General Review Article

小分子RNA在噪声性听力损失中的作用及其在氧化应激和炎症中的调节作用

卷 21, 期 12, 2020

页: [1216 - 1224] 页: 9

弟呕挨: 10.2174/1389450121666200615145552

价格: $65

摘要

噪声暴露(Noise exposure, NE)已被公认为引起感音神经性耳聋(sensorineural hearing loss, SNHL)的原因之一,通过氧化应激通路的启动和炎症反应,对耳蜗感觉毛细胞造成不可逆的损伤。因此,确定NE调控毛细胞凋亡的分子机制对于预防毛细胞损伤至关重要。然而,目前尚未发现小分子RNA (miRNAs)在NE期耳蜗感觉细胞变性中的作用。因此,本研究的主要目的是证明小分子RNA在NE诱导的氧化应激通路和炎症中的调节作用。在这方面,来自开放存取期刊目录(DOAJ)、谷歌Scholar、PubMed等多个数据库的与噪声性听力损失(NIHL)、氧化应激、炎症、miRNA相关的文章;对图书馆、信息科学与技术文摘(LISTA)、Web of Science进行了检索。结果显示,多项研究表明,miR-1229-5p、miR-451a、185-5p、186的上调以及miRNA-96/182/183和miR-30b的下调均参与氧化应激和炎症反应,可作为NIHL的生物标志物。NIHL和miRNAs之间也存在密切关系,但需要进一步研究来证明miRNA变化和NE之间的因果关系,并确定miRNAs作为对NE反应的生物标志物。

关键词: 噪音,听力损失,miRNAs,氧化应激,炎症,生物标记

图形摘要

[1]
Ding L, Liu J, Shen HX, et al. Analysis of plasma microRNA expression profiles in male textile workers with noise-induced hearing loss. Hear Res 2016; 333: 275-82.
[http://dx.doi.org/10.1016/j.heares.2015.08.003] [PMID: 26278637]
[2]
Miguel V, Cui JY, Daimiel L, Espinosa-Diez C, Fernandez-Hernando C, Kavanagh TJ, et al. The Role of MicroRNAs in Environmental Risk Factors, Noise-Induced Hearing Loss, and Mental Stress. Antioxid Redox Signal 2018; 28(9): 773-96.
[3]
Le TN, Straatman LV, Lea J, Westerberg B. Current insights in noise-induced hearing loss: a literature review of the underlying mechanism, pathophysiology, asymmetry, and management options. J Otolaryngol Head Neck Surg 2017; 46(1): 41.
[http://dx.doi.org/10.1186/s40463-017-0219-x] [PMID: 28535812]
[4]
Wang Z, Liu Y, Han N, et al. Profiles of oxidative stress-related microRNA and mRNA expression in auditory cells. Brain Res 2010; 1346: 14-25.
[http://dx.doi.org/10.1016/j.brainres.2010.05.059] [PMID: 20510889]
[5]
Sisto R, Botti T, Cerini L, et al. Oxidative stress biomarkers and otoacoustic emissions in humans exposed to styrene and noise. Int J Audiol 2016; 55(9): 523-31.
[http://dx.doi.org/10.1080/14992027.2016.1177215] [PMID: 27146376]
[6]
Sliwinska-Kowalska M, Pawelczyk M. Contribution of genetic factors to noise-induced hearing loss: a human studies review. Mutat Res 2013; 752(1): 61-5.
[http://dx.doi.org/10.1016/j.mrrev.2012.11.001] [PMID: 23207014]
[7]
Prasad KN, Bondy SC. MicroRNAs in hearing disorders: their regulation by oxidative stress, inflammation and antioxidants. Front Cell Neurosci 2017; 11: 276.
[http://dx.doi.org/10.3389/fncel.2017.00276] [PMID: 28955205]
[8]
Patel M, Hu BH. MicroRNAs in inner ear biology and pathogenesis. Hear Res 2012; 287(1-2): 6-14.
[http://dx.doi.org/10.1016/j.heares.2012.03.008] [PMID: 22484222]
[9]
Van Laer L, Carlsson PI, Ottschytsch N, et al. The contribution of genes involved in potassium-recycling in the inner ear to noise-induced hearing loss. Hum Mutat 2006; 27(8): 786-95.
[http://dx.doi.org/10.1002/humu.20360] [PMID: 16823764]
[10]
Wang X, Wang X, Song J, Chen H, Man Y. Influence of evoked HSP70 expression on hearing function of the cochlea in guinea pigs Di 1 jun yi da xue xue bao= Academic journal of the first medical college of PLA 2002; 22(10): 922-4.
[11]
Asgharzade S, Tabatabaiefar MA, Modarressi MH, et al. A novel TECTA mutation causes ARNSHL. Int J Pediatr Otorhinolaryngol 2017; 92: 88-93.
[http://dx.doi.org/10.1016/j.ijporl.2016.11.010] [PMID: 28012541]
[12]
Fan Y, Zhang Y, Wu R, et al. miR-431 is involved in regulating cochlear function by targeting Eya4. Biochim Biophys Acta 2016; 1862(11): 2119-26.
[http://dx.doi.org/10.1016/j.bbadis.2016.08.015] [PMID: 27545760]
[13]
Kim CW, Han JH, Wu L, Choi JY. microRNA-183 is essential for hair cell regeneration after neomycin injury in zebrafish. Yonsei Med J 2018; 59(1): 141-7.
[http://dx.doi.org/10.3349/ymj.2018.59.1.141] [PMID: 29214789]
[14]
Forouzanfar F, Shojapour M, Asgharzade S, Amini E. Causes and consequences of microRNA dysregulation following cerebral ischemia- reperfusion injury CNS Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS Neurological Disorders) 2019; 18(3): 212-.
[http://dx.doi.org/10.2174/1871527318666190204104629]
[15]
Mahmoudian-Sani M-R, Jamshidi M, Asgharzade S. Combined Growth Factor and Gene Therapy: An Approach for Hair Cell Regeneration and Hearing Recovery. ORL J Otorhinolaryngol Relat Spec 2018; 80(5-6): 326-37.
[http://dx.doi.org/10.1159/000493011] [PMID: 30359973]
[16]
Soukup GA, Fritzsch B, Pierce ML, et al. Residual microRNA expression dictates the extent of inner ear development in conditional Dicer knockout mice. Dev Biol 2009; 328(2): 328-41.
[http://dx.doi.org/10.1016/j.ydbio.2009.01.037] [PMID: 19389351]
[17]
Pauley S, Wright TJ, Pirvola U, Ornitz D, Beisel K, Fritzsch B. Expression and function of FGF10 in mammalian inner ear development. Dev Dyn 2003; 227(2): 203-15.
[http://dx.doi.org/10.1002/dvdy.10297] [PMID: 12761848]
[18]
Dambal S, Shah M, Mihelich B, Nonn L. The microRNA-183 cluster: the family that plays together stays together. Nucleic Acids Res 2015; 43(15): 7173-88.
[http://dx.doi.org/10.1093/nar/gkv703] [PMID: 26170234]
[19]
Riccardi S, Bergling S, Sigoillot F, et al. MiR-210 promotes sensory hair cell formation in the organ of corti. BMC Genomics 2016; 17: 309.
[http://dx.doi.org/10.1186/s12864-016-2620-7] [PMID: 27121005]
[20]
Huyghe A, Van den Ackerveken P, Sacheli R, et al. MicroRNA-124 regulates cell specification in the cochlea through modulation of Sfrp4/5. Cell Rep 2015; 13(1): 31-42.
[http://dx.doi.org/10.1016/j.celrep.2015.08.054] [PMID: 26387953]
[21]
Hopkins RZ. ROS in Cell 2015 Reactive Oxygen Species 2016; 2(2): 290-7.
[22]
Kamogashira T, Fujimoto C, Yamasoba T. Reactive oxygen species, apoptosis, and mitochondrial dysfunction in hearing loss. BioMed Res Int 2015., 2015617207.
[http://dx.doi.org/10.1155/2015/617207] [PMID: 25874222]
[23]
Forouzanfar F, Hosseinzadeh H, Khorrami MB, Asgharzade S, Rakhshandeh H. Attenuating Effect of Portulaca oleracea Extract on Chronic Constriction Injury Induced Neuropathic Pain in Rats: An Evidence of Anti-oxidative and Anti-inflammatory Effects CNS & Neurological Disorders-Drug Targets. Formerly Current Drug Targets-CNS & Neurological Disorders 2019.
[24]
Asgharzade S, Talaei A, Farkhondeh T, Forouzanfar F. Combining growth factor and stem cell therapy for stroke rehabilitation, a review. Curr Drug Targets 2020.
[http://dx.doi.org/10.2174/1389450121666200107100747] [PMID: 31914912]
[25]
Fetoni AR, Eramo SLM, Di Pino A, et al. The Antioxidant Effect of Rosmarinic Acid by Different Delivery Routes in the Animal Model of Noise-Induced Hearing Loss. Otol Neurotol 2018; 39(3): 378-86.
[http://dx.doi.org/10.1097/MAO.0000000000001700] [PMID: 29424820]
[26]
Groth JB, Kao SY, Briët MC, Stankovic KM. Hepatocyte nuclear factor-4 alpha in noise-induced cochlear neuropathy. Dev Neurobiol 2016; 76(12): 1374-86.
[http://dx.doi.org/10.1002/dneu.22399] [PMID: 27112738]
[27]
Gilels F, Paquette ST, Beaulac HJ, Bullen A, White PM. Severe hearing loss and outer hair cell death in homozygous Foxo3 knockout mice after moderate noise exposure. Sci Rep 2017; 7(1): 1054.
[http://dx.doi.org/10.1038/s41598-017-01142-3] [PMID: 28432353]
[28]
Moon S-K, Park R, Lee HY, et al. Spiral ligament fibrocytes release chemokines in response to otitis media pathogens. Acta Otolaryngol 2006; 126(6): 564-9.
[http://dx.doi.org/10.1080/00016480500452525] [PMID: 16720438]
[29]
Delmaghani S, del Castillo FJ, Michel V, et al. Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy. Nat Genet 2006; 38(7): 770-8.
[http://dx.doi.org/10.1038/ng1829] [PMID: 16804542]
[30]
Ohinata Y, Miller JM, Altschuler RA, Schacht J. Intense noise induces formation of vasoactive lipid peroxidation products in the cochlea. Brain Res 2000; 878(1-2): 163-73.
[http://dx.doi.org/10.1016/S0006-8993(00)02733-5] [PMID: 10996147]
[31]
Chen GD, Liu Y. Mechanisms of noise-induced hearing loss potentiation by hypoxia. Hear Res 2005; 200(1-2): 1-9.
[http://dx.doi.org/10.1016/j.heares.2004.08.016] [PMID: 15668034]
[32]
Delmaghani S, Defourny J, Aghaie A, et al. Hypervulnerability to sound exposure through impaired adaptive proliferation of peroxisomes. Cell 2015; 163(4): 894-906.
[http://dx.doi.org/10.1016/j.cell.2015.10.023] [PMID: 26544938]
[33]
Kara M, Türkön H, Karaca T, et al. Evaluation of the protective effects of hesperetin against cisplatin-induced ototoxicity in a rat animal model. Int J Pediatr Otorhinolaryngol 2016; 85: 12-8.
[http://dx.doi.org/10.1016/j.ijporl.2016.03.019] [PMID: 27240489]
[34]
Fetoni AR, Troiani D, Petrosini L, Paludetti G. Cochlear injury and adaptive plasticity of the auditory cortex. Front Aging Neurosci 2015; 7: 8.
[http://dx.doi.org/10.3389/fnagi.2015.00008] [PMID: 25698966]
[35]
Sanchez-Calderon H, Rodriguez-de la Rosa L, Milo M, Pichel JG, Holley M, Varela-Nieto I. RNA microarray analysis in prenatal mouse cochlea reveals novel IGF-I target genes: implication of MEF2 and FOXM1 transcription factors. PLoS One 2010; 5(1): e8699.
[http://dx.doi.org/10.1371/journal.pone.0008699] [PMID: 20111592]
[36]
Zhang Q, Liu H, Soukup GA, He DZ. Identifying microRNAs involved in aging of the lateral wall of the cochlear duct. PLoS One 2014; 9(11): e112857.
[http://dx.doi.org/10.1371/journal.pone.0112857] [PMID: 25405349]
[37]
Zhang Q, Liu H, McGee J, Walsh EJ, Soukup GA, He DZ. Identifying microRNAs involved in degeneration of the organ of corti during age-related hearing loss. PLoS One 2013; 8(4): e62786.
[http://dx.doi.org/10.1371/journal.pone.0062786] [PMID: 23646144]
[38]
Patel M, Cai Q, Ding D, Salvi R, Hu Z, Hu BH. The miR-183/Taok1 target pair is implicated in cochlear responses to acoustic trauma. PLoS One 2013; 8(3): e58471.
[http://dx.doi.org/10.1371/journal.pone.0058471] [PMID: 23472202]
[39]
Wang J, Tymczyszyn N, Yu Z, Yin S, Bance M, Robertson GS. Overexpression of X-linked inhibitor of apoptosis protein protects against noise-induced hearing loss in mice. Gene Ther 2011; 18(6): 560-8.
[http://dx.doi.org/10.1038/gt.2010.172] [PMID: 21228883]
[40]
Tadros SF, D’Souza M, Zhu X, Frisina RD. Apoptosis-related genes change their expression with age and hearing loss in the mouse cochlea. Apoptosis 2008; 13(11): 1303-21.
[http://dx.doi.org/10.1007/s10495-008-0266-x] [PMID: 18839313]
[41]
Ramkumar V, Whitworth CA, Pingle SC, Hughes LF, Rybak LP. Noise induces A1 adenosine receptor expression in the chinchilla cochlea. Hear Res 2004; 188(1-2): 47-56.
[http://dx.doi.org/10.1016/S0378-5955(03)00344-7] [PMID: 14759570]
[42]
Liu P, Zhao H, Wang R, et al. MicroRNA-424 protects against focal cerebral ischemia and reperfusion injury in mice by suppressing oxidative stress. Stroke 2015; 46(2): 513-9.
[http://dx.doi.org/10.1161/STROKEAHA.114.007482] [PMID: 25523055]
[43]
Li YH, Yang Y, Yan YT, et al. Analysis of serum microRNA expression in male workers with occupational noise-induced hearing loss. Braz J Med Biol Res 2018; 51(3): e6426.
[http://dx.doi.org/10.1590/1414-431x20176426] [PMID: 29340520]
[44]
Wakabayashi K, Fujioka M, Kanzaki S, et al. Blockade of interleukin-6 signaling suppressed cochlear inflammatory response and improved hearing impairment in noise-damaged mice cochlea. Neurosci Res 2010; 66(4): 345-52.
[http://dx.doi.org/10.1016/j.neures.2009.12.008] [PMID: 20026135]
[45]
Soyalıç H, Gevrek F, Karaman S. Curcumin protects against acoustic trauma in the rat cochlea. Int J Pediatr Otorhinolaryngol 2017; 99: 100-6.
[http://dx.doi.org/10.1016/j.ijporl.2017.05.029] [PMID: 28688549]
[46]
Tan WJ, Thorne PR, Vlajkovic SM. Characterisation of cochlear inflammation in mice following acute and chronic noise exposure. Histochem Cell Biol 2016; 146(2): 219-30.
[http://dx.doi.org/10.1007/s00418-016-1436-5] [PMID: 27109494]
[47]
Le Prell CG, Yamashita D, Minami SB, Yamasoba T, Miller JM. Mechanisms of noise-induced hearing loss indicate multiple methods of prevention. Hear Res 2007; 226(1-2): 22-43.
[http://dx.doi.org/10.1016/j.heares.2006.10.006] [PMID: 17141991]
[48]
Zheng F, Zuo J. Cochlear hair cell regeneration after noise-induced hearing loss: Does regeneration follow development? Hear Res 2017; 349: 182-96.
[http://dx.doi.org/10.1016/j.heares.2016.12.011] [PMID: 28034617]
[49]
Zhang Q, Liu H, McGee J, Walsh EJ, Soukup GA, He DZJPO. Identifying microRNAs involved in degeneration of the organ of corti during age-related hearing loss 2013; 8(4): e62786.
[http://dx.doi.org/10.1371/journal.pone.0062786]
[50]
Pang J, Xiong H, Yang H, Ou Y, Xu Y, Huang Q, et al. Circulating miR-34a levels correlate with age-related hearing loss in mice and humans 2016; 76: 58-67.
[http://dx.doi.org/10.1016/j.exger.2016.01.009 ]
[51]
Li Q, Peng X, Huang H, Li J, Wang F, Wang J. RNA sequencing uncovers the key microRNAs potentially contributing to sudden sensorineural hearing loss. Medicine (Baltimore) 2017; 96(47), e8837.
[http://dx.doi.org/10.1097/MD.0000000000008837] [PMID: 29381991]
[52]
Johnson TA, Cooper S, Stamper GC, Chertoff M. Noise exposure questionnaire: a tool for quantifying annual noise exposure. J Am Acad Audiol 2017; 28(1): 14-35.
[http://dx.doi.org/10.3766/jaaa.15070] [PMID: 28054909]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy