Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Fluoro Aryl Azides: Synthesis, Reactions and Applications

Author(s): Elisa Leyva*, Matthew S. Platz, Silvia E. Loredo-Carrillo and Johana Aguilar

Volume 24, Issue 11, 2020

Page: [1161 - 1180] Pages: 20

DOI: 10.2174/1385272824999200608132505

Price: $65

Abstract

Background: The complex photochemistry of aryl azides has fascinated scientists for several decades. Spectroscopists have investigated the intermediates formed by different analytical techniques. Theoretical chemists have explained the intrinsic interplay of intermediates under different experimental conditions.

Objective & Methods: A complete understanding of the photochemistry of a given fluoro aryl azide is a basic requisite for its use in chemistry. In this review, we will discuss the synthesis of several fluoro substituted aryl azides and the reactions and intermediates generated upon photolysis and thermolysis of these azides and some examples of their applications in photoaffinity labeling and organic synthesis.

Conclusion: In spite of the extensive research on the photochemistry of fluoro aryl azides, there are some areas that remain to be investigated. The application of this reaction in the synthesis of novel heterocyclic compounds has not been fully studied. Since fluorophenyl azides are known to undergo C-H and N-H insertion reactions, they could be used to prepare new fluorinated molecules or in the biochemical process known as photoaffinity labeling.

Keywords: Fluoro aryl azides, photochemistry, thermochemistry, photoaffinity labeling, bifunctional photochemical probes, azido fluoroquinolones.

Next »
Graphical Abstract

[1]
Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Organic azides: an exploding diversity of a unique class of compounds. Angew. Chem. Int. Ed., 2005, 44, 5188-5240.
[http://dx.doi.org/10.1002/anie.200400657]
[2]
Schock, M.; Bräse, S. Reactive and efficient: organic azides as cross-linkers in material sciences. Molecules, 2020, 25, 1009.
[http://dx.doi.org/10.3390/molecules25041009]
[3]
Moss, R.A.; Platz, M.S.; Jones, M. Reactive Intermediate Chemistry; John Wiley & Sons Inc.: New York, 2004.
[4]
Singh, A.; Thornton, E.R.; Westheimer, F.H. The photolysis of diazo-acetylchymotrysin. J. Biol. Chem., 1962, 237, 3006-3008.
[PMID: 13913310]
[5]
(a)Chowdhry, V.; Westheimer, F.H. p-Toluenesulfonyldiazoacetates: reagents for photoaffinity labeling. Bioorg. Chem., 1978, 7, 189-205.
[http://dx.doi.org/10.1016/0045-2068(78)90048-2]]
(b)Chowdhry, V.; Westheimer, F.H. Photoaffinity labeling of biological systems. Annu. Rev. Biochem., 1979, 48, 293-325.
[http://dx.doi.org/10.1146/annurev.bi.48.070179.001453] [PMID: 382986]
[6]
Bayley, H. Photogenerated Reagents in Biochemistry and Molecular Biology; Elsevier: New York, 1983.
[7]
Fleming, S.A. Chemical reagents in photoaffinity labeling. Tetrahedron, 1995, 51, 12479-12520.
[http://dx.doi.org/10.1016/0040-4020(95)00598-3]
[8]
(a)Rajagopalan, R.; Kuntz, R.R.U.; Sharma, U.; Volkert, W.A.; Pandurangi, R.S. Chemistry of bifunctional photoprobes. J. Org. Chem., 2002, 67, 6748-6757.
[http://dx.doi.org/10.1021/jo010782u] [PMID: 12227807]
(b)Fritzberg, A.R.; Wilber, D.S. Targeted Delivery of Imaging Agents; Torchilin, V.P., Ed.; CRC Press: Boca Raton, 1995.
(c)Kowalsky, R.J.; Perry, J.R. Chemistry of radiopharmaceuticals. In: Radiopharmaceuticals in Nuclear Medicinal Practice; Baum, S., Ed.; Appleton & Lange: Norwalk, 2004.
[9]
Platz, M.S. Photoaffinity labeling: introduction. Photochem. Photobiol., 1997, 65 ,2, 193-194.
[http://dx.doi.org/10.1111/j.1751-1097.1997.tb08544.x]
[10]
Bouchet, M.J.; Goeldner, M. Photochemical labeling: can photoaffinity labeling be differentiated from site-directed photochemical coupling? Photochem. Photobiol., 1997, 65(2), 195-200.
[http://dx.doi.org/10.1111/j.1751-1097.1997.tb08545.x]
[11]
Bayley, H.; Knowles, J.R. Photoaffinity labeling. Methods Enzymol., 1977, 46, 69-114.
[http://dx.doi.org/10.1016/S0076-6879(77)46012-9] [PMID: 909454]
[12]
(a)Scriven, E.F.V. Azides and Nitrenes: Reactivity and Utility; Academic Press: New York, 1984.
(b)Platz, M.S.; Leyva, E.; Haider, K. Selected Topics in the Matrix Photochemistry of Nitrenes, Carbenes and Excited States in Organic Photochem; Padwa, A., Ed.; Marcel Dekker Inc.: New York, 1991.
(c)Borden, W.T.; Gritsan, N.P.; Hadad, C.M.; Karney, W.L.; Kemnitz, C.R.; Platz, M.S. The interplay of theory and experiment in the study of phenylnitrene. Acc. Chem. Res., 2000, 33, 765-771.
[http://dx.doi.org/10.1021/ar990030a]
(d)Leyva, E.; de Loera, D.; Leyva, S.; Cataño, R.J. Fluorinated Aryl Nitrene Precursors in Nitrenes and Nitrenium Ions; Falvey, D.E; Gudmundsdottir, A.D., Ed.; John Wiley & Sons: New Jersey, 2013.
[13]
(a)Leyva, E.; Platz, M.S.; Persy, G.; Wirz, J. Photochemistry of phenyl azide: the role of singlet and triplet phenylnitrene as transient intermediates. J. Am. Chem. Soc., 1986, 108, 3783-3790.
[http://dx.doi.org/10.1021/ja00273a037]
(b)Leyva, E.; Platz, M.S. The temperature dependent photochemistry of phenyl azide in diethylamine. Tetrahedron Lett., 1985, 26, 2147-2150.
[http://dx.doi.org/10.1016/S0040-4039(00)98947-0]
[14]
(a)Smith, P.A.S.; Brown, B.B. The synthesis of heterocyclic compounds from aryl azides. I. Bromo and nitro carbazoles. J. Am. Chem. Soc., 1951, 73, 2435-2437.
[http://dx.doi.org/10.1021/ja01150a008]
(b)Smith, P.A.S.; Boyer, J.H. The synthesis of heterocyclic compounds from aryl azides. II. Carbolines and thienoindole. J. Am. Chem. Soc., 1951, 73, 2626-2629.
[http://dx.doi.org/10.1021/ja01150a061]
[15]
Fischer, W.; Anselme, J.P. The reaction of amine anions with p-toluenesulfonyl azide. J. Am. Chem. Soc., 1967, 89, 5284-5285.
[http://dx.doi.org/10.1021/ja00996a036]
[16]
Liu, Q.; Tor, Y. Simple conversion of aromatic amines into azides. Org. Lett., 2003, 5, 2571-2572.
[http://dx.doi.org/10.1021/ol034919+]
[17]
(a)Keana, J.F.W.; Cai, S.X. New reagents for photoaffinity labeling: synthesis and photolysis of functionalized perfluorophenyl azides. J. Org. Chem., 1990, 55, 3640-3647.
[http://dx.doi.org/10.1021/jo00298a048]
(b)Keana, J.F.W.; Cai, S.X. Functionalized perfluorophenyl azides: new reagents for photoaffinity labeling. J. Fluor. Chem., 1989, 43, 151-154.
[http://dx.doi.org/10.1016/S0022-1139(00)81644-9]
(c)Chehade, K.A.H.; Spielmann, H.P. Facile and efficient synthesis of 4-azidotetrafluoroaniline: a new photoaffinity reagent. J. Org. Chem., 2000, 65, 4949-4953.
[http://dx.doi.org/10.1021/jo000402p]
[18]
(a)D’Anna, F.; Marullo, S.; Noto, R. Ionic liquids [bmim][N3] mixtures: promising media for the synthesis of aryl azides by SNAr. J. Org. Chem., 2008, 73, 6224-6228.
[http://dx.doi.org/10.1021/jo800676d]
(b)D’Anna, F.; Marullo, S.; Vitale, P.; Noto, R. Synthesis of aryl azides: a probe reaction to study the synergic action of ultrasounds and ionic liquids. Ultrason. Sonochem., 2012, 19, 136-142.
[http://dx.doi.org/10.1016/j.ultsonch.2011.06.010]
[19]
Leyva, E.; Leyva, S. Moctezuma, E.; Balderas, R.M.G.; de Loera, D. Microwave-assisted synthesis of substituted fluorophenyl mono- and diazides by SNAr. A Fast methodology to prepare photoaffinity labeling and crosslinking reagents. J. Fluor. Chem., 2013, 156, 164-169.
[http://dx.doi.org/10.1016/j.jfluchem.2013.10.002]
[20]
(a)March, J. Advanced Organic Chemistry; McGraw-Hill: New York, 1977.
(b)Solomons, T.W.G.; Fryhle, C.B. Organic Chemistry; John Wiley & Sons. Inc.: New York, 2004.
[21]
(a)Gritsan, N.P.; Yuzawa, T.; Platz, M.S. Direct observation of singlet phenylnitrene and measurement of its rate of rearrangement. J. Am. Chem. Soc., 1997, 119, 5059-5060.
[http://dx.doi.org/10.1021/ja963753n]
(b)Born, R.; Burda, C.; Senn, P.; Wirz, J. Transient absorption spectra and reaction kinetics of singlet phenyl nitrene and its 2,4,6-tribromo derivative in solution. J. Am. Chem. Soc., 1997, 119, 5061-5062.
[http://dx.doi.org/10.1021/ja970205g]
[22]
(a)Karney, W.L.; Borden, W.T. Ab initio study of the ring expansion of phenylnitrene and comparison with the ring expansion of phenylcarbene. J. Am. Chem. Soc., 1997, 119, 1378-1387.
[http://dx.doi.org/10.1021/ja9635241]
(b)Karney, W.L.; Borden, W.T. Why does o-fluorine substitution raise the barrier to ring expansion of phenylnitrene. J. Am. Chem. Soc., 1997, 119, 3347-3350.
[http://dx.doi.org/10.1021/ja9644440]
[23]
Smolinsky, G.; Wasserman, E.; Yager, W.A. The E.P.R. of ground state triplet nitrenes. J. Am. Chem. Soc., 1962, 84, 3220-3221.
[http://dx.doi.org/10.1021/ja00875a060]
[24]
Reiser, A.; Leyshon, L. Correlation between negative charge on nitrogen and the reactivity of aromatic nitrenes. J. Am. Chem. Soc., 1970, 92, 7487-7487.
[http://dx.doi.org/10.1021/ja00728a050]
[25]
(a)Banks, R.E.; Sparkes, G.R. Studies in azide chemistry. Part V. Synthesis of 4-azido-2,3,5,6-tetrafluoro-, 4-azido-3-chloro-2,5,6-trifluoro- and 4-azido-3,5-dichloro-2,6-difluoropyridine, and some thermal reactions of the tetrafluoro-compound. J. Chem. Soc., Perkin Trans. 1, 1972, 1972, 2964-2970.
[http://dx.doi.org/10.1039/P19720002964]
(b)Banks, R.E.; Prakash, A. New reactions of azidopentafluorobenzene: intermolecular insertions into N-H bonds. Tetrahedron Lett., 1973, 14(2), 99-102.
[http://dx.doi.org/10.1016/S0040-4039(01)95587-X]
(c)Banks, R.E.; Prakash, A. Studies in azide chemistry. Part VI. Some reactions of perfluoroazidobenzene and perfluoro-4-azidotoluene. J. Chem. Soc. Perkin I, 1974, 1974, 1365-1371.
[http://dx.doi.org/10.1039/P19740001365]
(d)Banks, R.E.; Madany, I.M. Studies in azide chemistry. Part 13[1. Intermolecular insertion of azide-derived polyfluorinated aryl- and heteroaryl-nitrenes into ring C-H bonds of 1,3,5-trimethyl- and 1,3,5-trimethoxy-benzene. J. Fluor. Chem., 1985, 30, 211-226.
[http://dx.doi.org/10.1016/S0022-1139(00)80890-8]
[26]
(a)Abramovitch, R.A.; Challand, S.R. Scriven, E.F.V. Mechanism of intermolecular aromatic substitution by aryl nitrenes. J. Am. Chem. Soc., 1972, 94, 1374-1376.
[http://dx.doi.org/10.1021/ja00759a066]
(b)Abramovitch, R.A.; Challand, S.R.; Scriven, E.F.V. Intermolecular aromatic substitution by aryl nitrenes. J. Org. Chem., 1972, 37, 2705-2710.
[http://dx.doi.org/10.1021/jo00982a017]
(c)Abramovitch, R.A.; Challand, S.R.; Yamada, Y. Addition of aryl nitrenes to olefins. J. Org. Chem., 1975, 40, 1541-1547.
[http://dx.doi.org/10.1021/jo00899a004]
[27]
Leyva, E.; Munoz, D.; Platz, M.S. Photochemistry of fluorinated aryl azides in toluene solution and frozen polycrystals. J. Org. Chem., 1989, 54, 5938-5945.
[http://dx.doi.org/10.1021/jo00286a028]
[28]
(a)Young, M.J.T.; Platz, M.S. Mechanistic analysis of the reactions of (pentafluorophenyl)nitrene in alcanes. J. Org. Chem., 1991, 56, 6403-6406.
[http://dx.doi.org/10.1021/jo00022a036]
(b)Poe, R.; Grayzar, J.; Young, M.J.T.; Leyva, E.; Schnapp, K.A. Platz, M.S. Remarkable catalysis of intersystem crossing of singlet (pentafluorophenyl)nitrene. J. Am. Chem. Soc., 1991, 113, 3209-3211.
[http://dx.doi.org/10.1021/ja00008a080]
(c)Poe, R.; Schnapp, K.A.; Young, M.J.T.; Grayzar, J.; Platz, M.S. Chemistry and kinetics of singlet (pentafluorophenyl)nitrene. J. Am. Chem. Soc., 1992, 114, 5054-5067.
[http://dx.doi.org/10.1021/ja00039a016]
(d)Schnapp, K.A.; Poe, R.; Leyva, E.; Soundararajan, N. Platz, M.S. Exploratory photochemistry of fluorinated aryl azides. Implications for the design of photoaffinity labeling reagents. Bioconjug. Chem., 1993, 4, 172-177.
[http://dx.doi.org/10.1021/bc00020a010]
[29]
Gritsan, N.P.; Gudmundsdottir, A.D.; Tigelaar, D.; Zhu, Z.; Karney, W.L.; Hadad, C.M. Platz. M.S. A laser flash photolysis and quantum chemical study of the fluorinated derivatives of singlet phenyl nitrene. J. Am. Chem. Soc., 2001, 123, 1951-1962.
[http://dx.doi.org/10.1021/ja9944305]
[30]
(a)Kim, S.J.; Hamilton, T.P.; Schaefer, H.F. Phenylnitrene: energetics, vibrational frequencies, and molecular structures. J. Am. Chem. Soc., 1992, 114, 5349-5355.
[http://dx.doi.org/10.1021/ja00039a054]
(b)Hrovat, D.A.; Waali, E.E. Borden, W.T. Ab initio calculations of the singlet-triplet energy difference in phenyl nitrene. J. Am. Chem. Soc., 1992, 114, 8698-8699.
[http://dx.doi.org/10.1021/ja00048a052]
(c)Travers, M.J.; Cowles, D.C.; Clifford, E.P.; Ellison, G.B. Photoelectron spectroscopy of the phenyl nitrene anion. J. Am. Chem. Soc., 1992, 114, 8699-8701.
[http://dx.doi.org/10.1021/ja00048a053]
(d)Smith, B.A.; Cramer, C.J. How do different fluorine substitution patterns affect the electronic state energies of phenylnitrene? J. Am. Chem. Soc., 1996, 118, 5490-5491.
[http://dx.doi.org/10.1021/ja960687g]
[31]
Zhai, H.B.; Platz, M.S. Exploratory photochemistry of polyfluorinated 2-naphthyl azide. J. Phys. Chem., 1996, 100, 9568-9572.
[http://dx.doi.org/10.1021/jp960962l]
[32]
(a)Shrock, A.K.; Schuster, G.B. Photochemistry of naphthyl and pyrenyl azides: chemical properties of the transient intermediate probed by laser spectroscopy. J. Am. Chem. Soc., 1984, 106, 5234-5240.
[http://dx.doi.org/10.1021/ja00330a033]
(b)Leyva, E.; Platz, M.S. The temperature dependent photochemistry of 1-naphthyl azide. Tetrahedron Lett., 1987, 28, 11-14.
[http://dx.doi.org/10.1016/S0040-4039(00)95636-3]
(c)Hilton, S.E.; Scriven, E.F.V.; Suschitzky, H. Thermal and photolytic decomposition of α- and β-naphthyl azides. J. Chem. Soc. Chem. Commun., 1974, 1974(21), 853-854.
[http://dx.doi.org/10.1039/C39740000853]
(d)Carrol, S.E.; Nay, B.; Scriven, E.F.V.; Suschitzky, H. Decomposition of arylazides in piperidine. Tetrahedron Lett., 1977, 18(11), 943-946.
[http://dx.doi.org/10.1016/S0040-4039(01)92798-4]
(e)Dunkin, I.R.; Thomson, P.C.P. Infrared evidence for tricyclic azirines and didehydrobenzazepines in the matrix photolysis of azidonaphthalenes. J. Chem. Soc. Chem. Commun., 1980, 1980(11), 499-501.
[http://dx.doi.org/10.1039/C39800000499]
[33]
Marcinek, A.; Platz, M.S.; Chan, S.Y.; Floresca, R.; Rajagopalan, K.; Golinsky, M.; Watt, D. Usually long lifetimes of the singlet nitrenes derived from 4-azido-2,3,5,6-tetrafluorobenzamides. J. Phys. Chem., 1994, 98, 412-419.
[http://dx.doi.org/10.1021/j100053a012]
[34]
(a)Sitzmann, E.V.; Langan, J.; Eisenthal, K.B. Intermolecular effects on intersystem crossing studied on the picosecond timescale: the solvent polarity on the rate of singlet-triplet intersystem crossing of diphenylcarbene. J. Am. Chem. Soc., 1984, 106, 1868-1869.
[http://dx.doi.org/10.1021/ja00318a069]
(b)Grasse, P.B.; Brauer, B.E.; Zupanzic, J.J.; Kaufmann, K.J.; Schuster, G.B. Chemical and physical properties of fluorenylidene: equilibration of the singlet and triplet carbenes. J. Am. Chem. Soc., 1983, 105, 6833-6845.
[http://dx.doi.org/10.1021/ja00361a014]
[35]
(a)Carroll, S.E.; Nay, B.; Scriven, E.F.; Suschitzky, H.; Thomas, D.R. Decomposition of aromatic azides in ethanethiol. Tetrahedron Lett., 1977, 36, 3175-3178.
[http://dx.doi.org/10.1016/S0040-4039(01)83190-7]
(b)Smalley, R.K. Azepines in Comprehensive Heterocyclic Chemistry; Lowinski, Ed.; Pergamon Press: Oxford , 1984.
(c)DeGraff, B.A. Gillespie, D.W.; Sundberg, R.J. Phenyl Nitrene. A flash photolytic investigation of the reaction with secondary amines. J. Am. Chem. Soc., 1974, 96, 7491-7496.
[http://dx.doi.org/10.1021/ja00831a017]
(d)Sundberg, R.J.; Suter, S.R.; Brenner, M. Photolysis of o-substituted aryl azides in diethylamine. Formation and autoxidation of diethylamino-1H-azepine intermediates. J. Am. Chem. Soc., 1972, 94, 513-520.
[http://dx.doi.org/10.1021/ja00757a032]
(e)Liang, T.Y. Schuster, G.B. Photochemistry of 3- and 4-nitrophenyl azides: detection and characterization of reactive intermediates. J. Am. Chem. Soc., 1987, 109, 7803-7810.
[http://dx.doi.org/10.1021/ja00259a032]
(f)Li, Y.Z.; Kirby, J.P.; George, M.W.; Poliakoff, M.; Schuster, G.B. 1,2-Didehydroazepines from photolysis of substituted aryl azides: analysis of their chemical and physical properties by time-resolved spectroscopic methods. J. Am. Chem. Soc., 1988, 110, 8092-8098.
[http://dx.doi.org/10.1021/ja00232a022]
[36]
Gritsan, N.P.; Zhai, H.B.; Yuzawa, T.; Karweik, D.; Brooke, J.; Platz, M.S. Spectroscopy and kinetics of singlet perfluoro-4-biphenylnitrene and singlet perfluorophenylnitrene. J. Phys. Chem. A, 1997, 101, 2833-2840.
[http://dx.doi.org/10.1021/jp963139y]
[37]
Marcineck, A.; Leyva, E.; Whitt, D.; Platz, M.S. Evidence for stepwise nitrogen extrusion and ring expansion upon photolysis of phenyl azide. J. Am. Chem. Soc., 1993, 115, 8609-8612.
[http://dx.doi.org/10.1021/ja00072a013]
[38]
Schrock, A.K.; Schuster, G.B. Photochemistry of phenyl azide: chemical properties of the transient intermediates. J. Am. Chem. Soc., 1984, 106, 5228-5234.
[http://dx.doi.org/10.1021/ja00330a032]
[39]
Chapman, O.L.; Le Roux, J.P. 1-Aza-1,2,4,6-cycloheptatetraene. J. Am. Chem. Soc., 1978, 100, 282-285.
[http://dx.doi.org/10.1021/ja00469a049]
[40]
Younger, C.G.; Bell, R.A. Photolysis of 3,4-diamidophenyl azides: evidence for azirine intermediates. J. Chem. Soc. Chem. Commun., 1992, 1992(18), 1359-1361.
[http://dx.doi.org/10.1039/C39920001359]
[41]
Leyva, E.; Sagredo, R. Photochemistry of fluorophenyl azides in diethylamine. Nitrene reaction versus ring expansion. Tetrahedron, 1998, 54, 7367-7374.
[http://dx.doi.org/10.1016/S0040-4020(98)00403-7]
[42]
(a)Lamara, K.; Smalley, R.K. 3H-azepines and related systems. Part 4. Preparation of 3H-azepin-2-ones and 6H-azepino[2,1-b]quinazolin-12-ones by photoinduced ring expansions of aryl azides. Tetrahedron, 1991, 47, 2277-2290.
[http://dx.doi.org/10.1016/S0040-4020(01)96138-1]
(b)Purvis, R.; Smalley, R.K.; Suschitzky, H.; Alkhader, M.A. 3H-Azepines and related systems. Part 2. The photolysis of aryl azides bearing electron-withdrawing substituents. J. Chem. Soc., Perkin Trans. 1, 1984, 1984, 249-254.
[http://dx.doi.org/10.1039/P19840000249]
(c)Purvis, R.; Smalley, R.K.; Strachan, W.A.; Suschitsky, H. The photolysis of o-azidobenzoic acid derivatives: a practicable synthesis of o-alkoxy-3-akoxycarbonyl-3H-azepines. J. Chem. Soc., Perkin Trans. 1, 1978, 1978(3), 191-195.
(d)Lamara, K.; Redhouse, A.D.; Smalley, R.K.; Thomson, J.R. 3H-Azepines and related systems. Part 5. Photo-induced ring expansions of azidobenzonitriles to 3-cyano-and 7-cyano-3H-azepin-1(1H)-ones. Tetrahedron, 1994, 50, 5515-5526.
[http://dx.doi.org/10.1016/S0040-4020(01)80706-7]
[43]
Polanc, S.; Stanovnik, B.; Tisler, M. Reaction between 6-azidoazolopyridazines or azidopyrido[1,2-a]pyramid-4-one and some secondary aliphatic amines. J. Org. Chem., 1976, 41, 3152-3155.
[http://dx.doi.org/10.1021/jo00881a018]
[44]
Liang, T.Y. Schuster, G.B. Photochemistry of p-nitrophenylazide: single-electron-transfer reaction of the triplet nitrene. J. Am. Chem. Soc., 1986, 108, 546-548.
[http://dx.doi.org/10.1021/ja00263a053] [PMID: 22175498]
[45]
McDonald, R.N.; Chowdhury, A.K. Gas-phase nucleophilic reactivities of phenylnitrene (PhN- •) and sulfur anion radicals (S-•) at sp3 and carbonyl carbon. J. Am. Chem. Soc., 1983, 105, 198-207.
[http://dx.doi.org/10.1021/ja00340a010]
[46]
Leyva, E.; Sagredo, R.; Moctezuma, E. Photochemistry of fluorophenyl azides in aniline. Asymmetric fluoroazobenzenes by N-H singlet nitrene insertion. J. Fluor. Chem., 2004, 125, 741-747.
[http://dx.doi.org/10.1016/j.jfluchem.2003.12.011]
[47]
Terrian, D.L.; Houghtaling, M.A.; Ames, J.R. Synthesis and reactions of benzofurazan-1-oxide. J. Chem. Educ., 1992, 69, 589-590.
[http://dx.doi.org/10.1021/ed069p589]
[48]
(a) Smolinsky, G. Notes – the vapor phase pyrolysis of several substituted azidobenzenes. J. Org. Chem., 1961, 26, 4108-4110.
[http://dx.doi.org/10.1021/jo01068a603]
[49]
Katritzky, A.R.; Gordeev, M.F. Pyrolysis of ortho-substituted aryl azides. Heterocycles, 1993, 35, 483-490.
[50]
Wang, P.G.; Xiang, M.; Tang, X.; Wu, X.; Wen, Z.; Cai, T.; Janczuk, A.J. Nitric oxide donors: chemical activities and biological applications. Chem. Rev., 2002, 102, 1091-1134.
[http://dx.doi.org/10.1021/cr000040l]
[51]
Frutero, R.; Ferrarotti, B.; Serafino, A.; Di Stilo, A.; Gasco, A. Unsymmetrically substituted furoxans. Part 11. Methyfuroxancarbaldehydes. J. Heterocycl. Chem., 1989, 26, 1345-1347.
[http://dx.doi.org/10.1002/jhet.5570260523]
[52]
(a)Ghosh, P.B.; Everitt, B.J. Furazanobenzofuroxan, furazanobenzothiadiazole, and their N-oxides. New class of vasodilator drugs. J. Med. Chem., 1974, 17, 203-206.
[http://dx.doi.org/10.1021/jm00248a013] [PMID: 4809256]
(b)Ghosh, P.B.; Ternai, B.; Whitehouse, M. Benzofurazans and benzofuroxans: biochemical and pharmacological properties. Med. Res. Rev., 1981, 2, 159-187.
[http://dx.doi.org/10.1002/med.2610010203] [PMID: 7050563]
[53]
(a)Monge, A.; Palop, J.A.; del Castillo, J.C. New quinoxalines with nitrogen functions in the side chain. Potential inhibitors of 5-HT3. J. Heterocycl. Chem., 1994, 31, 33-37.
[http://dx.doi.org/10.1002/chin.199511187]
(b)Takabatake, T.; Hasegawa, Y.; Hasegawa, M. The reactions of benzofuroxan with carbonyl compounds on the surface of solid catalysts. J. Heterocycl. Chem., 1993, 30, 1477-1479.
[http://dx.doi.org/10.1002/jhet.5570300602]
(c)Monge, A.; Palop, J.A.; del Castillo, J.C.; Caldero, J.M.; Roca, J.; Romero, G.; del Río, J.; Lasheras, B. Novel antagonists of 5-HT3 receptors. Synthesis and biological evaluation of pyperazinylquinoxaline derivatives. J. Med. Chem., 1993, 36, 2745-2750.
[http://dx.doi.org/10.1021/jm00071a005] [PMID: 8410988]
[54]
(a)Dyall, L.K. Pyrolysis or aryl azides. III. Steric and electronic effects upon reaction rate. Aust. J. Chem., 1975, 28, 2147-2159.
[http://dx.doi.org/10.1071/CH9752147]
(b)Dickson, N.J.; Dyall, L.K. Pyrolysis of aryl azides. V. Characterization of phenylazo, benzoyl and formyl as neighboring groups. Aust. J. Chem., 1980, 33, 91-99.
[http://dx.doi.org/10.1071/CH9800091]
(c)Dyall, L.K. Pyrolysis of aryl azides. VII. Interpretation of Hammet correlations of rates of pyrolysis of substituted 2-nitro azidobenzenes. Aust. J. Chem., 1986, 39, 89-101.
[55]
Rauhut, G.; Eckert, F. A computational study on the mechanism and kinetics of the pyrolysis of 2-nitrophenyl azide. J. Phys. Chem. A, 1999, 103, 9086-9092.
[http://dx.doi.org/10.1021/jp991181y]
[56]
McCulla, R.D.; Burdzinski, G.; Platz, M.S. Ultrafast study of the photochemistry of 2-azidonitrobenzene. Org. Lett., 2006, 8, 1637-1640.
[http://dx.doi.org/10.1021/ol0602452]
[57]
Takayama, T.; Kawano, M.; Uekusa, H.; Ohashi, Y.; Sugawara, T. Crystalline state photoreaction of 1-azido-2-nitrobenzene. Direct observation of heterocycle formation by X-ray crystallography. Helvetica Chimica Acta, 2003, 86, 1352-1358.
[http://dx.doi.org/10.1002/hlca.200390122]
[58]
(a)Leyva, E.; de Loera, D.; Cataño, R.J. Spontaneous conversion of 2-azido-3-nitropyridines to pyridofuroxans. Tetrahedron Lett., 2010, 51, 3978-3979.
[http://dx.doi.org/10.1016/j.tetlet.2010.05.118]
(b)Leyva, E.; Balderas, R.M.G.; de Loera, D.; Cataño, R.J. Generation of benzofuroxans by photolysis of crystalline o-nitrophenylazides. A green chemistry reaction. Tetrahedron Lett., 2012, 53, 2447-2449.
[http://dx.doi.org/10.1016/j.tetlet.2012.03.013]
[59]
Leyva, E.; Ramos, S.L.; Cataño, R.J.; Méndez, T.A.L.; Chaparro, A.C. One-pot methodology for conversion of o-halonitrobenzenes to benzofuroxans. Synth. Commun., 2017, 47, 604-608.
[http://dx.doi.org/10.1080/00397911.2016.1276932]
[60]
Kotovskaya, S.K.; Romanova, S.A.; Charushin, V.N.; Kodess, M.I.; Chupakhin, O.N. 5(6)-Fluoro-6(5)-R-benzofuroxans: synthesis and NMR 1H, 13C, and 19F studies. J. Fluor. Chem., 2004, 125, 421-428.
[http://dx.doi.org/10.1016/j.jfluchem.2003.11.011]
[61]
Leyva, S.; Castanedo, V.; Leyva, E. Synthesis of novel fluorobenzofuroxans by oxidation of anilines and thermal cyclization of arylazides. J. Fluor. Chem., 2003, 121, 171-175.
[http://dx.doi.org/10.1016/S0022-1139(03)00011-3]
[62]
(a)Dunkin, I.R.; Lynch, M.A.; Boulton, A.J.; Henderson, N. 1,2-Dinitrosobenzene in argon matrices at 14K. J. Chem. Soc. Chem. Commun., 1991, 1991(17), 1178-1179.
(b)Hacker, N.P. Benzofuroxan photochemistry: direct observation of 1,2-dinitrosobenzene by steady state spectroscopy. A new photochromic reaction. J. Org. Chem., 1991, 56, 5216-5217.
[http://dx.doi.org/10.1021/jo00017a042]
(c)Murata, S.; Tomioka, H. Photochemistry of o-nitrophenylazide in matrices. The first direct spectroscopic observation of o-dinitrosobenzene. Chem. Lett., 1992, 21(1), 57-60.
[http://dx.doi.org/10.1246/cl.1992.57]
(d)Ponder, M.; Fowler, J.E.; Schaefer, H.F. Proposed intermediates in the tautomerization of benzofurazan-1-oxide. J. Org. Chem., 1994, 59, 6431-6436.
[http://dx.doi.org/10.1021/jo00100a054]
(e)Friedrichsen, W. Benzofuroxan-o-dinitrosobenzene equilibrium. A computational study. J. Phys. Chem., 1994, 98, 12933-12937.
[http://dx.doi.org/10.1021/j100100a020]
(f)Rauhut, G. Combined ab initio and density fuctional study of ring chain tautomerism in benzofurazan-1-oxide. J. Comput. Chem., 1996, 17, 1848-1852.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199612)17:16<1848:AID-JCC5>3.0.CO;2-N]
[63]
Corey, E.J.; Czakó, B.; Kürti, L. Molecules and Medicine; John Wiley & Sons Inc.: New Jersey, 2007.
[64]
(a)Koga, H.; Itoh, A.; Murayama, S.; Suzue, S.; Irikura, T. Structure-activity relationships of antibacterial 6,7- and 7,8-disubstituted-1-alkyl-1,4-dihydro-4-oxoquinoline-3-carboxylic acids. J. Med. Chem., 1980, 23, 1358-1363.
[http://dx.doi.org/10.1021/jm00186a014] [PMID: 7452690]
(b)Nakamura, S.; Minami, A.S.; Inoue, S.; Yamagishi, J.; Takase, Y.; Shimizu, M. In vitro antibacterial properties of AT-2266, a new pyridocarboxylic acid. Antimicrob. Agents Chemother., 1983, 23, 641-648.
[http://dx.doi.org/10.1128/aac.23.5.641] [PMID: 6575721]
(c)Hong, C.Y.; Kim, Y.K.; Chang, J.H.; Kim, S.H.; Choi, H.; Nam, D.H.; Kim, Y.Z.; Kwak, J.H. Novel fluoroquinolone antibacterial agents containing oxime-substituted (aminomethyl)pyrrolidines: synthesis and antibacterial activity of 7-(4-(aminomethyl)-3-(methoxyimino)pyrrolidin-1-yl)-1-cyclopropyl-6- fluoro-4-oxo-1,4-dihydro[1,8]naphthyridine-3-carboxylic acid (LB20304). J. Med. Chem., 1997, 40, 3584-3593.
[http://dx.doi.org/10.1021/jm970202e] [PMID: 9357525]
[65]
(a)Mitscher, L.A. Bacterial topoisomerase inhibitors: quinolone and pyridone antibacterial agents. Chem. Rev., 2005, 105, 559-592.
[http://dx.doi.org/10.1021/cr030101q] [PMID: 15700957]
(b)Leyva, S.; Leyva, E. Fluoroquinolonas: Mecanismos de acción y resistencia, estructura, síntesis y reacciones fisicoquímicas importantes para propiedades medicinales. Bol. Soc. Quím. Méx., 2008, 2, 1-13.
[66]
Llorente, B.; Leclerc, F.; Cedergren, R. Using SAR and QSAR analysis to model the activity and structure of the Quinolone-DNA complex. Bioorg. Med. Chem., 1996, 4, 61-71.
[http://dx.doi.org/10.1016/0968-0896(96)83749-7] [PMID: 8689241]
[67]
Wentland, M.P.; Lesher, G.Y.; Reuman, M.; Gruett, M.D. Singh. B.; Aldous, S.C.; Dorff, P.H.; Rake, J.B.; Coughlin, S.A. Mammalian topoisomerase II inhibitory activity of 1-cyclopropyl-6,8-difluoro-1,4-dihydro-7-(2,6-dimethyl-4-pyridinyl)-4-oxo-3-quinolinecarboxylic acid and related derivatives. J. Med. Chem., 1993, 36, 2801-2809.
[http://dx.doi.org/10.1021/jm00071a010] [PMID: 8410993]
[68]
(a)Strahilevitz, J.; Robicsek, A.; Hooper, D.C. Role of the extended 〈4 domain of Staphylococcus aureus Gyrase A protein in determining low sensitivity to quinolones. Antimicrob. Agents Chemother., 2006, 50, 600-606.
[http://dx.doi.org/10.1128/AAC.50.2.600-606.2006] [PMID: 16436716]
(b)Aubry, A.; Veziris, N.; Pernot, C.T.; Jarlier, V.; Fisher, M. Novel gyrase mutations in quinolone-resistant and hypersusceptible clinical isolates of Mycobacterium tuberculosis: functional analysis of mutant enzymes. Antimicrob. Agents Chemother., 2006, 50, 104-112.
[http://dx.doi.org/10.1128/AAC.50.1.104-112.2006] [PMID: 16377674]
[69]
(a)Leyva, E.; Monreal, E.; Hernández, A. Synthesis of fluoro-4-hydroxyquinoline-3-carboxylic acids by the Gould-Jacob reaction. J. Fluor. Chem., 1999, 94, 7-10.
[http://dx.doi.org/10.1016/S0022-1139(98)00310-8]
(b)Leyva, E.; Monreal, E.; Hernández, A.; Leyva, S. Las Fluoroquinolonas. Síntesis y Actividad Antimicrobiana. Rev. Soc. Quím. Méx., 1999, 43, 63-68.
(c)Ramos, S.L.; Leyva, E.; Ortiz, J.C.; López, H.H. Microwave assisted synthesis of ethyl-7-chloro-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carboxylate by the Grohe-Heitzer reaction. J. Mex. Chem. Soc., 2017, 6, 50-53.
[http://dx.doi.org/10.29356/jmcs.v61i1.127]
[70]
Reddy, P.G.; Baskaran, S. Microwave assisted amination of quinolone carboxylic acids: an expeditious synthesis of fluoquinolone antibacterials. Tetrahedron Lett., 2001, 42, 6775-6777.
[http://dx.doi.org/10.1016/S0040-4039(01)01385-5]
[71]
Leyva, S. Síntesis y Actividad Biológica de Nuevos Derivados de Norfloxacina y Lomefloxacina, Doctorate Thesis, University of San Luis Potosí, University of San Luis Potosí,. 2007.
[72]
Leyva, S.; Leyva, E. Thermochemical reaction of 7-azido-1-ethyl-6,8-difluoroquinolone-3-carboxylate with heterocyclic amines. An expeditious synthesis of novel fluoroquinolone derivatives. Tetrahedron, 2007, 63, 2093-2097.
[http://dx.doi.org/10.1016/j.tet.2006.11.079]
[73]
de Loera, D. Estudio Experimental de la Fotoquímica de Azidas Aromáticas, en Estado Cristalino y en Solución y Evaluación Computacional de Mecanismos de Reacción, Doctorate Thesis, University of San Luis Potosí, San Luis Potosí, . 2008.
[74]
Leyva, E.; de Loera, D.; Leyva, S. Photochemistry of 7-azide-1-ethyl-3-carboxylate-6,8-difluoroquinolone. A novel reagent for photoaffinity labeling. Tetrahedron Lett., 2008, 49, 6759-6761.
[http://dx.doi.org/10.1016/j.tetlet.2008.07.156]
[75]
Pandurangi, R.S.; Karra, S.R.; Kuntz, R.R.; Volkert, W.A. Recent trends in the evaluation of photochemical insertion of heterobifunctional perfluoroaryl azide chelating agents: biochemical implications in nuclear medicine. Photochem. Photobiol., 1997, 65, 208-221.
[http://dx.doi.org/10.1111/j.1751-1097.1997.tb08547.x]
[76]
Platz, M.S.; Admasu, A.S.; Kwiatkowski, S.; Crocker, P.J.; Imai, N. Watt, D.S. Photolysis of 3-aryl-3-(trifluoromethyl)diazirines: a caveat regarding their use in phoaffinity probes. Bioconjugate Chem., 1991, 2, 337-341.
[http://dx.doi.org/10.1021/bc00011a008] [PMID: 1790173]
[77]
Pinney, K.G.; Katzenellenbogen, J.A. Synthesis of tetrafluoro-substituted aryl azides and its protio analogs as photoaffinity labeling reagents for the strogen receptor. J. Org. Chem., 1991, 56, 3125-3133.
[http://dx.doi.org/10.1021/jo00009a037]
[78]
Pinney, K.G.; Carlson, K.E.; Katzenellenbogen, B.S.; Katzenellenbogen, J.A. Efficient and selective photoaffinity labeling of the strogen receptor using two nonsteroidal ligands that embody aryl azide or tetrafluoroaryl azide photoreactive functions. Biochemistry, 1991, 30, 2421-2431.
[http://dx.doi.org/10.1021/bi00223a018]
[79]
Crocker, P.J.; Imai, N.; Rajagopalan, K.; Boggess, M.A.; Kwiatdowski, S.; Dwyer, L.C.; Vanaman, T.C.; Watt, S.D. Heterobifunctional cross-linking agents incorporating perfluorinated aryl azides. Bioconjugate Chem., 1990, 1, 419-424.
[http://dx.doi.org/10.1021/bc00006a008] [PMID: 2151563]
[80]
Kamata, M.; Schuster, G.B. Synthesis and photolysis of a series of substituted aroyl nitrogen ylides: development of photo-crosslinking and photolabeling reagents. J. Org. Chem., 1993, 58, 5325-5328.
[http://dx.doi.org/10.1021/jo00072a010]
[81]
Resek, J.F.; Bhattacharya, S.; Khorana, H.G. A new photo-crosslinking reagent for the study of protein-protein interactions. J. Org. Chem., 1993, 58, 7598-7601.
[http://dx.doi.org/10.1021/jo00078a051]
[82]
Bhan, P.; Miller, P.S. Photo-cross-linking of psoralen derivatized oligonucleoside methylphosphonates to single-stranded DNA. Bioconjugate Chem., 1990, 1, 82-88.
[http://dx.doi.org/10.1021/bc00001a011] [PMID: 1710145]
[83]
Knowles, J.R. Photogenerated reagents for biological receptor-site labeling. Acc. Chem. Res., 1972, 5, 155-160.
[http://dx.doi.org/10.1021/ar50052a006]
[84]
Cai, S.X.; Keana, J.F.W. Diazo- and azido-functionalized glutaraldehydes as cross-linking reagents and potential fixatives for electron microscopy. Bioconjugate Chem., 1991, 2, 38-430.
[http://dx.doi.org/10.1021/bc00007a007]
[85]
Pearson, D.; Downard, A.J.; Muscroft-Taylor, A.; Abell, A.D. Reversible photoregulation of binding of α-chymotrypsin to a gold surface. J. Am. Chem. Soc., 2007, 129, 14862-14863.
[http://dx.doi.org/10.1021/ja0766674]
[86]
Rozsnyai, L.F.; Benson, D.R.; Fodor, S.P.A.; Schultz, P.G. Photolithographic immobilization of biopolymers on solid supports. Angew. Chem. Int. Ed. Engl., 1991, 30, 759-761.
[http://dx.doi.org/10.1002/anie.199207591]
[87]
Bayan, N.; Thérisod, H. Photoaffinity cross-linking of acyl carrier protein to Escherichiacoli membranes. Biochim. Biophys. Acta, 1992, 1123, 191-197.
[http://dx.doi.org/10.1016/0005-2760(92)90111-8]
[88]
Fedan, J.S.; Hogaboom, G.K.; O’Donnell, J.P. Photoaffinity labels as pharmacological tools. Biochem. Pharmacol., 1984, 33, 1167-1180.
[http://dx.doi.org/10.1016/0006-2952(84)90167-9] [PMID: 6324817]
[89]
Hibert, F.K.; Kapfer, I.; Goeldner, M. Recent trends in photoaffinity labeling. Angew. Chem. Int. Ed. Engl., 1995, 34, 1296-1312.
[http://dx.doi.org/10.1002/anie.199512961]
[90]
Cavalla, D.; Neff, N.H. Chemical mechanisms for photoaffinity labeling of receptors. Biochem. Pharmacol., 1985, 34, 2821-2826.
[http://dx.doi.org/10.1016/0006-2952(85)90001-2] [PMID: 2992517]
[91]
Kapfer, I.; Jacques, P.; Toubal, H.; Goeldner, M.P. Comparative photoaffinity labeling study between azidophenyl, difluoroazidophenyl and tetrafluoroazidophenyl derivatives for the GABA-gated chloride channels. Bioconjugate Chem., 1995, 6, 109-114.
[http://dx.doi.org/10.1021/bc00031a013] [PMID: 7711096]
[92]
(a)Schubiger, P.A.; Alberto, R.; Smith, A. Vehicles, chelators, and radionuclides: chossing the “building blocks” of an effective therapeutic radioimmunoconjugate. Bioconjugate Chem., 1996, 7, 165-179.
[http://dx.doi.org/10.1021/bc950097s] [PMID: 8983338]
(b)Wilbur, D.S. Radiohalogenation of proteins: an overview of radionuclides, labeling methods and reagents for conjugate labeling. Bioconjugate Chem., 1992, 3, 433-470.
[http://dx.doi.org/10.1021/bc00018a001] [PMID: 1463775]
(c)Koppel, G.A. Recent advances with monoclonal antibody drug targeting for the treatment of human cancer. Bioconjugate Chem., 1990, 1, 13-23.
[http://dx.doi.org/10.1021/bc00001a002] [PMID: 2095201]
(d)Griffiths, G.L.; Goldenberg, D.M.; Jones, A.L.; Hansen, H.J. Radiolabeling of monoclonal antibodies and fragments with technetium and rhenium. Bioconjugate Chem., 1992, 3, 91-99.
[http://dx.doi.org/10.1021/bc00014a001] [PMID: 1515475]
[93]
(a)Skaddan, M.B.; Wust, F.R.; Katzenellenbogen, J.A. Synthesis and binding affinities of novel Re-containing 7a-substituted estradiol complexes: models for breast cancer imaging agents. J. Org. Chem., 1999, 64, 8108-8121.
[http://dx.doi.org/10.1021/jo990641g] [PMID: 11674724]
(b)Wüst, F.; Skaddan, M.B.; Leibnitz, P.; Spies, H.; Katzenellenbogen, J.A.; Johannsen, B. Synthesis of novel progestin-rhenium conjugates as potential ligands for the progesterone receptor. Bioorg. Med. Chem., 1999, 7, 1827-1835.
[http://dx.doi.org/10.1016/S0968-0896(99)00119-4]
[94]
(a)Keana, J.F.W.; Cai, S.X. New reagents for photoaffinity labeling: synthesis and photolysis of functionalized perfluorophenyl azides. J. Org. Chem., 1990, 55, 3640-3647.
[http://dx.doi.org/10.1021/jo00298a048]
(b)Keana, J.F.W.; Cai, S.X. Functionalized perfluorophenyl azides: new reagents for photoaffinity labeling. J. Fluor. Chem., 1989, 43, 151-154.
[http://dx.doi.org/10.1016/S0022-1139(00)81644-9]
(c)Cai, S.X.; Keana, J.F.W. 4-Azido-2-iodo-3,5,6-trifluorophenylcarbonyl derivatives. A new class of functionalized and iodinated perfluorophenyl azide photolabels. Tetrahedron Lett., 1989, 30, 5409-5412.
[http://dx.doi.org/10.1016/S0040-4039(01)80580-3]
(d)Cai, S.X.; Glenn, D.J.; Keana, J.F.W. Toward the development of radiolabeled fluorophenyl azide-based photolabeling reagents: synthesis and photolysis of iodinated 4-azidoperfluorobenzoates and 4-azido-3,5,6-trifluorobenzoates. J. Org. Chem., 1992, 57, 1299-1304.
[http://dx.doi.org/10.1021/jo00030a046]
[95]
Marcinek, A.; Platz, M.S. Deduction of the activation parameters for ring expansion and intersystem crossing in fluorinated singlet phenylnitrenes. J. Phys. Chem., 1993, 97, 12674-12677.
[http://dx.doi.org/10.1021/j100151a008]
[96]
Torres, M.J.; Zayas, J.; Platz, M.S. A formal CH insertion reaction of an aryl nitrene into an alkyl C-H bond. Implications for photoaffinity labelling. Tetrahedron Lett., 1986, 27, 791-794.
[http://dx.doi.org/10.1016/S0040-4039(00)84102-7]
[97]
Watt, D.S.; Kawada, K.; Leyva, E.; Platz, M.S. Exploratory photochemistry of iodinated aromatic azides. Tetrahedron Lett., 1989, 30, 899-902.
[http://dx.doi.org/10.1016/S0040-4039(00)95273-0]
[98]
Pandurangi, R.S.; Kuntz, R.R.; Volkert, W.A. Photolabeling of human serum albumin by azido-2-([14C]-methyamino) trifluorobenzonitrile. A high-efficiency, long wavelength photolabel. Int. J. Appl. Radiat. Isot., 1995, 46, 233-239.
[http://dx.doi.org/10.1016/0969-8043(94)00139-Q]
[99]
(a)Jurisson, S.; Berning, D.; Jia, W.; Ma, D. Coordination compounds in nuclear medicine. Chem. Rev., 1993, 93, 1137-1156.
[http://dx.doi.org/10.1021/cr00019a013]
(b)Meares, C.F.; Wensel, T.G. Metal chelates as probes of biological systems. Acc. Chem. Res., 1984, 17, 202-209.
[http://dx.doi.org/10.1021/ar00102a001]
(c)Pillai, M.R.A.; John, C.S.; Troutner, D.E. Labeling of human IgG with rhodium-105 using a new pentadentate bifunctional ligand. Bioconjugate Chem., 1990, 1, 191-197.
[http://dx.doi.org/10.1021/bc00003a003] [PMID: 2096912]
[100]
(a)Ramos, E.L.; Ramos, S.L.; García, C.J.C. Agentes quelantes bifuncionales utilizados en la síntesis de radiofármacos. Rev. Mex. Cienc. Farm., 2013, 44(1), 7-23.
(b)García, C.J.C. Síntesis de Agentes Quelantes para el Desarrollo de Nuevos Radiofármacos., Master Thesis, University of San Luis Potosí, San Luis Potosí,. 2009.
[101]
(a)Pandurangi, R.S.; Katti, K.V.; Stilwell, L.; Barnes, C.L. Retention of inhibitory potency of an ACE inhibitor conjugated with Rh(III) and Pd(II) (iminophosphorano) phosphines. Synthesis and X-ray structural investigations. J. Am. Chem. Soc., 1998, 120, 11364-11373.
[http://dx.doi.org/10.1021/ja9802403]
(b)Pandurangi, R.S.; Kuntz, R.R.; Volkert, W.A.; Barnes, C.L.; Katti, R.V. Phosphorous hydrazides as building blocks for potential photoaffinity labels. Synthesis and coordination chemistry of perfluoro azide conjugates of phenylphosphonothioic dihydrazide. J. Chem. Soc., Dalton Trans., 1995, 1995(4), 565-569.
[http://dx.doi.org/10.1039/DT9950000565]
(c)Pandurangi, R.S.; Karra, S.R.; Kuntz, R.R.; Volkert, W.A. High efficiency photolabeling of human serum albumin and human g-globulin with [14C]methyl 4-azido-2,3,5,6,-tetrafluorobenzoate. Bioconjugate Chem., 1995, 6, 630-634.
[http://dx.doi.org/10.1021/bc00035a019 ] [PMID: 8974464]
(d)Pandurangi, R.S.; Katti, K.V.; Volkert, W.A.; Kuntz, R.R. Synthesis and single crystal X-ray investigation of 4-azido-2-(triphenylphosphinimino)-3,5,6-trifluorobenzonitrile: a chromogenic nitrene precursor fo photolabeling. Inorg. Chem., 1996, 35, 3716-3718.
[http://dx.doi.org/10.1021/ic9510021]
(e)Pandurangi, R.S.; Lusiak, P.; Kuntz, R.R.; Sun, Y.; Weber, K.T. Chemistry of bifunctional photoprobes. Bioorg. Chem., 1997, 25, 77-87.
[http://dx.doi.org/10.1006/bioo.1997.1055]
(f)Pandurangi, R.S.; Lusiak, P.; Kuntz, R.R.; Volkert, W.A. Rogowski.; Platz, M.S. Chemistry of bifunctional photoprobes.1 3. Correlation between the efficiency of CH insertion by photolabile chelating agents and lifetimes of singlet nitrenes by flash photolysis: first example of photochemical attachment of 99mTc-complex with human serum albumin. J. Org. Chem., 1998, 63, 9019-9030.
[http://dx.doi.org/10.1021/jo981458a]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy