shusheng Tang, Lin Lu* and Xi Ma*

Volume 21, Issue 10, 2020

Page: [978 - 984] Pages: 7

DOI: 10.2174/1389203721666200615171928

Price: $65

Abstract

Serotonin (5-hydroxytryptamine, 5-HT) has been recognized as a potent pro-inflammatory mediator. Increasing the bioavailability and preventing the formation of 5-HT can reduce the inflammatory response in the body. Moreover, 5-HT is considered as an important central physiologic mediator of intestinal function by regulating intestinal motility, permeability, and other functions. The dysfunction of intestinal serotonergic system causes intestinal barrier damage and further leads to the increase of bacterial endotoxin (LPS) translocation into the liver, which contributes to the development of non-alcoholic fatty liver disease (NAFLD). In addition, increasing the expression of serotonin reuptake transporter (SERT) and decreasing the expression of tryptophan hydroxylase1 (TPH1) can relieve the symptoms of NAFLD. Tryptophan (TRP), as a precursor of 5-HT synthesis, plays an important role in gut homeostasis and energy metabolism. Previous studies have found that TRP supplementation aggravates fatty liver degeneration by producing 5-HT, which activates mTOR signaling pathway in mice fed a high fat and high fructose diet. However, recent researches reveal that TRP supplementation stabilizes the intestinal barrier damage by increasing the expression of occludin and reduces the accumulation of fatty acids in liver. Although the effects of TRP supplementation on NAFLD are not clear and the specific mechanism needs to be further explored. A better understanding of the mechanisms of 5-HT on the liver and gut may open new therapeutic strategies in NAFLD.

Keywords: Serotonin, non-alcoholic fatty liver disease, intestinal barrier, endotoxin, tryptophan, mTOR.

Graphical Abstract

[1]
Fonseca, J.; Nunes, G.; Fonseca, C.; Canhoto, M.; Barata, A.T.; Santos, C.A. Comment to: “EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol., 2017, 66(2), 465-466.
[http://dx.doi.org/10.1016/j.jhep.2016.10.036] [PMID: 27856218]
[2]
Hernandez-Rodas, M.C.; Valenzuela, R.; Videla, L.A. Relevant Aspects of Nutritional and Dietary Interventions in Non-Alcoholic Fatty Liver Disease. Int. J. Mol. Sci., 2015, 16(10), 25168-25198.
[http://dx.doi.org/10.3390/ijms161025168] [PMID: 26512643]
[3]
Adams, L.A.; Lymp, J.F.; St Sauver, J.; Sanderson, S.O.; Lindor, K.D.; Feldstein, A.; Angulo, P. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology, 2005, 129(1), 113-121.
[http://dx.doi.org/10.1053/j.gastro.2005.04.014] [PMID: 16012941]
[4]
Bacon, B.R.; Farahvash, M.J.; Janney, C.G.; Neuschwander-Tetri, B.A. Nonalcoholic steatohepatitis: an expanded clinical entity. Gastroenterology, 1994, 107(4), 1103-1109.
[http://dx.doi.org/10.1016/0016-5085(94)90235-6] [PMID: 7523217]
[5]
Day, C.P.; James, O.F. Steatohepatitis: a tale of two “hits”? Gastroenterology, 1998, 114(4), 842-845.
[http://dx.doi.org/10.1016/S0016-5085(98)70599-2] [PMID: 9547102]
[6]
Imajo, K.; Yoneda, M.; Ogawa, Y.; Wada, K.; Nakajima, A. Microbiota and nonalcoholic steatohepatitis. Semin. Immunopathol., 2014, 36(1), 115-132.
[http://dx.doi.org/10.1007/s00281-013-0404-6] [PMID: 24337650]
[7]
Sanidad, K.Z.; Xiao, H.; Zhang, G. Triclosan, a common antimicrobial ingredient, on gut microbiota and gut health. Gut Microbes, 2019, 10(3), 434-437.
[http://dx.doi.org/10.1080/19490976.2018.1546521] [PMID: 30453815]
[8]
Burns, M.B.; Blekhman, R. Integrating tumor genomics into studies of the microbiome in colorectal cancer. Gut Microbes, 2019, 10(4), 547-552.
[http://dx.doi.org/10.1080/19490976.2018.1549421] [PMID: 30556775]
[9]
Birchenough, G.; Schroeder, B.O.; Bäckhed, F.; Hansson, G.C. Dietary destabilisation of the balance between the microbiota and the colonic mucus barrier. Gut Microbes, 2019, 10(2), 246-250.
[http://dx.doi.org/10.1080/19490976.2018.1513765] [PMID: 30252606]
[10]
Heeney, D.D.; Zhai, Z.; Bendiks, Z.; Barouei, J.; Martinic, A.; Slupsky, C.; Marco, M.L. Lactobacillus plantarum bacteriocin is associated with intestinal and systemic improvements in diet-induced obese mice and maintains epithelial barrier integrity in vitro. Gut Microbes, 2019, 10(3), 382-397.
[http://dx.doi.org/10.1080/19490976.2018.1534513] [PMID: 30409105]
[11]
Haub, S.; Kanuri, G.; Volynets, V.; Brune, T.; Bischoff, S.C.; Bergheim, I. Serotonin reuptake transporter (SERT) plays a critical role in the onset of fructose-induced hepatic steatosis in mice. Am. J. Physiol. Gastrointest. Liver Physiol., 2010, 298(3), G335-G344.
[http://dx.doi.org/10.1152/ajpgi.00088.2009] [PMID: 19713474]
[12]
Brun, P.; Castagliuolo, I.; Di Leo, V.; Buda, A.; Pinzani, M.; Palù, G.; Martines, D. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am. J. Physiol. Gastrointest. Liver Physiol., 2007, 292(2), G518-G525.
[http://dx.doi.org/10.1152/ajpgi.00024.2006] [PMID: 17023554]
[13]
Cani, P.D.; Bibiloni, R.; Knauf, C.; Waget, A.; Neyrinck, A.M.; Delzenne, N.M.; Burcelin, R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes, 2008, 57(6), 1470-1481.
[http://dx.doi.org/10.2337/db07-1403] [PMID: 18305141]
[14]
Wigg, A.J.; Roberts-Thomson, I.C.; Dymock, R.B.; McCarthy, P.J.; Grose, R.H.; Cummins, A.G. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis. Gut, 2001, 48(2), 206-211.
[http://dx.doi.org/10.1136/gut.48.2.206] [PMID: 11156641]
[15]
Gershon, M.D. Review article: serotonin receptors and transporters -- roles in normal and abnormal gastrointestinal motility. Aliment. Pharmacol. Ther., 2004, 20(Suppl. 7), 3-14.
[http://dx.doi.org/10.1111/j.1365-2036.2004.02180.x] [PMID: 15521849]
[16]
Gershon, M.D.; Tack, J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology, 2007, 132(1), 397-414.
[http://dx.doi.org/10.1053/j.gastro.2006.11.002] [PMID: 17241888]
[17]
Bischoff, S.C.; Mailer, R.; Pabst, O.; Weier, G.; Sedlik, W.; Li, Z.; Chen, J.J.; Murphy, D.L.; Gershon, M.D. Role of serotonin in intestinal inflammation: knockout of serotonin reuptake transporter exacerbates 2,4,6-trinitrobenzene sulfonic acid colitis in mice. Am. J. Physiol. Gastrointest. Liver Physiol., 2009, 296(3), G685-G695.
[http://dx.doi.org/10.1152/ajpgi.90685.2008] [PMID: 19095763]
[18]
Côté, F.; Fligny, C.; Bayard, E.; Launay, J.M.; Gershon, M.D.; Mallet, J.; Vodjdani, G. Maternal serotonin is crucial for murine embryonic development. Proc. Natl. Acad. Sci. USA, 2007, 104(1), 329-334.
[http://dx.doi.org/10.1073/pnas.0606722104] [PMID: 17182745]
[19]
Lesurtel, M.; Soll, C.; Graf, R.; Clavien, P.A. Role of serotonin in the hepato-gastroIntestinal tract: an old molecule for new perspectives. Cell. Mol. Life Sci., 2008, 65(6), 940-952.
[http://dx.doi.org/10.1007/s00018-007-7377-3] [PMID: 18080089]
[20]
Nocito, A.; Dahm, F.; Jochum, W.; Jang, J.H.; Georgiev, P.; Bader, M.; Renner, E.L.; Clavien, P.A. Serotonin mediates oxidative stress and mitochondrial toxicity in a murine model of nonalcoholic steatohepatitis. Gastroenterology, 2007, 133(2), 608-618.
[http://dx.doi.org/10.1053/j.gastro.2007.05.019] [PMID: 17681180]
[21]
Ricote, M.; Li, A.C.; Willson, T.M.; Kelly, C.J.; Glass, C.K. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature, 1998, 391(6662), 79-82.
[http://dx.doi.org/10.1038/34178] [PMID: 9422508]
[22]
Huang, J.T.; Welch, J.S.; Ricote, M.; Binder, C.J.; Willson, T.M.; Kelly, C.; Witztum, J.L.; Funk, C.D.; Conrad, D.; Glass, C.K. Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase. Nature, 1999, 400(6742), 378-382.
[http://dx.doi.org/10.1038/22572] [PMID: 10432118]
[23]
Waku, T.; Shiraki, T.; Oyama, T.; Maebara, K.; Nakamori, R.; Morikawa, K. The nuclear receptor PPARγ individually responds to serotonin- and fatty acid-metabolites. EMBO J., 2010, 29(19), 3395-3407.
[http://dx.doi.org/10.1038/emboj.2010.197] [PMID: 20717101]
[24]
Chang, G.R.; Chiu, Y.S.; Wu, Y.Y.; Chen, W.Y.; Liao, J.W.; Chao, T.H.; Mao, F.C. Rapamycin protects against high fat diet-induced obesity in C57BL/6J mice. J. Pharmacol. Sci., 2009, 109(4), 496-503.
[http://dx.doi.org/10.1254/jphs.08215FP] [PMID: 19372632]
[25]
Osawa, Y.; Kanamori, H.; Seki, E.; Hoshi, M.; Ohtaki, H.; Yasuda, Y.; Ito, H.; Suetsugu, A.; Nagaki, M.; Moriwaki, H.; Saito, K.; Seishima, M. L-tryptophan-mediated enhancement of susceptibility to nonalcoholic fatty liver disease is dependent on the mammalian target of rapamycin. J. Biol. Chem., 2011, 286(40), 34800-34808.
[http://dx.doi.org/10.1074/jbc.M111.235473] [PMID: 21841000]
[26]
Fu, J.; Ma, S.; Li, X.; An, S.; Li, T.; Guo, K.; Lin, M.; Qu, W.; Wang, S.; Dong, X.; Han, X.; Fu, T.; Huang, X.; Wang, T.; He, S. Long-term stress with hyperglucocorticoidemia-induced hepatic steatosis with VLDL overproduction is dependent on both 5-HT2 receptor and 5-HT synthesis in liver. Int. J. Biol. Sci., 2016, 12(2), 219-234.
[http://dx.doi.org/10.7150/ijbs.13062] [PMID: 26884719]
[27]
Ritze, Y.; Bárdos, G.; Hubert, A.; Böhle, M.; Bischoff, S.C. Effect of tryptophan supplementation on diet-induced non-alcoholic fatty liver disease in mice. Br. J. Nutr., 2014, 112(1), 1-7.
[http://dx.doi.org/10.1017/S0007114514000440] [PMID: 24708895]
[28]
Davoren, M.J.; Liu, J.; Castellanos, J.; Rodríguez-Malavé, N.I.; Schiestl, R.H. A novel probiotic, Lactobacillus johnsonii 456, resists acid and can persist in the human gut beyond the initial ingestion period. Gut Microbes, 2019, 10(4), 458-480.
[http://dx.doi.org/10.1080/19490976.2018.1547612] [PMID: 30580660]
[29]
Bjørkhaug, S.T.; Aanes, H.; Neupane, S.P.; Bramness, J.G.; Malvik, S.; Henriksen, C.; Skar, V.; Medhus, A.W.; Valeur, J. Characterization of gut microbiota composition and functions in patients with chronic alcohol overconsumption. Gut Microbes, 2019, 10(6), 663-675.
[http://dx.doi.org/10.1080/19490976.2019.1580097] [PMID: 30894059]
[30]
Blandford, L.E.; Johnston, E.L.; Sanderson, J.D.; Wade, W.G.; Lax, A.J. Promoter orientation of the immunomodulatory Bacteroides fragilis capsular polysaccharide A (PSA) is off in individuals with inflammatory bowel disease (IBD). Gut Microbes, 2019, 10(5), 569-577.
[http://dx.doi.org/10.1080/19490976.2018.1560755] [PMID: 30732524]
[31]
Jang, Y.J.; Kim, W.K.; Han, D.H.; Lee, K.; Ko, G. Lactobacillus fermentum species ameliorate dextran sulfate sodium-induced colitis by regulating the immune response and altering gut microbiota. Gut Microbes, 2019, 10(6), 696-711.
[http://dx.doi.org/10.1080/19490976.2019.1589281] [PMID: 30939976]
[32]
Daisley, B.A.; Monachese, M.; Trinder, M.; Bisanz, J.E.; Chmiel, J.A.; Burton, J.P.; Reid, G. Immobilization of cadmium and lead by Lactobacillus rhamnosus GR-1 mitigates apical-to-basolateral heavy metal translocation in a Caco-2 model of the intestinal epithelium. Gut Microbes, 2019, 10(3), 321-333.
[http://dx.doi.org/10.1080/19490976.2018.1526581] [PMID: 30426826]
[33]
Milard, M.; Penhoat, A.; Durand, A.; Buisson, C.; Loizon, E.; Meugnier, E.; Bertrand, K.; Joffre, F.; Cheillan, D.; Garnier, L.; Viel, S.; Laugerette, F.; Michalski, M.C. Acute effects of milk polar lipids on intestinal tight junction expression: towards an impact of sphingomyelin through the regulation of IL-8 secretion? J. Nutr. Biochem., 2019, 65, 128-138.
[http://dx.doi.org/10.1016/j.jnutbio.2018.12.007] [PMID: 30685581]
[34]
Dokladny, K.; Zuhl, M.N.; Moseley, P.L. Intestinal epithelial barrier function and tight junction proteins with heat and exercise. J. Appl. Physiol., 2016, 120(6), 692-701.
[http://dx.doi.org/10.1152/japplphysiol.00536.2015] [PMID: 26359485]
[35]
Kelsall, B. Recent progress in understanding the phenotype and function of intestinal dendritic cells and macrophages. Mucosal Immunol., 2008, 1(6), 460-469.
[http://dx.doi.org/10.1038/mi.2008.61] [PMID: 19079213]
[36]
Erspamer, V.; Testini, A. Observations on the release and turnover rate of 5-hydroxytryptamine in the gastrointestinal tract. J. Pharm. Pharmacol., 1959, 11, 618-623.
[http://dx.doi.org/10.1111/j.2042-7158.1959.tb12603.x] [PMID: 13820719]
[37]
Bertaccini, G. Tissue 5-hydroxytryptamine and urinary 5-hydroxyindoleacetic acid after partial or total removal of the gastro-intestinal tract in the rat. J. Physiol., 1960, 153(2), 239-249.
[http://dx.doi.org/10.1113/jphysiol.1960.sp006532] [PMID: 16992061]
[38]
Tyce, G.M. Origin and metabolism of serotonin. J. Cardiovasc. Pharmacol., 1990, 16(Suppl. 3), S1-S7.
[http://dx.doi.org/10.1097/00005344-199000163-00002] [PMID: 1369709]
[39]
Noguchi, T.; Nishino, M.; Kido, R. Tryptophan 5-hydroxylase in rat intestine. Biochem. J., 1973, 131(2), 375-380.
[http://dx.doi.org/10.1042/bj1310375] [PMID: 4541815]
[40]
Walther, D.J.; Peter, J.U.; Bashammakh, S.; Hörtnagl, H.; Voits, M.; Fink, H.; Bader, M. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science, 2003, 299(5603), 76.
[http://dx.doi.org/10.1126/science.1078197] [PMID: 12511643]
[41]
Wade, P.R.; Chen, J.; Jaffe, B.; Kassem, I.S.; Blakely, R.D.; Gershon, M.D. Localization and function of a 5-HT transporter in crypt epithelia of the gastrointestinal tract. J. Neurosci., 1996, 16(7), 2352-2364.
[http://dx.doi.org/10.1523/JNEUROSCI.16-07-02352.1996] [PMID: 8601815]
[42]
Chen, J.X.; Pan, H.; Rothman, T.P.; Wade, P.R.; Gershon, M.D. Guinea pig 5-HT transporter: cloning, expression, distribution, and function in intestinal sensory reception. Am. J. Physiol., 1998, 275(3), G433-G448.
[43]
Coates, M.D.; Johnson, A.C.; Greenwood-Van Meerveld, B.; Mawe, G.M. Effects of serotonin transporter inhibition on gastrointestinal motility and colonic sensitivity in the mouse. Neurogastroenterol. Motil., 2006, 18(6), 464-471.
[http://dx.doi.org/10.1111/j.1365-2982.2006.00792.x] [PMID: 16700726]
[44]
Bonhaus, D.W.; Bach, C.; DeSouza, A.; Salazar, F.H.; Matsuoka, B.D.; Zuppan, P.; Chan, H.W.; Eglen, R.M. The pharmacology and distribution of human 5-hydroxytryptamine2B (5-HT2B) receptor gene products: comparison with 5-HT2A and 5-HT2C receptors. Br. J. Pharmacol., 1995, 115(4), 622-628.
[http://dx.doi.org/10.1111/j.1476-5381.1995.tb14977.x] [PMID: 7582481]
[45]
Gebauer, A.; Merger, M.; Kilbinger, H. Modulation by 5-HT3 and 5-HT4 receptors of the release of 5-hydroxytryptamine from the guinea-pig small intestine. Naunyn Schmiedebergs Arch. Pharmacol., 1993, 347(2), 137-140.
[http://dx.doi.org/10.1007/BF00169258] [PMID: 8474534]
[46]
Hoyer, D.; Hannon, J.P.; Martin, G.R. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol. Biochem. Behav., 2002, 71(4), 533-554.
[http://dx.doi.org/10.1016/S0091-3057(01)00746-8] [PMID: 11888546]
[47]
Forcén, R.; Latorre, E.; Pardo, J.; Alcalde, A.I.; Murillo, M.D.; Grasa, L. Toll-like receptors 2 and 4 modulate the contractile response induced by serotonin in mouse ileum: analysis of the serotonin receptors involved. Neurogastroenterol. Motil., 2015, 27(9), 1258-1266.
[http://dx.doi.org/10.1111/nmo.12619] [PMID: 26053401]
[48]
Da Prada, M.; Pletscher, A.; Tranzer, J.P.; Knuchel, H. Subcellular localization of 5-hydroxytryptamine and histamine in blood platelets. Nature, 1967, 216(5122), 1315-1317.
[http://dx.doi.org/10.1038/2161315a0] [PMID: 6080058]
[49]
Leonard, B.E. Serotonin receptors and their function in sleep, anxiety disorders and depression. Psychother. Psychosom., 1996, 65(2), 66-75.
[http://dx.doi.org/10.1159/000289049] [PMID: 8711084]
[50]
Farrelly, L.A.; Thompson, R.E.; Zhao, S.; Lepack, A.E.; Lyu, Y.; Bhanu, N.V.; Zhang, B.; Loh, Y.E.; Ramakrishnan, A.; Vadodaria, K.C.; Heard, K.J.; Erikson, G.; Nakadai, T.; Bastle, R.M.; Lukasak, B.J.; Zebroski, H., III; Alenina, N.; Bader, M.; Berton, O.; Roeder, R.G.; Molina, H.; Gage, F.H.; Shen, L.; Garcia, B.A.; Li, H.; Muir, T.W.; Maze, I. Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Nature, 2019, 567(7749), 535-539.
[http://dx.doi.org/10.1038/s41586-019-1024-7] [PMID: 30867594]
[51]
Ma, N.; Zhang, J.; Reiter, R.J.; Ma, X. Melatonin mediates mucosal immune cells, microbial metabolism, and rhythm crosstalk: A therapeutic target to reduce intestinal inflammation. Med. Res. Rev., 2020, 40(2), 606-632.
[http://dx.doi.org/10.1002/med.21628] [PMID: 31420885]
[52]
Shajib, M.S.; Chauhan, U.; Adeeb, S.; Chetty, Y.; Armstrong, D.; Halder, S.L.S.; Marshall, J.K.; Khan, W.I. Characterization of Serotonin Signaling Components in Patients with Inflammatory Bowel Disease. J Can Assoc Gastroenterol, 2019, 2(3), 132-140.
[http://dx.doi.org/10.1093/jcag/gwy039] [PMID: 31294376]
[53]
Li, S.; Brown, M.S.; Goldstein, J.L. Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proc. Natl. Acad. Sci. USA, 2010, 107(8), 3441-3446.
[http://dx.doi.org/10.1073/pnas.0914798107] [PMID: 20133650]
[54]
Khamzina, L.; Veilleux, A.; Bergeron, S.; Marette, A. Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology, 2005, 146(3), 1473-1481.
[http://dx.doi.org/10.1210/en.2004-0921] [PMID: 15604215]
[55]
Hirata, Y.; Kawachi, T.; Sugimura, T. Fatty liver induced by injection of L-tryptophan. Biochim. Biophys. Acta, 1967, 144(2), 233-241.
[http://dx.doi.org/10.1016/0005-2760(67)90153-1] [PMID: 4168935]
[56]
Trulson, M.E.; Sampson, H.W. Ultrastructural changes of the liver following L-tryptophan ingestion in rats. J. Nutr., 1986, 116(6), 1109-1115.
[http://dx.doi.org/10.1093/jn/116.6.1109] [PMID: 3723206]
[57]
Fears, R.; Murrell, E.A. Tryptophan and the control of triglyceride and carbohydrate metabolism in the rat. Br. J. Nutr., 1980, 43(2), 349-356.
[http://dx.doi.org/10.1079/BJN19800097] [PMID: 7378342]
[58]
Li, Q.; Hosaka, T.; Harada, N.; Nakaya, Y.; Funaki, M. Activation of Akt through 5-HT2A receptor ameliorates serotonin-induced degradation of insulin receptor substrate-1 in adipocytes. Mol. Cell. Endocrinol., 2013, 365(1), 25-35.
[http://dx.doi.org/10.1016/j.mce.2012.08.022] [PMID: 22975078]
[59]
Stasi, C.; Bellini, M.; Bassotti, G.; Blandizzi, C.; Milani, S. Serotonin receptors and their role in the pathophysiology and therapy of irritable bowel syndrome. Tech. Coloproctol., 2014, 18(7), 613-621.
[http://dx.doi.org/10.1007/s10151-013-1106-8] [PMID: 24425100]
[60]
Ma, N.; Ma, X. Dietary Amino Acids and the Gut-Microbiome-Immune Axis: Physiological Metabolism and Therapeutic Prospects. Compr. Rev. Food Sci. Food Saf., 2019, 18, 221-242.
[http://dx.doi.org/10.1111/1541-4337.12401]
[61]
Haub, S.; Ritze, Y.; Bergheim, I.; Pabst, O.; Gershon, M.D.; Bischoff, S.C. Enhancement of intestinal inflammation in mice lacking interleukin 10 by deletion of the serotonin reuptake transporter.Neurogastroenterol.Motil., 2010, 22(7), 826-834, e229.,
[http://dx.doi.org/10.1111/j.1365-2982.2010.01479.x ] [PMID: 20219086]
[62]
Sun, M.; Ma, N.; He, T.; Johnston, L.J.; Ma, X. Tryptophan (Trp) modulates gut homeostasis via aryl hydrocarbon receptor (AhR). Crit. Rev. Food Sci. Nutr., 2019, 29, 1-9.
[http://dx.doi.org/10.1080/10408398.2019.1598334] [PMID: 30924357]
[63]
Ma, N.; Guo, P.; Zhang, J.; He, T.; Kim, S.W.; Zhang, G.; Ma, X. Nutrients Mediate Intestinal Bacteria-Mucosal Immune Crosstalk. Front. Immunol., 2018, 9, 5.
[http://dx.doi.org/10.3389/fimmu.2018.00005] [PMID: 29416535]
[64]
Ozer, C.; Gönül, B.; Ercan, Z.S.; Take, G.; Erdoğan, D. The effect of tryptophan administration on ileum contractility and oxidant status in mice. Amino Acids, 2007, 32(3), 453-458.
[http://dx.doi.org/10.1007/s00726-006-0339-5] [PMID: 16729190]
[65]
Ozer, C.; Gönül, B.; Take, G.; Erdoğan, D.; Tong, E.; Ercan, Z.S. Tryptophan administration increase contractility and change the ultrastructure of mice duodenum. Amino Acids, 2004, 27(2), 215-220.
[http://dx.doi.org/10.1007/s00726-004-0098-0] [PMID: 15503228]
[66]
Deitch, E.A. Simple intestinal obstruction causes bacterial translocation in man. Arch. Surg., 1989, 124(6), 699-701.
[http://dx.doi.org/10.1001/archsurg.1989.01410060065013] [PMID: 2730322]
[67]
Gardiner, K.; Rowlands, B.J. Bacterial translocation during peroperative colonic lavage of the obstructed rat colon. Br. J. Surg., 1995, 82(5), 714.
[http://dx.doi.org/10.1002/bjs.1800820543] [PMID: 7613957]
[68]
Kimura, H.; Sawada, N.; Tobioka, H.; Isomura, H.; Kokai, Y.; Hirata, K.; Mori, M. Bacterial lipopolysaccharide reduced intestinal barrier function and altered localization of 7H6 antigen in IEC-6 rat intestinal crypt cells. J. Cell. Physiol., 1997, 171(3), 284-290.
[http://dx.doi.org/10.1002/(SICI)1097-4652(199706)171:3<284:AID-JCP6>3.0.CO;2-K] [PMID: 9180897]
[69]
O’Dwyer, S.T.; Michie, H.R.; Ziegler, T.R.; Revhaug, A.; Smith, R.J.; Wilmore, D.W. A single dose of endotoxin increases intestinal permeability in healthy humans. Arch. Surg., 1988, 123(12), 1459-1464.
[http://dx.doi.org/10.1001/archsurg.1988.01400360029003] [PMID: 3142442]
[70]
Yamada, T.; Inui, A.; Hayashi, N.; Fujimura, M.; Fujimiya, M. Serotonin stimulates endotoxin translocation via 5-HT3 receptors in the rat ileum. Am. J. Physiol. Gastrointest. Liver Physiol., 2003, 284(5), G782-G788.
[http://dx.doi.org/10.1152/ajpgi.00376.2002] [PMID: 12684210]
[71]
Seki, E.; Brenner, D.A. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology, 2008, 48(1), 322-335.
[http://dx.doi.org/10.1002/hep.22306] [PMID: 18506843]
[72]
Kawai, T.; Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol., 2010, 11(5), 373-384.
[http://dx.doi.org/10.1038/ni.1863] [PMID: 20404851]
[73]
Seki, E.; Tsutsui, H.; Iimuro, Y.; Naka, T.; Son, G.; Akira, S.; Kishimoto, T.; Nakanishi, K.; Fujimoto, J. Contribution of Toll-like receptor/myeloid differentiation factor 88 signaling to murine liver regeneration. Hepatology, 2005, 41(3), 443-450.
[http://dx.doi.org/10.1002/hep.20603] [PMID: 15723296]
[74]
Chung, H.K.; Kim, Y.K.; Park, J.H.; Ryu, M.J.; Chang, J.Y.; Hwang, J.H.; Lee, C.H.; Kim, S.H.; Kim, H.J.; Kweon, G.R.; Kim, K.S.; Shong, M. The indole derivative NecroX-7 improves nonalcoholic steatohepatitis in ob/ob mice through suppression of mitochondrial ROS/RNS and inflammation. Liver Int., 2015, 35(4), 1341-1353.
[http://dx.doi.org/10.1111/liv.12741] [PMID: 25443620]
[75]
Yu, S.; Matsusue, K.; Kashireddy, P.; Cao, W.Q.; Yeldandi, V.; Yeldandi, A.V.; Rao, M.S.; Gonzalez, F.J.; Reddy, J.K. Adipocyte-specific gene expression and adipogenic steatosis in the mouse liver due to peroxisome proliferator-activated receptor gamma1 (PPARgamma1) overexpression. J. Biol. Chem., 2003, 278(1), 498-505.
[http://dx.doi.org/10.1074/jbc.M210062200] [PMID: 12401792]
[76]
Gavrilova, O.; Haluzik, M.; Matsusue, K.; Cutson, J.J.; Johnson, L.; Dietz, K.R.; Nicol, C.J.; Vinson, C.; Gonzalez, F.J.; Reitman, M.L. Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J. Biol. Chem., 2003, 278(36), 34268-34276.
[http://dx.doi.org/10.1074/jbc.M300043200] [PMID: 12805374]
[77]
Konstantinopoulos, P.A.; Vandoros, G.P.; Sotiropoulou-Bonikou, G.; Kominea, A.; Papavassiliou, A.G. NF-kappaB/PPAR gamma and/or AP-1/PPAR gamma ‘on/off’ switches and induction of CBP in colon adenocarcinomas: correlation with COX-2 expression. Int. J. Colorectal Dis., 2007, 22(1), 57-68.
[http://dx.doi.org/10.1007/s00384-006-0112-y] [PMID: 16506021]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy