Generic placeholder image

Current HIV Research

Editor-in-Chief

ISSN (Print): 1570-162X
ISSN (Online): 1873-4251

Research Article

Production and Evaluation of the Properties of HIV-1-Nef-MPER-V3 Fusion Protein Harboring IMT-P8 Cell Penetrating Peptide

Author(s): Shekoufa Jahedian, Seyed Mehdi Sadat*, Gholam Reza Javadi and Azam Bolhassani

Volume 18, Issue 5, 2020

Page: [315 - 323] Pages: 9

DOI: 10.2174/1570162X18666200612151925

Price: $65

Abstract

Background: Finding a safe and effective vaccine for HIV-1 infection is still a major concern.

Objective: This study aimed to design and produce a recombinant Nef-MPER V3 protein fused with IMT-P8 using E. coli expression system to provide a potential HIV vaccine with high cellular penetrance.

Methods: After synthesizing the DNA sequence of the fusion protein, the construct was inserted into the pET-28 expression vector. The recombinant protein expression was induced using 1 mM IPTG and the product was purified through affinity chromatography. Characterization of cellular delivery, toxicity and immunogenicity of the protein was carried out.

Results: The recombinant protein was expressed and confirmed by the anti-Nef antibody through western blotting. Data analyses showed that the protein possessed no considerable toxicity effect and has improved the IMT-P8 penetration rate in comparison to a control sample. Moreover, the antigen immunogenicity of the protein induced specific humoral response in mice.

Conclusion: It was concluded that IMT-P8-Nef-MPER-V3 fusion protein has a high penetrance rate in mammalian cell line and low toxicity, thus it can be potentially considered as a vaccine against HIV-1.

Keywords: HIV-1, Recombinant protein, Escherichia coli, Nef-MPER-V3, Cell penetrating peptide, IMT-P8.

Graphical Abstract

[1]
Sisay T, Verma D, Berhane N, Tsegaw M. Vaccine Development Strategies, Progresses and Challenges for Human Immunodeficiency Virus (HIV): A Review. Int J Biotechnol 2018; 7(1): 8-16.
[http://dx.doi.org/10.18488/journal.57.2018.71.8.16]
[2]
McMichael AJ, Haynes BF. Lessons learned from HIV-1 vaccine trials: new priorities and directions. Nat Immunol 2012; 13(5): 423-7.
[http://dx.doi.org/10.1038/ni.2264] [PMID: 22513323]
[3]
Khan KH. DNA vaccines: roles against diseases. Germs 2013; 3(1): 26-35.
[http://dx.doi.org/10.11599/germs.2013.1034] [PMID: 24432284]
[4]
Mona Sadat L, Seyed Mehdi S, Amitis R. HIV-1 Immune evasion: The main obstacle toward a successful vaccine Archives of Asthma. Allergy and Immunology 2018; 2(2): 13-5.
[5]
Sadat Larijani M, Sadat SM, Bolhassani A, Ramezani A. A Shot at Dendritic Cell-Based Vaccine Strategy against HIV-1. Journal of Medical Microbiology and Infectious Diseases 2020; 7(4): 89-92.
[http://dx.doi.org/10.29252/JoMMID.7.4.89]
[6]
Hsu DC, O’Connell RJ. Progress in HIV vaccine development. Hum Vaccin Immunother 2017; 13(5): 1018-30.
[http://dx.doi.org/10.1080/21645515.2016.1276138] [PMID: 28281871]
[7]
Global HIV. AIDS statistics — 2019 fact sheet. UNAIDS 2019.
[8]
Sahay B, Nguyen CQ, Yamamoto JK. Conserved HIV epitopes for an effective HIV vaccine. J Clin Cell Immunol 2017; 8(4): 518.
[http://dx.doi.org/10.4172/2155-9899.1000518] [PMID: 29226015]
[9]
Johnson WE, Desrosiers RC. Viral persistence: HIV’s strategies of immune system evasion. Annu Rev Med 2002; 53(1): 499-518.
[http://dx.doi.org/10.1146/annurev.med.53.082901.104053] [PMID: 11818487]
[10]
Ekong E, Ndembi N, Okonkwo P, Dakum P, Idoko J, Banigbe B. Epidemiologic and viral predictors of antiretroviral drug resistance among persons living with HIV in a large treatment program in Nigeria. AIDS Res Ther 2020; 17(1): 7.
[http://dx.doi.org/10.1186/s12981-020-0261-z]
[11]
Larijani MS, Ramezani A, Sadat SM. Updated Studies on the Development of HIV Therapeutic Vaccine. Curr HIV Res 2019; 17(2): 75-84.
[http://dx.doi.org/10.2174/1570162X17666190618160608] [PMID: 31210114]
[12]
Teeraananchai S, Chaivooth S, Kerr SJ, et al. Life expectancy after initiation of combination antiretroviral therapy in Thailand. Antivir Ther (Lond) 2017; 22(5): 393-402.
[http://dx.doi.org/10.3851/IMP3121] [PMID: 28054931]
[13]
Norton TD, Miller EA. Recent Advances in Lentiviral Vaccines for HIV-1 Infection. Front Immunol 2016; 7: 243.
[PMID: 27446074]
[14]
Koff WC. A shot at AIDS. Curr Opin Biotechnol 2016; 42: 147-51.
[http://dx.doi.org/10.1016/j.copbio.2016.03.007] [PMID: 27153215]
[15]
Sadat SM, Zabihollahi R, Aghasadeghi MR, et al. Application of SCR priming VLP boosting as a novel vaccination strategy against HIV-1. Curr HIV Res 2011; 9(3): 140-7.
[http://dx.doi.org/10.2174/157016211795945223] [PMID: 21443517]
[16]
Global Health Observatory (GHO) dataHIV/AIDS. World Health organization 2019.
[17]
Girard MP, Osmanov S, Assossou OM, Kieny M-P. Human immunodeficiency virus (HIV) immunopathogenesis and vaccine development: a review. Vaccine 2011; 29(37): 6191-218.
[http://dx.doi.org/10.1016/j.vaccine.2011.06.085] [PMID: 21718747]
[18]
Ward AB, Wilson IA. The HIV-1 envelope glycoprotein structure: nailing down a moving target. Immunol Rev 2017; 275(1): 21-32.
[http://dx.doi.org/10.1111/imr.12507] [PMID: 28133813]
[19]
