Abstract
Background: The complex photochemistry of aryl azides has fascinated scientists for several decades. Spectroscopists have investigated the intermediates formed by different analytical techniques. Theoretical chemists have explained the intrinsic interplay of intermediates under different experimental conditions.
Objective & Methods: A complete understanding of the photochemistry of a given fluoro aryl azide is a basic requisite for its use in chemistry. In this review, we will discuss the synthesis of several fluoro substituted aryl azides and the reactions and intermediates generated upon photolysis and thermolysis of these azides and some examples of their applications in photoaffinity labeling and organic synthesis. Conclusion: In spite of the extensive research on the photochemistry of fluoro aryl azides, there are some areas that remain to be investigated. The application of this reaction in the synthesis of novel heterocyclic compounds has not been fully studied. Since fluorophenyl azides are known to undergo C-H and N-H insertion reactions, they could be used to prepare new fluorinated molecules or in the biochemical process known as photoaffinity labeling.Keywords: Fluoro aryl azides, photochemistry, thermochemistry, photoaffinity labeling, bifunctional photochemical probes, azido fluoroquinolones.
Graphical Abstract
[http://dx.doi.org/10.1002/anie.200400657]
[http://dx.doi.org/10.3390/molecules25041009]
[PMID: 13913310]
[http://dx.doi.org/10.1016/0045-2068(78)90048-2]]
(b)Chowdhry, V.; Westheimer, F.H. Photoaffinity labeling of biological systems. Annu. Rev. Biochem., 1979, 48, 293-325.
[http://dx.doi.org/10.1146/annurev.bi.48.070179.001453] [PMID: 382986]
[http://dx.doi.org/10.1016/0040-4020(95)00598-3]
[http://dx.doi.org/10.1021/jo010782u] [PMID: 12227807]
(b)Fritzberg, A.R.; Wilber, D.S. Targeted Delivery of Imaging Agents; Torchilin, V.P., Ed.; CRC Press: Boca Raton, 1995.
(c)Kowalsky, R.J.; Perry, J.R. Chemistry of radiopharmaceuticals. In: Radiopharmaceuticals in Nuclear Medicinal Practice; Baum, S., Ed.; Appleton & Lange: Norwalk, 2004.
[http://dx.doi.org/10.1111/j.1751-1097.1997.tb08544.x]
[http://dx.doi.org/10.1111/j.1751-1097.1997.tb08545.x]
[http://dx.doi.org/10.1016/S0076-6879(77)46012-9] [PMID: 909454]
(b)Platz, M.S.; Leyva, E.; Haider, K. Selected Topics in the Matrix Photochemistry of Nitrenes, Carbenes and Excited States in Organic Photochem; Padwa, A., Ed.; Marcel Dekker Inc.: New York, 1991.
(c)Borden, W.T.; Gritsan, N.P.; Hadad, C.M.; Karney, W.L.; Kemnitz, C.R.; Platz, M.S. The interplay of theory and experiment in the study of phenylnitrene. Acc. Chem. Res., 2000, 33, 765-771.
[http://dx.doi.org/10.1021/ar990030a]
(d)Leyva, E.; de Loera, D.; Leyva, S.; Cataño, R.J. Fluorinated Aryl Nitrene Precursors in Nitrenes and Nitrenium Ions; Falvey, D.E; Gudmundsdottir, A.D., Ed.; John Wiley & Sons: New Jersey, 2013.
[http://dx.doi.org/10.1021/ja00273a037]
(b)Leyva, E.; Platz, M.S. The temperature dependent photochemistry of phenyl azide in diethylamine. Tetrahedron Lett., 1985, 26, 2147-2150.
[http://dx.doi.org/10.1016/S0040-4039(00)98947-0]
[http://dx.doi.org/10.1021/ja01150a008]
(b)Smith, P.A.S.; Boyer, J.H. The synthesis of heterocyclic compounds from aryl azides. II. Carbolines and thienoindole. J. Am. Chem. Soc., 1951, 73, 2626-2629.
[http://dx.doi.org/10.1021/ja01150a061]
[http://dx.doi.org/10.1021/ja00996a036]
[http://dx.doi.org/10.1021/ol034919+]
[http://dx.doi.org/10.1021/jo00298a048]
(b)Keana, J.F.W.; Cai, S.X. Functionalized perfluorophenyl azides: new reagents for photoaffinity labeling. J. Fluor. Chem., 1989, 43, 151-154.
[http://dx.doi.org/10.1016/S0022-1139(00)81644-9]
(c)Chehade, K.A.H.; Spielmann, H.P. Facile and efficient synthesis of 4-azidotetrafluoroaniline: a new photoaffinity reagent. J. Org. Chem., 2000, 65, 4949-4953.
[http://dx.doi.org/10.1021/jo000402p]
[http://dx.doi.org/10.1021/jo800676d]
(b)D’Anna, F.; Marullo, S.; Vitale, P.; Noto, R. Synthesis of aryl azides: a probe reaction to study the synergic action of ultrasounds and ionic liquids. Ultrason. Sonochem., 2012, 19, 136-142.
[http://dx.doi.org/10.1016/j.ultsonch.2011.06.010]
[http://dx.doi.org/10.1016/j.jfluchem.2013.10.002]
(b)Solomons, T.W.G.; Fryhle, C.B. Organic Chemistry; John Wiley & Sons. Inc.: New York, 2004.
[http://dx.doi.org/10.1021/ja963753n]
(b)Born, R.; Burda, C.; Senn, P.; Wirz, J. Transient absorption spectra and reaction kinetics of singlet phenyl nitrene and its 2,4,6-tribromo derivative in solution. J. Am. Chem. Soc., 1997, 119, 5061-5062.
[http://dx.doi.org/10.1021/ja970205g]
[http://dx.doi.org/10.1021/ja9635241]
(b)Karney, W.L.; Borden, W.T. Why does o-fluorine substitution raise the barrier to ring expansion of phenylnitrene. J. Am. Chem. Soc., 1997, 119, 3347-3350.
[http://dx.doi.org/10.1021/ja9644440]
[http://dx.doi.org/10.1021/ja00875a060]
[http://dx.doi.org/10.1021/ja00728a050]
[http://dx.doi.org/10.1039/P19720002964]
(b)Banks, R.E.; Prakash, A. New reactions of azidopentafluorobenzene: intermolecular insertions into N-H bonds. Tetrahedron Lett., 1973, 14(2), 99-102.
[http://dx.doi.org/10.1016/S0040-4039(01)95587-X]
(c)Banks, R.E.; Prakash, A. Studies in azide chemistry. Part VI. Some reactions of perfluoroazidobenzene and perfluoro-4-azidotoluene. J. Chem. Soc. Perkin I, 1974, 1974, 1365-1371.
[http://dx.doi.org/10.1039/P19740001365]
(d)Banks, R.E.; Madany, I.M. Studies in azide chemistry. Part 13[1. Intermolecular insertion of azide-derived polyfluorinated aryl- and heteroaryl-nitrenes into ring C-H bonds of 1,3,5-trimethyl- and 1,3,5-trimethoxy-benzene. J. Fluor. Chem., 1985, 30, 211-226.
[http://dx.doi.org/10.1016/S0022-1139(00)80890-8]
[http://dx.doi.org/10.1021/ja00759a066]
(b)Abramovitch, R.A.; Challand, S.R.; Scriven, E.F.V. Intermolecular aromatic substitution by aryl nitrenes. J. Org. Chem., 1972, 37, 2705-2710.
[http://dx.doi.org/10.1021/jo00982a017]
(c)Abramovitch, R.A.; Challand, S.R.; Yamada, Y. Addition of aryl nitrenes to olefins. J. Org. Chem., 1975, 40, 1541-1547.
[http://dx.doi.org/10.1021/jo00899a004]
[http://dx.doi.org/10.1021/jo00286a028]
[http://dx.doi.org/10.1021/jo00022a036]
(b)Poe, R.; Grayzar, J.; Young, M.J.T.; Leyva, E.; Schnapp, K.A. Platz, M.S. Remarkable catalysis of intersystem crossing of singlet (pentafluorophenyl)nitrene. J. Am. Chem. Soc., 1991, 113, 3209-3211.
[http://dx.doi.org/10.1021/ja00008a080]
(c)Poe, R.; Schnapp, K.A.; Young, M.J.T.; Grayzar, J.; Platz, M.S. Chemistry and kinetics of singlet (pentafluorophenyl)nitrene. J. Am. Chem. Soc., 1992, 114, 5054-5067.
[http://dx.doi.org/10.1021/ja00039a016]
(d)Schnapp, K.A.; Poe, R.; Leyva, E.; Soundararajan, N. Platz, M.S. Exploratory photochemistry of fluorinated aryl azides. Implications for the design of photoaffinity labeling reagents. Bioconjug. Chem., 1993, 4, 172-177.
[http://dx.doi.org/10.1021/bc00020a010]
[http://dx.doi.org/10.1021/ja9944305]
[http://dx.doi.org/10.1021/ja00039a054]
(b)Hrovat, D.A.; Waali, E.E. Borden, W.T. Ab initio calculations of the singlet-triplet energy difference in phenyl nitrene. J. Am. Chem. Soc., 1992, 114, 8698-8699.
[http://dx.doi.org/10.1021/ja00048a052]
(c)Travers, M.J.; Cowles, D.C.; Clifford, E.P.; Ellison, G.B. Photoelectron spectroscopy of the phenyl nitrene anion. J. Am. Chem. Soc., 1992, 114, 8699-8701.
[http://dx.doi.org/10.1021/ja00048a053]
(d)Smith, B.A.; Cramer, C.J. How do different fluorine substitution patterns affect the electronic state energies of phenylnitrene? J. Am. Chem. Soc., 1996, 118, 5490-5491.
[http://dx.doi.org/10.1021/ja960687g]
[http://dx.doi.org/10.1021/jp960962l]
[http://dx.doi.org/10.1021/ja00330a033]
(b)Leyva, E.; Platz, M.S. The temperature dependent photochemistry of 1-naphthyl azide. Tetrahedron Lett., 1987, 28, 11-14.
[http://dx.doi.org/10.1016/S0040-4039(00)95636-3]
(c)Hilton, S.E.; Scriven, E.F.V.; Suschitzky, H. Thermal and photolytic decomposition of α- and β-naphthyl azides. J. Chem. Soc. Chem. Commun., 1974, 1974(21), 853-854.
[http://dx.doi.org/10.1039/C39740000853]
(d)Carrol, S.E.; Nay, B.; Scriven, E.F.V.; Suschitzky, H. Decomposition of arylazides in piperidine. Tetrahedron Lett., 1977, 18(11), 943-946.
[http://dx.doi.org/10.1016/S0040-4039(01)92798-4]
(e)Dunkin, I.R.; Thomson, P.C.P. Infrared evidence for tricyclic azirines and didehydrobenzazepines in the matrix photolysis of azidonaphthalenes. J. Chem. Soc. Chem. Commun., 1980, 1980(11), 499-501.
[http://dx.doi.org/10.1039/C39800000499]
[http://dx.doi.org/10.1021/j100053a012]
[http://dx.doi.org/10.1021/ja00318a069]
(b)Grasse, P.B.; Brauer, B.E.; Zupanzic, J.J.; Kaufmann, K.J.; Schuster, G.B. Chemical and physical properties of fluorenylidene: equilibration of the singlet and triplet carbenes. J. Am. Chem. Soc., 1983, 105, 6833-6845.
[http://dx.doi.org/10.1021/ja00361a014]
[http://dx.doi.org/10.1016/S0040-4039(01)83190-7]
(b)Smalley, R.K. Azepines in Comprehensive Heterocyclic Chemistry; Lowinski, Ed.; Pergamon Press: Oxford , 1984.
(c)DeGraff, B.A. Gillespie, D.W.; Sundberg, R.J. Phenyl Nitrene. A flash photolytic investigation of the reaction with secondary amines. J. Am. Chem. Soc., 1974, 96, 7491-7496.
[http://dx.doi.org/10.1021/ja00831a017]
(d)Sundberg, R.J.; Suter, S.R.; Brenner, M. Photolysis of o-substituted aryl azides in diethylamine. Formation and autoxidation of diethylamino-1H-azepine intermediates. J. Am. Chem. Soc., 1972, 94, 513-520.
[http://dx.doi.org/10.1021/ja00757a032]
(e)Liang, T.Y. Schuster, G.B. Photochemistry of 3- and 4-nitrophenyl azides: detection and characterization of reactive intermediates. J. Am. Chem. Soc., 1987, 109, 7803-7810.
[http://dx.doi.org/10.1021/ja00259a032]
(f)Li, Y.Z.; Kirby, J.P.; George, M.W.; Poliakoff, M.; Schuster, G.B. 1,2-Didehydroazepines from photolysis of substituted aryl azides: analysis of their chemical and physical properties by time-resolved spectroscopic methods. J. Am. Chem. Soc., 1988, 110, 8092-8098.
[http://dx.doi.org/10.1021/ja00232a022]
[http://dx.doi.org/10.1021/jp963139y]
[http://dx.doi.org/10.1021/ja00072a013]
[http://dx.doi.org/10.1021/ja00330a032]
[http://dx.doi.org/10.1021/ja00469a049]
[http://dx.doi.org/10.1039/C39920001359]
[http://dx.doi.org/10.1016/S0040-4020(98)00403-7]
[http://dx.doi.org/10.1016/S0040-4020(01)96138-1]
(b)Purvis, R.; Smalley, R.K.; Suschitzky, H.; Alkhader, M.A. 3H-Azepines and related systems. Part 2. The photolysis of aryl azides bearing electron-withdrawing substituents. J. Chem. Soc., Perkin Trans. 1, 1984, 1984, 249-254.
[http://dx.doi.org/10.1039/P19840000249]
(c)Purvis, R.; Smalley, R.K.; Strachan, W.A.; Suschitsky, H. The photolysis of o-azidobenzoic acid derivatives: a practicable synthesis of o-alkoxy-3-akoxycarbonyl-3H-azepines. J. Chem. Soc., Perkin Trans. 1, 1978, 1978(3), 191-195.
(d)Lamara, K.; Redhouse, A.D.; Smalley, R.K.; Thomson, J.R. 3H-Azepines and related systems. Part 5. Photo-induced ring expansions of azidobenzonitriles to 3-cyano-and 7-cyano-3H-azepin-1(1H)-ones. Tetrahedron, 1994, 50, 5515-5526.
[http://dx.doi.org/10.1016/S0040-4020(01)80706-7]
[http://dx.doi.org/10.1021/jo00881a018]
[http://dx.doi.org/10.1021/ja00263a053] [PMID: 22175498]
[http://dx.doi.org/10.1021/ja00340a010]
[http://dx.doi.org/10.1016/j.jfluchem.2003.12.011]
[http://dx.doi.org/10.1021/ed069p589]
[http://dx.doi.org/10.1021/jo01068a603]
[http://dx.doi.org/10.1021/cr000040l]
[http://dx.doi.org/10.1002/jhet.5570260523]
[http://dx.doi.org/10.1021/jm00248a013] [PMID: 4809256]
(b)Ghosh, P.B.; Ternai, B.; Whitehouse, M. Benzofurazans and benzofuroxans: biochemical and pharmacological properties. Med. Res. Rev., 1981, 2, 159-187.
[http://dx.doi.org/10.1002/med.2610010203] [PMID: 7050563]
[http://dx.doi.org/10.1002/chin.199511187]
(b)Takabatake, T.; Hasegawa, Y.; Hasegawa, M. The reactions of benzofuroxan with carbonyl compounds on the surface of solid catalysts. J. Heterocycl. Chem., 1993, 30, 1477-1479.
[http://dx.doi.org/10.1002/jhet.5570300602]
(c)Monge, A.; Palop, J.A.; del Castillo, J.C.; Caldero, J.M.; Roca, J.; Romero, G.; del Río, J.; Lasheras, B. Novel antagonists of 5-HT3 receptors. Synthesis and biological evaluation of pyperazinylquinoxaline derivatives. J. Med. Chem., 1993, 36, 2745-2750.
[http://dx.doi.org/10.1021/jm00071a005] [PMID: 8410988]
[http://dx.doi.org/10.1071/CH9752147]
(b)Dickson, N.J.; Dyall, L.K. Pyrolysis of aryl azides. V. Characterization of phenylazo, benzoyl and formyl as neighboring groups. Aust. J. Chem., 1980, 33, 91-99.
[http://dx.doi.org/10.1071/CH9800091]
(c)Dyall, L.K. Pyrolysis of aryl azides. VII. Interpretation of Hammet correlations of rates of pyrolysis of substituted 2-nitro azidobenzenes. Aust. J. Chem., 1986, 39, 89-101.
[http://dx.doi.org/10.1021/jp991181y]
[http://dx.doi.org/10.1021/ol0602452]
[http://dx.doi.org/10.1002/hlca.200390122]
[http://dx.doi.org/10.1016/j.tetlet.2010.05.118]
(b)Leyva, E.; Balderas, R.M.G.; de Loera, D.; Cataño, R.J. Generation of benzofuroxans by photolysis of crystalline o-nitrophenylazides. A green chemistry reaction. Tetrahedron Lett., 2012, 53, 2447-2449.
[http://dx.doi.org/10.1016/j.tetlet.2012.03.013]
[http://dx.doi.org/10.1080/00397911.2016.1276932]
[http://dx.doi.org/10.1016/j.jfluchem.2003.11.011]
[http://dx.doi.org/10.1016/S0022-1139(03)00011-3]
(b)Hacker, N.P. Benzofuroxan photochemistry: direct observation of 1,2-dinitrosobenzene by steady state spectroscopy. A new photochromic reaction. J. Org. Chem., 1991, 56, 5216-5217.
[http://dx.doi.org/10.1021/jo00017a042]
(c)Murata, S.; Tomioka, H. Photochemistry of o-nitrophenylazide in matrices. The first direct spectroscopic observation of o-dinitrosobenzene. Chem. Lett., 1992, 21(1), 57-60.
[http://dx.doi.org/10.1246/cl.1992.57]
(d)Ponder, M.; Fowler, J.E.; Schaefer, H.F. Proposed intermediates in the tautomerization of benzofurazan-1-oxide. J. Org. Chem., 1994, 59, 6431-6436.
[http://dx.doi.org/10.1021/jo00100a054]
(e)Friedrichsen, W. Benzofuroxan-o-dinitrosobenzene equilibrium. A computational study. J. Phys. Chem., 1994, 98, 12933-12937.
[http://dx.doi.org/10.1021/j100100a020]
(f)Rauhut, G. Combined ab initio and density fuctional study of ring chain tautomerism in benzofurazan-1-oxide. J. Comput. Chem., 1996, 17, 1848-1852.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199612)17:16<1848:AID-JCC5>3.0.CO;2-N]
[http://dx.doi.org/10.1021/jm00186a014] [PMID: 7452690]
(b)Nakamura, S.; Minami, A.S.; Inoue, S.; Yamagishi, J.; Takase, Y.; Shimizu, M. In vitro antibacterial properties of AT-2266, a new pyridocarboxylic acid. Antimicrob. Agents Chemother., 1983, 23, 641-648.
[http://dx.doi.org/10.1128/aac.23.5.641] [PMID: 6575721]
(c)Hong, C.Y.; Kim, Y.K.; Chang, J.H.; Kim, S.H.; Choi, H.; Nam, D.H.; Kim, Y.Z.; Kwak, J.H. Novel fluoroquinolone antibacterial agents containing oxime-substituted (aminomethyl)pyrrolidines: synthesis and antibacterial activity of 7-(4-(aminomethyl)-3-(methoxyimino)pyrrolidin-1-yl)-1-cyclopropyl-6- fluoro-4-oxo-1,4-dihydro[1,8]naphthyridine-3-carboxylic acid (LB20304). J. Med. Chem., 1997, 40, 3584-3593.
[http://dx.doi.org/10.1021/jm970202e] [PMID: 9357525]
[http://dx.doi.org/10.1021/cr030101q] [PMID: 15700957]
(b)Leyva, S.; Leyva, E. Fluoroquinolonas: Mecanismos de acción y resistencia, estructura, síntesis y reacciones fisicoquímicas importantes para propiedades medicinales. Bol. Soc. Quím. Méx., 2008, 2, 1-13.
[http://dx.doi.org/10.1016/0968-0896(96)83749-7] [PMID: 8689241]
[http://dx.doi.org/10.1021/jm00071a010] [PMID: 8410993]
[http://dx.doi.org/10.1128/AAC.50.2.600-606.2006] [PMID: 16436716]
(b)Aubry, A.; Veziris, N.; Pernot, C.T.; Jarlier, V.; Fisher, M. Novel gyrase mutations in quinolone-resistant and hypersusceptible clinical isolates of Mycobacterium tuberculosis: functional analysis of mutant enzymes. Antimicrob. Agents Chemother., 2006, 50, 104-112.
[http://dx.doi.org/10.1128/AAC.50.1.104-112.2006] [PMID: 16377674]
[http://dx.doi.org/10.1016/S0022-1139(98)00310-8]
(b)Leyva, E.; Monreal, E.; Hernández, A.; Leyva, S. Las Fluoroquinolonas. Síntesis y Actividad Antimicrobiana. Rev. Soc. Quím. Méx., 1999, 43, 63-68.
(c)Ramos, S.L.; Leyva, E.; Ortiz, J.C.; López, H.H. Microwave assisted synthesis of ethyl-7-chloro-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carboxylate by the Grohe-Heitzer reaction. J. Mex. Chem. Soc., 2017, 6, 50-53.
[http://dx.doi.org/10.29356/jmcs.v61i1.127]
[http://dx.doi.org/10.1016/S0040-4039(01)01385-5]
[http://dx.doi.org/10.1016/j.tet.2006.11.079]
[http://dx.doi.org/10.1016/j.tetlet.2008.07.156]
[http://dx.doi.org/10.1111/j.1751-1097.1997.tb08547.x]
[http://dx.doi.org/10.1021/bc00011a008] [PMID: 1790173]
[http://dx.doi.org/10.1021/jo00009a037]
[http://dx.doi.org/10.1021/bi00223a018]
[http://dx.doi.org/10.1021/bc00006a008] [PMID: 2151563]
[http://dx.doi.org/10.1021/jo00072a010]
[http://dx.doi.org/10.1021/jo00078a051]
[http://dx.doi.org/10.1021/bc00001a011] [PMID: 1710145]
[http://dx.doi.org/10.1021/ar50052a006]
[http://dx.doi.org/10.1021/bc00007a007]
[http://dx.doi.org/10.1021/ja0766674]
[http://dx.doi.org/10.1002/anie.199207591]
[http://dx.doi.org/10.1016/0005-2760(92)90111-8]
[http://dx.doi.org/10.1016/0006-2952(84)90167-9] [PMID: 6324817]
[http://dx.doi.org/10.1002/anie.199512961]
[http://dx.doi.org/10.1016/0006-2952(85)90001-2] [PMID: 2992517]
[http://dx.doi.org/10.1021/bc00031a013] [PMID: 7711096]
[http://dx.doi.org/10.1021/bc950097s] [PMID: 8983338]
(b)Wilbur, D.S. Radiohalogenation of proteins: an overview of radionuclides, labeling methods and reagents for conjugate labeling. Bioconjugate Chem., 1992, 3, 433-470.
[http://dx.doi.org/10.1021/bc00018a001] [PMID: 1463775]
(c)Koppel, G.A. Recent advances with monoclonal antibody drug targeting for the treatment of human cancer. Bioconjugate Chem., 1990, 1, 13-23.
[http://dx.doi.org/10.1021/bc00001a002] [PMID: 2095201]
(d)Griffiths, G.L.; Goldenberg, D.M.; Jones, A.L.; Hansen, H.J. Radiolabeling of monoclonal antibodies and fragments with technetium and rhenium. Bioconjugate Chem., 1992, 3, 91-99.
[http://dx.doi.org/10.1021/bc00014a001] [PMID: 1515475]
[http://dx.doi.org/10.1021/jo990641g] [PMID: 11674724]
(b)Wüst, F.; Skaddan, M.B.; Leibnitz, P.; Spies, H.; Katzenellenbogen, J.A.; Johannsen, B. Synthesis of novel progestin-rhenium conjugates as potential ligands for the progesterone receptor. Bioorg. Med. Chem., 1999, 7, 1827-1835.
[http://dx.doi.org/10.1016/S0968-0896(99)00119-4]
[http://dx.doi.org/10.1021/jo00298a048]
(b)Keana, J.F.W.; Cai, S.X. Functionalized perfluorophenyl azides: new reagents for photoaffinity labeling. J. Fluor. Chem., 1989, 43, 151-154.
[http://dx.doi.org/10.1016/S0022-1139(00)81644-9]
(c)Cai, S.X.; Keana, J.F.W. 4-Azido-2-iodo-3,5,6-trifluorophenylcarbonyl derivatives. A new class of functionalized and iodinated perfluorophenyl azide photolabels. Tetrahedron Lett., 1989, 30, 5409-5412.
[http://dx.doi.org/10.1016/S0040-4039(01)80580-3]
(d)Cai, S.X.; Glenn, D.J.; Keana, J.F.W. Toward the development of radiolabeled fluorophenyl azide-based photolabeling reagents: synthesis and photolysis of iodinated 4-azidoperfluorobenzoates and 4-azido-3,5,6-trifluorobenzoates. J. Org. Chem., 1992, 57, 1299-1304.
[http://dx.doi.org/10.1021/jo00030a046]
[http://dx.doi.org/10.1021/j100151a008]
[http://dx.doi.org/10.1016/S0040-4039(00)84102-7]
[http://dx.doi.org/10.1016/S0040-4039(00)95273-0]
[http://dx.doi.org/10.1016/0969-8043(94)00139-Q]
[http://dx.doi.org/10.1021/cr00019a013]
(b)Meares, C.F.; Wensel, T.G. Metal chelates as probes of biological systems. Acc. Chem. Res., 1984, 17, 202-209.
[http://dx.doi.org/10.1021/ar00102a001]
(c)Pillai, M.R.A.; John, C.S.; Troutner, D.E. Labeling of human IgG with rhodium-105 using a new pentadentate bifunctional ligand. Bioconjugate Chem., 1990, 1, 191-197.
[http://dx.doi.org/10.1021/bc00003a003] [PMID: 2096912]
(b)García, C.J.C. Síntesis de Agentes Quelantes para el Desarrollo de Nuevos Radiofármacos., Master Thesis, University of San Luis Potosí, San Luis Potosí,. 2009.
[http://dx.doi.org/10.1021/ja9802403]
(b)Pandurangi, R.S.; Kuntz, R.R.; Volkert, W.A.; Barnes, C.L.; Katti, R.V. Phosphorous hydrazides as building blocks for potential photoaffinity labels. Synthesis and coordination chemistry of perfluoro azide conjugates of phenylphosphonothioic dihydrazide. J. Chem. Soc., Dalton Trans., 1995, 1995(4), 565-569.
[http://dx.doi.org/10.1039/DT9950000565]
(c)Pandurangi, R.S.; Karra, S.R.; Kuntz, R.R.; Volkert, W.A. High efficiency photolabeling of human serum albumin and human g-globulin with [14C]methyl 4-azido-2,3,5,6,-tetrafluorobenzoate. Bioconjugate Chem., 1995, 6, 630-634.
[http://dx.doi.org/10.1021/bc00035a019 ] [PMID: 8974464]
(d)Pandurangi, R.S.; Katti, K.V.; Volkert, W.A.; Kuntz, R.R. Synthesis and single crystal X-ray investigation of 4-azido-2-(triphenylphosphinimino)-3,5,6-trifluorobenzonitrile: a chromogenic nitrene precursor fo photolabeling. Inorg. Chem., 1996, 35, 3716-3718.
[http://dx.doi.org/10.1021/ic9510021]
(e)Pandurangi, R.S.; Lusiak, P.; Kuntz, R.R.; Sun, Y.; Weber, K.T. Chemistry of bifunctional photoprobes. Bioorg. Chem., 1997, 25, 77-87.
[http://dx.doi.org/10.1006/bioo.1997.1055]
(f)Pandurangi, R.S.; Lusiak, P.; Kuntz, R.R.; Volkert, W.A. Rogowski.; Platz, M.S. Chemistry of bifunctional photoprobes.1 3. Correlation between the efficiency of CH insertion by photolabile chelating agents and lifetimes of singlet nitrenes by flash photolysis: first example of photochemical attachment of 99mTc-complex with human serum albumin. J. Org. Chem., 1998, 63, 9019-9030.
[http://dx.doi.org/10.1021/jo981458a]