van Gils MJ, Sanders RW. Broadly neutralizing antibodies against HIV-1: templates for a vaccine. Virology 2013; 435(1): 46-56.
[http://dx.doi.org/10.1016/j.virol.2012.10.004] [PMID: 23217615]
[20]
Garg H, Blumenthal R. Role of HIV Gp41 mediated fusion/hemifusion in bystander apoptosis. Cell Mol Life Sci 2008; 65(20): 3134-44.
[http://dx.doi.org/10.1007/s00018-008-8147-6] [PMID: 18500445]
[21]
Liu S, Kondo N, Long Y, Xiao D, Iwamoto A, Matsuda Z. Membrane topology analysis of HIV-1 envelope glycoprotein gp41. Retrovirology 2010; 7(1): 100.
[http://dx.doi.org/10.1186/1742-4690-7-100] [PMID: 21118523]
[22]
Hartley O, Klasse PJ, Sattentau QJ, Moore JP. V3: HIV’s switch hitter. AIDS Res Hum Retroviruses 2005; 21(2): 171-89.
[http://dx.doi.org/10.1089/aid.2005.21.171] [PMID: 15725757]
[23]
Burton DR, Desrosiers RC, Doms RW, et al. HIV vaccine design and the neutralizing antibody problem. Nat Immunol 2004; 5(3): 233-6.
[http://dx.doi.org/10.1038/ni0304-233] [PMID: 14985706]
[24]
Davis KL, Gray ES, Moore PL, et al. High titer HIV-1 V3-specific antibodies with broad reactivity but low neutralizing potency in acute infection and following vaccination. Virology 2009; 387(2): 414-26.
[http://dx.doi.org/10.1016/j.virol.2009.02.022] [PMID: 19298995]
[25]
daSilva LL, Sougrat R, Burgos PV, Janvier K, Mattera R, Bonifacino JS. Human immunodeficiency virus type 1 Nef protein targets CD4 to the multivesicular body pathway. J Virol 2009; 83(13): 6578-90.
[http://dx.doi.org/10.1128/JVI.00548-09] [PMID: 19403684]
[26]
Giel-Moloney M, Esteban M, Oakes BH, et al. Recombinant HIV-1 vaccine candidates based on replication-defective flavivirus vector. Sci Rep 2019; 9(1): 20005.
[http://dx.doi.org/10.1038/s41598-019-56550-4] [PMID: 31882800]
[27]
Pawlak EN, Dikeakos JD. HIV-1 Nef: A master manipulator of the membrane trafficking machinery mediating immune evasion. Biochim Biophys Acta 2015; 1850(4): 733-41.
[http://dx.doi.org/10.1016/j.bbagen.2015.01.003] [PMID: 25585010]
[28]
Park SY, Mack WJ, Lee HY. Enhancement of viral escape in HIV-1 Nef by STEP vaccination. AIDS 2016; 30(16): 2449-58.
[http://dx.doi.org/10.1097/QAD.0000000000001202] [PMID: 27427874]
[29]
Milicic A, Price DA, Zimbwa P, et al. CD8+ T cell epitope flanking mutations disrupt proteasomal processing of HIV-1 Nef. J Immunol 2005; 175(7): 4618-26.
[http://dx.doi.org/10.4049/jimmunol.175.7.4618] [PMID: 16177107]
[30]
Buffalo CZ, Iwamoto Y, Hurley JH, Ren X. How HIV Nef Proteins Hijack Membrane Traffic To Promote Infection. J Virol 2019; 93(24): e01322-19.
[http://dx.doi.org/10.1128/JVI.01322-19] [PMID: 31578291]
[31]
Perdiguero B, Sánchez-Corzo C, Sorzano COS, Saiz L, Mediavilla P, Esteban M. A Novel MVA-Based HIV Vaccine Candidate (MVA-gp145-GPN) Co-Expressing Clade C Membrane-Bound Trimeric gp145 Env and Gag-Induced Virus-Like Particles (VLPs) Triggered Broad and Multifunctional HIV-1-Specific T Cell and Antibody Responses Viruses 2019; 11(12): 16.
[32]
Rios A. Fundamental challenges to the development of a preventive HIV vaccine. Curr Opin Virol 2018; 29: 26-32.
[http://dx.doi.org/10.1016/j.coviro.2018.02.004] [PMID: 29549802]
[33]
Trovato M, D’Apice L, Prisco A, De Berardinis P. HIV Vaccination: A Roadmap among Advancements and Concerns. Int J Mol Sci 2018; 19(4): 1241.
[http://dx.doi.org/10.3390/ijms19041241] [PMID: 29671786]
[34]
Gautam A, Nanda JS, Samuel JS, et al. Topical delivery of protein and peptide using novel cell penetrating peptide IMT-P8. Sci Rep 2016; 6: 26278.
[http://dx.doi.org/10.1038/srep26278] [PMID: 27189051]
[35]
Milani A, Bolhassani A, Shahbazi S, Motevalli F, Sadat SM, Soleymani S. Small heat shock protein 27: An effective adjuvant for enhancement of HIV-1 Nef antigen-specific immunity. Immunol Lett 2017; 191: 16-22.
[http://dx.doi.org/10.1016/j.imlet.2017.09.005] [PMID: 28917624]
[36]
Skwarczynski M, Toth I. Cell penetrating peptides in vaccine delivery: facts, challenges and perspectives. Ther Deliv 2019; 10(8): 465-7.
[http://dx.doi.org/10.4155/tde-2019-0042] [PMID: 31462173]
[37]
Yang J, Luo Y, Shibu MA, Toth I, Skwarczynskia M. Cell-penetrating Peptides: Efficient Vectors for Vaccine Delivery. Curr Drug Deliv 2019; 16(5): 430-43.
[http://dx.doi.org/10.2174/1567201816666190123120915] [PMID: 30760185]
[38]
Kadkhodayan S, Jafarzade BS, Sadat SM, Motevalli F, Agi E, Bolhassani A. Combination of cell penetrating peptides and heterologous DNA prime/protein boost strategy enhances immune responses against HIV-1 Nef antigen in BALB/c mouse model. Immunol Lett 2017; 188: 38-45.
[http://dx.doi.org/10.1016/j.imlet.2017.06.003] [PMID: 28602843]
[39]
Ibrahim YHEY, Regdon G, Hamedelniel EI, Sovány T. Review of recently used techniques and materials to improve the efficiency of orally administered proteins/peptides. Daru 2019.
[PMID: 31811628]
[40]
Erazo-Oliveras A, Muthukrishnan N, Baker R, Wang T-Y, Pellois J-P. Improving the endosomal escape of cell-penetrating peptides and their cargos: strategies and challenges. Pharmaceuticals (Basel) 2012; 5(11): 1177-209.
[http://dx.doi.org/10.3390/ph5111177] [PMID: 24223492]
[41]
Säälik P, Elmquist A, Hansen M, et al. Protein cargo delivery properties of cell-penetrating peptides. A comparative study. Bioconjug Chem 2004; 15(6): 1246-53.
[http://dx.doi.org/10.1021/bc049938y] [PMID: 15546190]
[42]
Escolano A, Dosenovic P, Nussenzweig MC. Progress toward active or passive HIV-1 vaccination. J Exp Med 2017; 214(1): 3-16.
[http://dx.doi.org/10.1084/jem.20161765] [PMID: 28003309]
[43]
Tohidi F, Sadat SM, Bolhassani A, Yaghobi R. Construction and Production of HIV-VLP Harboring MPER-V3 for Potential Vaccine Study. Curr HIV Res 2017; 15(6): 434-9.
[PMID: 29046160]
[44]
Ditse Z, Mkhize NN, Yin M, et al. Effect of HIV Envelope Vaccination on the Subsequent Antibody Response to HIV Infection. MSphere 2020; 5(1): e00738-19.
[http://dx.doi.org/10.1128/mSphere.00738-19] [PMID: 31996422]
[45]
Namazi F, Bolhassani A, Sadat SM, Irani S. Delivery of HIV-1 Polyepitope Constructs Using Cationic and Amphipathic Cell Penetrating Peptides into Mammalian Cells. Curr HIV Res 2019; 17(6): 408-28.
[http://dx.doi.org/10.2174/1570162X17666191121114522] [PMID: 31755394]
[46]
Tohidi F, Sadat SM, Bolhassani A, Yaghobi R, Larijani MS. Induction of a Robust Humoral Response using HIV-1 VLPMPER-V3 as a Novel Candidate Vaccine in BALB/c Mice. Curr HIV Res 2019; 17(1): 33-41.
[http://dx.doi.org/10.2174/1570162X17666190306124218] [PMID: 30843489]
[47]
Korber B, Fischer W. T cell-based strategies for HIV-1 vaccines. Hum Vaccin Immunother 2020; 16(3): 713-22.
[http://dx.doi.org/10.1080/21645515.2019.1666957] [PMID: 31584318]
[48]
Liu Z, Xiao Y, Chen Y-H. Epitope-vaccine strategy against HIV-1: today and tomorrow. Immunobiology 2003; 208(4): 423-8.
[http://dx.doi.org/10.1078/0171-2985-00286] [PMID: 14748515]
[49]
Sette A, Fikes J. Epitope-based vaccines: an update on epitope identification, vaccine design and delivery. Curr Opin Immunol 2003; 15(4): 461-70.
[http://dx.doi.org/10.1016/S0952-7915(03)00083-9] [PMID: 12900280]
[50]
Larijani MS, Pouriayevali MH, Sadat SM, Ramezani A. Production of Recombinant HIV-1 p24-Nef Protein in Two Forms as Potential Candidate Vaccines in Three Vehicles. Curr Drug Deliv 2020; 17: 1.
[http://dx.doi.org/10.2174/1567201817666200317121728] [PMID: 32183667]
[51]
Davoodi S, Bolhassani A, Sadat SM, Irani S. Design and in vitro delivery of HIV-1 multi-epitope DNA and peptide constructs using novel cell-penetrating peptides. Biotechnol Lett 2019; 41(11): 1283-98.
[http://dx.doi.org/10.1007/s10529-019-02734-x] [PMID: 31531750]
[52]
Combadière B, Beaujean M, Chaudesaigues C, Vieillard V. Peptide-Based Vaccination for Antibody Responses Against HIV. Vaccines (Basel) 2019; 7(3): 105.
[http://dx.doi.org/10.3390/vaccines7030105] [PMID: 31480779]
[53]
Hessell AJ, Powell R, Jiang X, et al. Multimeric Epitope-Scaffold HIV Vaccines Target V1V2 and Differentially Tune Polyfunctional Antibody Responses. Cell Rep 2019; 28(4): 877-895.e6.
[http://dx.doi.org/10.1016/j.celrep.2019.06.074] [PMID: 31340151]
[54]
Foster JL, Garcia JV. HIV-1 Nef: at the crossroads. Retrovirology 2008; 5(1): 84.
[http://dx.doi.org/10.1186/1742-4690-5-84] [PMID: 18808677]
[55]
Geyer M, Fackler OT, Peterlin BM. Structure--function relationships in HIV-1 Nef. EMBO Rep 2001; 2(7): 580-5.
[http://dx.doi.org/10.1093/embo-reports/kve141] [PMID: 11463741]
[56]
Kardani K, Hashemi A, Bolhassani A. Comparative analysis of two HIV-1 multiepitope polypeptides for stimulation of immune responses in BALB/c mice. Mol Immunol 2020; 119: 106-22.
[http://dx.doi.org/10.1016/j.molimm.2020.01.013] [PMID: 32007753]
[57]
Chikata T, Paes W, Akahoshi T, et al. Identification of Immunodominant HIV-1 Epitopes Presented by HLA-C*12:02, a Protective Allele, Using an Immunopeptidomics Approach. J Virol 2019; 93(17): e00634-19.
[http://dx.doi.org/10.1128/JVI.00634-19] [PMID: 31217245]
[58]
Larijani MS, Sadat SM, Bolhassani A, Pouriayevali MH, Bahramali G, Ramezani A. In Silico Design and Immunologic Evaluation of HIV-1 p24-Nef Fusion Protein to Approach a Therapeutic Vaccine Candidate. Curr HIV Res 2018; 16(5): 322-37.
[http://dx.doi.org/10.2174/1570162X17666190102151717] [PMID: 30605062]
[59]
Trillo-Pazos G, McFarlane-Abdulla E, Campbell IC, Pilkington GJ, Everall IP. Recombinant nef HIV-IIIB protein is toxic to human neurons in culture. Brain Res 2000; 864(2): 315-26.
[http://dx.doi.org/10.1016/S0006-8993(00)02213-7] [PMID: 10802040]
[60]
Chatila W, Santerre M, Criner G, Sawaya B. Hiv-1 Nef downregulates Mirna Expression.Lung CellsA108 MICRO RNAS, RNA SEQ, LNCRNA: BIOLOGY AND FUNCTION American Thoracic Society. 2016; p. A2815-.
[61]
Vermasvuori R, Koskinen J, Salonen K, et al. Production of recombinant HIV-1 nef protein using different expression host systems: a techno-economical comparison. Biotechnol Prog 2009; 25(1): 95-102.
[http://dx.doi.org/10.1002/btpr.69] [PMID: 19224559]
[62]
Finzi A, Cloutier J, Cohen ÉA. Two-step purification of His-tagged Nef protein in native condition using heparin and immobilized metal ion affinity chromatographies. J Virol Methods 2003; 111(1): 69-73.
[http://dx.doi.org/10.1016/S0166-0934(03)00154-X] [PMID: 12821199]
[63]
Jafarzade B, Sadat S, Yaghobi R, Bolhassani A. Reverse staining: Effective method for purification of HIV-1 Nef protein in prokaryotic expression system. Feyz 2016; 20(5): 420-6.
[64]
Brinkkemper M, Sliepen K. Nanoparticle Vaccines for Inducing HIV-1 Neutralizing Antibodies. Vaccines (Basel) 2019; 7(3): 76.
[http://dx.doi.org/10.3390/vaccines7030076] [PMID: 31362378]
[65]
Wang Q, Zhang L. Broadly neutralizing antibodies and vaccine design against HIV-1 infection. Front Med 2020; 14(1): 30-42.
[http://dx.doi.org/10.1007/s11684-019-0721-9] [PMID: 31858368]
[66]
Bai H, Li Y, Michael NL, Robb ML, Rolland M. The breadth of HIV-1 neutralizing antibodies depends on the conservation of key sites in their epitopes. PLOS Comput Biol 2019; 15(6): e1007056.
[http://dx.doi.org/10.1371/journal.pcbi.1007056] [PMID: 31170145]
[67]
Zwick MB, Jensen R, Church S, et al. Anti-human immunodeficiency virus type 1 (HIV-1) antibodies 2F5 and 4E10 require surprisingly few crucial residues in the membrane-proximal external region of glycoprotein gp41 to neutralize HIV-1. J Virol 2005; 79(2): 1252-61.
[http://dx.doi.org/10.1128/JVI.79.2.1252-1261.2005] [PMID: 15613352]
[68]
Molinos-Albert LM, Bilbao E, Agulló L, et al. Proteoliposomal formulations of an HIV-1 gp41-based miniprotein elicit a lipid dependent immunodominant response overlapping the 2F5 binding motif. Sci Rep 2017; 7(1): 40800.
[http://dx.doi.org/10.1038/srep40800] [PMID: 28084464]
[69]
Pancera M, Majeed S, Ban Y-EA, et al. Structure of HIV-1 gp120 with gp41-interactive region reveals layered envelope architecture and basis of conformational mobility. Proc Natl Acad Sci USA 2010; 107(3): 1166-71.
[http://dx.doi.org/10.1073/pnas.0911004107] [PMID: 20080564]
[70]
Ye L, Wen Z, Dong K, et al. Induction of HIV neutralizing antibodies against the MPER of the HIV envelope protein by HA/gp41 chimeric protein-based DNA and VLP vaccines. PLoS One 2011; 6(5): e14813.
[http://dx.doi.org/10.1371/journal.pone.0014813] [PMID: 21625584]
[71]
Gottardo R, Bailer RT, Korber BT, et al. Plasma IgG to linear epitopes in the V2 and V3 regions of HIV-1 gp120 correlate with a reduced risk of infection in the RV144 vaccine efficacy trial. PLoS One 2013; 8(9): e75665.
[http://dx.doi.org/10.1371/journal.pone.0075665] [PMID: 24086607]
[72]
Pouniotis D, Tang C-K, Apostolopoulos V, Pietersz G. Vaccine delivery by penetratin: mechanism of antigen presentation by dendritic cells. Immunol Res 2016; 64(4): 887-900.
[http://dx.doi.org/10.1007/s12026-016-8799-5] [PMID: 27138940]
[73]
Brooks NA, Pouniotis DS, Tang C-K, Apostolopoulos V, Pietersz GA. Cell-penetrating peptides: application in vaccine delivery. Biochimica et Biophysica Acta (BBA)-. Rev Can 2010; 1805(1): 25-34.
[74]
Alizadeh S, Irani S, Bolhassani A, Sadat SM. Simultaneous use of natural adjuvants and cell penetrating peptides improves HCV NS3 antigen-specific immune responses. Immunol Lett 2019; 212: 70-80.
[http://dx.doi.org/10.1016/j.imlet.2019.06.011] [PMID: 31254535]
[75]
Mehrlatifan S, Mirnurollahi SM, Motevalli F, Rahimi P, Soleymani S, Bolhassani A. The structural HCV genes delivered by MPG cell penetrating peptide are directed to enhance immune responses in mice model. Drug Deliv 2016; 23(8): 2852-9.
[http://dx.doi.org/10.3109/10717544.2015.1108375] [PMID: 26559939]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy