Generic placeholder image

Current Nanotoxicity and Prevention (Discontinued)

Editor-in-Chief

ISSN (Print): 2665-9808
ISSN (Online): 2665-9816

Review Article

Plant Stimulant to Nanotoxicity: Recent Advancements and Opportunities

Author(s): Nidhi Verma, Shilpa Sharma, Gajendra Singh Vishwakarma* and Alok Pandya*

Volume 1, Issue 1, 2021

Published on: 07 June, 2020

Page: [67 - 77] Pages: 11

DOI: 10.2174/2665980801999200607174608

Abstract

Nanotechnology has come a long way showing major contributions in the field of agriculture and food production. The use of nanoparticles (NPs) is increasing day by day as they possess better solubility, enhanced magnetic and optical properties, and better surface to charge ratio. The affirmative effects due to the use of NPs have been explained, including enhanced germination, increased root and shoot length, and the overall increase in plant biomass along with improvement in physiological parameters like photosynthetic activity. Recently, the toxicological effects of NPs in agriculture have become a matter of concern. The current review focuses on the generation of reactive oxygen species (ROS), oxidative damage and defense mechanism in response to phytotoxicity caused by the use of NPs. The other aspects in this review include the effect of NPs on macromolecule concentration, plant hormones and crop quality. The review also discusses the future prospects of NPs on plant phytotoxicity and growth. Furthermore, it also discusses the possible measures which can be taken for plant protection and growth while using NPs in agriculture.

Keywords: Nanoparticles, nanotoxicity, plant hormones, phytotoxicity, plant stress, defense mechanism.

Graphical Abstract

[1]
Vance M. , E Kuiken T, Vejerano EP. McGinnis SP, Hochella Jr MF, Rejeski D. et alNanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnology 2015; 21(6): 1769-80.
[2]
Toensmeier PA. Nanotechnology faces scrutiny over environment and toxicity. Plast Eng 2004; 60: 14-4.
[3]
Baker S, Volova T, Prudnikova SV, Satish S, Prasad M N N. Nanoagroparticles emerging trends and future prospect in modern agriculture system. Environ Toxicol Pharmacol 2017; 53: 10-7.
[http://dx.doi.org/10.1016/j.etap.2017.04.012] [PMID: 28499265]
[4]
He X, Deng H, Hwang HM. The current application of nanotechnology in food and agriculture. Yao Wu Shi Pin Fen Xi 2019; 27(1): 1-21.
[http://dx.doi.org/10.1016/j.jfda.2018.12.002] [PMID: 30648562]
[5]
Kah M, Tufenkji N, White JC. Nano-enabled strategies to enhance crop nutrition and protection. Nat Nanotechnol 2019; 14(6): 532-40.
[http://dx.doi.org/10.1038/s41565-019-0439-5] [PMID: 31168071]
[6]
Botha TL, Elemike EE, Horn S, Onwudiwe DC, Giesy JP, Wepener V. Cytotoxicity of Ag, Au and Ag-Au bimetallic nanoparticles prepared using golden rod (Solidago canadensis) plant extract. Sci Rep 2019; 9(1): 4169.
[http://dx.doi.org/10.1038/s41598-019-40816-y] [PMID: 30862803]
[7]
Wang T, Wu J, Xu S, et al. A potential involvement of plant systemic response in initiating genotoxicity of Ag-nanoparticles in Arabidopsis thaliana. Ecotoxicol Environ Saf 2019; 170: 324-30.
[http://dx.doi.org/10.1016/j.ecoenv.2018.12.002] [PMID: 30544092]
[8]
Li X, Peng T, Mu L, Hu X. Phytotoxicity induced by engineered nanomaterials as explored by metabolomics: Perspectives and challenges. Ecotoxicol Environ Saf 2019; 184109602
[http://dx.doi.org/10.1016/j.ecoenv.2019.109602] [PMID: 31493589]
[9]
Gkanatsiou C, Karamanoli K, Menkissoglu-Spiroudi U, Dendrinou-Samara C. Composition effect of Cu-based nanoparticles on phytopathogenic bacteria. Antibacterial studies and phytotoxicity evaluation. Polyhedron 2019; 6: 2.
[http://dx.doi.org/10.1016/j.poly.2019.06.002]
[10]
Tiwari PK. , Shweta , Singh AK, et al. Liquid assisted pulsed laser ablation synthesized copper oxide nanoparticles (CuO-NPs) and their differential impact on rice seedlings. Ecotoxicol Environ Saf 2019; 176: 321-9.
[http://dx.doi.org/10.1016/j.ecoenv.2019.01.120] [PMID: 30951979]
[11]
Zakharova O, Kolesnikov E, Shatrova N, Gusev A. The effects of CuO nanoparticles on wheat seeds and seedlings and Alternaria solani fungi: in vitro study IOP Conference Series: Earth and Environmental Science. 2019; 226: 012036..
[http://dx.doi.org/ 10.1088/1755-1315/226/1/012036]
[12]
Sadak MS. Impact of silver nanoparticles on plant growth, some biochemical aspects, and yield of fenugreek plant (Trigonella foenum-graecum). Bull Natl Res Cent 2019; 43: 38.
[http://dx.doi.org/10.1186/s42269-019-0077-y]
[13]
Iqbal M, Raja NI, Hussain M, Ejaz M, Yasmeen F. Effect of silver nanoparticles on growth of wheat under heat stress Iranian J Sci Tech, Trans A Sci 2019; 43: 387-95..
[14]
Spagnoletti FN, Spedalieri C, Kronberg F, Giacometti R. Extracellular biosynthesis of bactericidal Ag/AgCl nanoparticles for crop protection using the fungus Macrophomina phaseolina. J Environ Manage 2019; 231: 457-66.
[http://dx.doi.org/10.1016/j.jenvman.2018.10.081] [PMID: 30388644]
[15]
Faizan M, Faraz A, Yusuf M, Khan S, Hayat S. Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica 2018; 56: 678-86.
[http://dx.doi.org/10.1007/s11099-017-0717-0]
[16]
Venkatachalam P, Priyanka N, Manikandan K, et al. Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol Biochem 2017; 110: 118-27.
[http://dx.doi.org/10.1016/j.plaphy.2016.09.004] [PMID: 27622847]
[17]
Rizwan M, Ali S, Ali B, et al. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 2019; 214: 269-77.
[http://dx.doi.org/10.1016/j.chemosphere.2018.09.120] [PMID: 30265934]
[18]
Itroutwar PD, Govindaraju K, Tamilselvan S, Kannan M, Raja K, Subramanian KS. Seaweed-based biogenic ZnO nanoparticles for improving agro-morphological characteristics of rice (Oryza sativa L.). J Plant Growth Regul 2019; 1-12.
[http://dx.doi.org/10.1007/s00344-019-10012-3]
[19]
Tombuloglu H, Slimani Y, Alshammari T, Tombuloglu G, Almessiere M, Baykal A, et al. Magnetic Behavior and Nutrient Content Analyses of Barley (Hordeum vulgare L.) Tissues upon CoNd 0.2 Fe 1.8 O 4 Magnetic Nanoparticle Treatment. J Soil Sci Plant Nutr 2019; 1-10.
[20]
Al-Amri N, Tombuloglu H, Slimani Y, et al. Size effect of iron (III) oxide nanomaterials on the growth, and their uptake and translocation in common wheat (Triticum aestivum L.). Ecotoxicol Environ Saf 2020; 194110377
[http://dx.doi.org/10.1016/j.ecoenv.2020.110377] [PMID: 32145527]
[21]
Tombuloglu H, Anıl I, Akhtar S, Turumtay H, Sabit H, Slimani Y, et al. Iron oxide nanoparticles translocate in pumpkin and alter the phloem sap metabolites related to oil metabolism. Sci Hortic (Amsterdam) 2020; 265109223
[http://dx.doi.org/10.1016/j.scienta.2020.109223]
[22]
Tombuloglu H, Slimani Y, Tombuloglu G, et al. Impact of calcium and magnesium substituted strontium nano-hexaferrite on mineral uptake, magnetic character, and physiology of barley (Hordeum vulgare L.). Ecotoxicol Environ Saf 2019; 186109751
[http://dx.doi.org/10.1016/j.ecoenv.2019.109751] [PMID: 31600650]
[23]
Nawaz M, Almessiere MA, Almofty SA, Gungunes CD, Slimani Y, Baykal A. Exploration of catalytic and cytotoxicity activities of CaxMgxNi1-2xFe2O4 nanoparticles. J Photochem Photobiol B 2019; 196111506
[http://dx.doi.org/10.1016/j.jphotobiol.2019.05.003] [PMID: 31129509]
[24]
Tombuloglu H, Slimani Y, Güngüneş H, Tombuloglu G, Almessiere MA, Sozeri H, et al. Tracking of SPIONs in barley (Hordeum vulgare L.) plant organs during its growth. J Supercond Nov Magn 2019; 32: 3285-94.
[http://dx.doi.org/10.1007/s10948-019-5059-7]
[25]
Tombuloglu H, Slimani Y, Tombuloglu G, et al. Impact of superparamagnetic iron oxide nanoparticles (SPIONs) and ionic iron on physiology of summer squash (Cucurbita pepo): A comparative study. Plant Physiol Biochem 2019; 139: 56-65.
[http://dx.doi.org/10.1016/j.plaphy.2019.03.011] [PMID: 30878838]
[26]
Tombuloglu H, Slimani Y, Tombuloglu G, Almessiere M, Baykal A, Ercan I, et al. Tracking of NiFe2O4 nanoparticles in barley (Hordeum vulgare L.) and their impact on plant growth, biomass, pigmentation, catalase activity, and mineral uptake. Environ Nanotechnol Monit Manag 2019; 111: 223.
[http://dx.doi.org/10.1016/j.enmm.2019.100223]
[27]
Tombuloglu H, Tombuloglu G, Slimani Y, Ercan I, Sozeri H, Baykal A. Impact of manganese ferrite (MnFe2O4) nanoparticles on growth and magnetic character of barley (Hordeum vulgare L.). Environ Pollut 2018; 243(Pt B): 872-81..
[http://dx.doi.org/10.1016/j.envpol.2018.08.096 ] [PMID: 30245449]
[28]
Tombuloglu H, Slimani Y, Tombuloglu G, Almessiere M, Baykal A. Uptake and translocation of magnetite (Fe3O4) nanoparticles and its impact on photosynthetic genes in barley (Hordeum vulgare L.). Chemosphere 2019; 226: 110-22.
[http://dx.doi.org/10.1016/j.chemosphere.2019.03.075] [PMID: 30925403]
[29]
Elayakumar K, Manikandan A, Dinesh A, Thanrasu K, Raja KK, Kumar RT, et al. Enhanced magnetic property and antibacterial biomedical activity of Ce3+ doped CuFe2O4 spinel nanoparticles synthesized by sol-gel method. J Magn Magn Mater 2019; 478: 140-7.
[http://dx.doi.org/10.1016/j.jmmm.2019.01.108]
[30]
Farjadian F, Roointan A, Mohammadi-Samani S, Hosseini M. Mesoporous silica nanoparticles: synthesis, pharmaceutical applications, biodistribution, and biosafety assessment. Chem Eng J 2019; 359: 684-705.
[http://dx.doi.org/10.1016/j.cej.2018.11.156]
[31]
Alsaeedi A, El-Ramady H, Alshaal T, El-Garawany M, Elhawat N, Al-Otaibi A. Silica nanoparticles boost growth and productivity of cucumber under water deficit and salinity stresses by balancing nutrients uptake. Plant Physiol Biochem 2019; 139: 1-10.
[http://dx.doi.org/10.1016/j.plaphy.2019.03.008] [PMID: 30870715]
[32]
Sun D, Hussain HI, Yi Z, Rookes JE, Kong L, Cahill DM. Delivery of abscisic acid to plants using glutathione responsive mesoporous silica nanoparticles. J Nanosci Nanotechnol 2018; 18(3): 1615-25.
[http://dx.doi.org/10.1166/jnn.2018.14262] [PMID: 29448638]
[33]
Kalteh M, Alipour ZT, Ashraf S, Marashi Aliabadi M, Falah Nosratabadi A. Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. J Chem Health Risks 2018; 4(3): 49-55.
[34]
Derbalah A, Shenashen M, Hamza A, Mohamed A, El Safty S. Antifungal activity of fabricated mesoporous silica nanoparticles against early blight of tomato. Egyptian J Basic App Sci 2018; 5: 145-50.
[http://dx.doi.org/10.1016/j.ejbas.2018.05.002]
[35]
Ou L, Song B, Liang H, et al. Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Part Fibre Toxicol 2016; 13(1): 57.
[http://dx.doi.org/10.1186/s12989-016-0168-y] [PMID: 27799056]
[36]
Miralles P, Church TL, Harris AT. Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 2012; 46(17): 9224-39.
[http://dx.doi.org/10.1021/es202995d] [PMID: 22892035]
[37]
Yan J-W, Hu C, Chen K, Lin Q-B. Release of graphene from graphene-polyethylene composite films into food simulants. Food Packag Shelf Life 2019; 201: 310.
[http://dx.doi.org/10.1016/j.fpsl.2019.100310]
[38]
Hu X, Zhou Q. Health and ecosystem risks of graphene. Chem Rev 2013; 113(5): 3815-35.
[http://dx.doi.org/10.1021/cr300045n] [PMID: 23327673]
[39]
Seabra AB, Paula AJ, de Lima R, Alves OL, Durán N. Nanotoxicity of graphene and graphene oxide. Chem Res Toxicol 2014; 27(2): 159-68.
[http://dx.doi.org/10.1021/tx400385x] [PMID: 24422439]
[40]
Yang K, Li Y, Tan X, Peng R, Liu Z. Behavior and toxicity of graphene and its functionalized derivatives in biological systems. Small 2013; 9(9-10): 1492-503.
[http://dx.doi.org/10.1002/smll.201201417] [PMID: 22987582]
[41]
Zhao J, Wang Z, White JC, Xing B. Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation. Environ Sci Technol 2014; 48(17): 9995-10009.
[http://dx.doi.org/10.1021/es5022679] [PMID: 25122195]
[42]
Yang J, Cao W, Rui Y. Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms. J Plant Interact 2017; 12: 158-69.
[http://dx.doi.org/10.1080/17429145.2017.1310944]
[43]
Tripathi DK. , Shweta , Singh S, et al An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem 2017; 110: 2-12.
[http://dx.doi.org/10.1016/j.plaphy.2016.07.030] [PMID: 27601425]
[44]
Lin D, Xing B. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 2007; 150(2): 243-50.
[http://dx.doi.org/10.1016/j.envpol.2007.01.016] [PMID: 17374428]
[45]
Lin D, Xing B. Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 2008; 42(15): 5580-5.
[http://dx.doi.org/10.1021/es800422x] [PMID: 18754479]
[46]
Nhan V, Ma C, Rui Y, et al. Phytotoxic mechanism of nanoparticles: destruction of chloroplasts and vascular bundles and alteration of nutrient absorption. Sci Rep 2015; 5: 11618.
[http://dx.doi.org/10.1038/srep11618] [PMID: 26108166]
[47]
Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES. Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS One 2012; 7(10)e47674
[http://dx.doi.org/10.1371/journal.pone.0047674] [PMID: 23091638]
[48]
Le VN, Rui Y, Gui X, Li X, Liu S, Han Y. Uptake, transport, distribution and Bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. J Nanobiotechnology 2014; 12: 50.
[http://dx.doi.org/10.1186/s12951-014-0050-8] [PMID: 25477033]
[49]
Thuesombat P, Hannongbua S, Akasit S, Chadchawan S. Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol Environ Saf 2014; 104: 302-9.
[http://dx.doi.org/10.1016/j.ecoenv.2014.03.022] [PMID: 24726943]
[50]
Nair PMG, Kim S-H, Chung IM. Copper oxide nanoparticle toxicity in mung bean (Vigna radiata L.) seedlings: physiological and molecular level responses of in vitro grown plants. Acta Physiol Plant 2014; 36: 2947-58.
[http://dx.doi.org/10.1007/s11738-014-1667-9]
[51]
Mukherjee A, Peralta-Videa JR, Bandyopadhyay S, Rico CM, Zhao L, Gardea-Torresdey JL. Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 2014; 6(1): 132-8.
[http://dx.doi.org/10.1039/C3MT00064H] [PMID: 24190632]
[52]
Nair R, Mohamed MS, Gao W, et al. Effect of carbon nanomaterials on the germination and growth of rice plants. J Nanosci Nanotechnol 2012; 12(3): 2212-20.
[http://dx.doi.org/10.1166/jnn.2012.5775] [PMID: 22755040]
[53]
Liu S, Wei H, Li Z, et al. Effects of graphene on germination and seedling morphology in rice. J Nanosci Nanotechnol 2015; 15(4): 2695-701.
[http://dx.doi.org/10.1166/jnn.2015.9254] [PMID: 26353483]
[54]
Chen L, Wang C, Li H, Qu X, Yang S-T, Chang X-L. Bioaccumulation and toxicity of 13C-skeleton labeled graphene oxide in wheat. Environ Sci Technol 2017; 51(17): 10146-53.
[http://dx.doi.org/10.1021/acs.est.7b00822] [PMID: 28771335]
[55]
Hao Y, Ma C, Zhang Z, et al. Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem. Environ Pollut 2018; 232: 123-36.
[http://dx.doi.org/10.1016/j.envpol.2017.09.024] [PMID: 28947315]
[56]
Rico CM, Morales MI, McCreary R, et al. Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environ Sci Technol 2013; 47(24): 14110-8.
[http://dx.doi.org/10.1021/es4033887] [PMID: 24266714]
[57]
Vannini C, Domingo G, Onelli E, et al. Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS One 2013; 8(7)e68752
[http://dx.doi.org/10.1371/journal.pone.0068752] [PMID: 23874747]
[58]
Mustafa G, Sakata K, Hossain Z, Komatsu S. Proteomic study on the effects of silver nanoparticles on soybean under flooding stress. J Proteomics 2015; 122: 100-18.
[http://dx.doi.org/10.1016/j.jprot.2015.03.030] [PMID: 25857275]
[59]
Mustafa G, Sakata K, Komatsu S. Proteomic analysis of flooded soybean root exposed to aluminum oxide nanoparticles. J Proteomics 2015; 128: 280-97.
[http://dx.doi.org/10.1016/j.jprot.2015.08.010] [PMID: 26306862]
[60]
Hossain Z, Mustafa G, Komatsu S. Plant responses to nanoparticle stress. Int J Mol Sci 2015; 16(11): 26644-53.
[http://dx.doi.org/10.3390/ijms161125980] [PMID: 26561803]
[61]
Mattiello A, Filippi A, Pošćić F, et al. Evidence of phytotoxicity and genotoxicity in Hordeum vulgare L. exposed to CeO2 and TiO2 nanoparticles. Front Plant Sci 2015; 6: 1043.
[http://dx.doi.org/10.3389/fpls.2015.01043] [PMID: 26635858]
[62]
Atha DH, Wang H, Petersen EJ, et al. Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 2012; 46(3): 1819-27.
[http://dx.doi.org/10.1021/es202660k] [PMID: 22201446]
[63]
Lee S, Chung H, Kim S, Lee I. The genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat, Fagopyrum esculentum. Water Air Soil Pollut 2013; 224: 1668.
[http://dx.doi.org/10.1007/s11270-013-1668-0]
[64]
Santner A, Calderon-Villalobos LIA, Estelle M. Plant hormones are versatile chemical regulators of plant growth. Nat Chem Biol 2009; 5(5): 301-7.
[http://dx.doi.org/10.1038/nchembio.165] [PMID: 19377456]
[65]
Rastogi A, Zivcak M, Sytar O, et al. Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem 2017; 5: 78.
[http://dx.doi.org/10.3389/fchem.2017.00078] [PMID: 29075626]
[66]
Vinković T, Novák O, Strnad M, et al. Cytokinin response in pepper plants (Capsicum annuum L.) exposed to silver nanoparticles. Environ Res 2017; 156: 10-8.
[http://dx.doi.org/10.1016/j.envres.2017.03.015] [PMID: 28314149]
[67]
Wang P, Lombi E, Sun S, Scheckel KG, Malysheva A, McKenna BA, et al. Characterizing the uptake, accumulation and toxicity of silver sulfide nanoparticles in plants. Environ Sci Nano 2017; 4: 448-60.
[http://dx.doi.org/10.1039/C6EN00489J]
[68]
Van NL, Ma C, Shang J, Rui Y, Liu S, Xing B. Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere 2016; 144: 661-70.
[http://dx.doi.org/10.1016/j.chemosphere.2015.09.028] [PMID: 26408972]
[69]
Gui X, Deng Y, Rui Y, et al. Response difference of transgenic and conventional rice (Oryza sativa) to nanoparticles (γFe2O3). Environ Sci Pollut Res Int 2015; 22(22): 17716-23.
[http://dx.doi.org/10.1007/s11356-015-4976-7] [PMID: 26154040]
[70]
Hao Y, Yu F, Lv R, et al. Carbon nanotubes filled with different ferromagnetic alloys affect the growth and development of rice seedlings by changing the C: N ratio and plant hormones concentrations. PLoS One 2016; 11(6)e0157264
[http://dx.doi.org/10.1371/journal.pone.0157264] [PMID: 27284692]
[71]
Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C. Nanotechnology in agriculture: which innovation potential does it have? Front Environ Sci 2016; 4: 20.
[http://dx.doi.org/10.3389/fenvs.2016.00020]
[72]
Wu B, Zhu L, Le XC. Metabolomics analysis of TiO2 nanoparticles induced toxicological effects on rice (Oryza sativa L.). Environ Pollut 2017; 230: 302-10.
[http://dx.doi.org/10.1016/j.envpol.2017.06.062] [PMID: 28667911]
[73]
Zhao L, Peralta-Videa JR, Rico CM, et al. CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 2014; 62(13): 2752-9.
[http://dx.doi.org/10.1021/jf405476u] [PMID: 24611936]
[74]
Peralta-Videa JR, Hernandez-Viezcas JA, Zhao L, et al. Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soybean plants. Plant Physiol Biochem 2014; 80: 128-35.
[http://dx.doi.org/10.1016/j.plaphy.2014.03.028] [PMID: 24751400]
[75]
Rajeshwari A, Kavitha S, Alex SA, et al. Cytotoxicity of aluminum oxide nanoparticles on Allium cepa root tip effects of oxidative stress generation and biouptake. Environ Sci Pollut Res Int 2015; 22(14): 11057-66.
[http://dx.doi.org/10.1007/s11356-015-4355-4] [PMID: 25794585]
[76]
Rizwan M, Ali S, Qayyum MF, et al. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review. J Hazard Mater 2017; 322(Pt A): 2-16..
[http://dx.doi.org/10.1016/j.jhazmat.2016.05.061] [PMID: 27267650]
[77]
Gorczyca A, Pociecha E, Kasprowicz M, Niemiec M. Effect of nanosilver in wheat seedlings and Fusarium culmorum culture systems. Eur J Plant Pathol 2015; 142: 251-61.
[http://dx.doi.org/10.1007/s10658-015-0608-9]
[78]
Shaw AK, Ghosh S, Kalaji HM, Bosa K, Brestic M, Zivcak M, et al. Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.). Environ Exp Bot 2014; 102: 37-47.
[http://dx.doi.org/10.1016/j.envexpbot.2014.02.016]
[79]
Faisal M, Saquib Q, Alatar AA, Al-Khedhairy AA, Hegazy AK, Musarrat J. Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater 2013; 250-251: 318-32.
[http://dx.doi.org/10.1016/j.jhazmat.2013.01.063] [PMID: 23474406]
[80]
Rao S, Shekhawat GS. Phytotoxicity and oxidative stress perspective of two selected nanoparticles in Brassica juncea. Biotech 2016; 6: 244.
[http://dx.doi.org/10.1007/s13205-016-0550-3]
[81]
Ghosh M, Jana A, Sinha S, et al. Effects of ZnO nanoparticles in plants: Cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest. Mutat Res Genet Toxicol Environ Mutagen 2016; 807: 25-32.
[http://dx.doi.org/10.1016/j.mrgentox.2016.07.006] [PMID: 27542712]
[82]
Jiang HS, Qiu XN, Li GB, Li W, Yin LY. Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. Environ Toxicol Chem 2014; 33(6): 1398-405.
[http://dx.doi.org/10.1002/etc.2577] [PMID: 24619507]
[83]
Ebrahimi A, Galavi M, Ramroudi M, Moaveni P. Effect of TiO2 Nanoparticles on Antioxidant Enzymes Activity and Biochemical Biomarkers in Pinto Bean (Phaseolus vulgaris L.). J Mol Biol Res 2015; 6: 58.
[http://dx.doi.org/10.5539/jmbr.v6n1p58]
[84]
M. A RIAHI, F Rezaee, V Jalali. Effects of alumina nanoparticles on morphological properties and antioxidant system of Triticum aestivum. 2012.
[85]
Rico CM, Barrios AC, Tan W, et al. Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles. Environ Sci Pollut Res Int 2015; 22(14): 10551-8.
[http://dx.doi.org/10.1007/s11356-015-4243-y] [PMID: 25735245]
[86]
Ruttkay-Nedecky B, Krystofova O, Nejdl L, Adam V. Nanoparticles based on essential metals and their phytotoxicity. J Nanobiotechnology 2017; 15(1): 33.
[http://dx.doi.org/10.1186/s12951-017-0268-3] [PMID: 28446250]
[87]
Jain N, Bhargava A, Pareek V, Sayeed Akhtar M, Panwar J. Does seed size and surface anatomy play role in combating phytotoxicity of nanoparticles? Ecotoxicology 2017; 26(2): 238-49.
[http://dx.doi.org/10.1007/s10646-017-1758-7] [PMID: 28083774]
[88]
Azura MN, Zamri I, Rashid M, Shahrin GM, Rafidah A, Mohammad I, et al. Evaluation of nanoparticles for promoting seed germination and growth rate in MR263 and MR269 paddy seeds. J Trop Agric and Fd Sc 2017; 45: 13-24.
[89]
Spielman-Sun E, Avellan A, Bland GD, Tappero RV, Acerbo AS, Unrine JM, et al. Nanoparticle surface charge influences translocation and leaf distribution in vascular plants with contrasting anatomy. Environ Sci Nano 2019; 6: 2508-19.
[http://dx.doi.org/10.1039/C9EN00626E]
[90]
Qian H, Peng X, Han X, Ren J, Sun L, Fu Z. Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci (China) 2013; 25(9): 1947-55.
[http://dx.doi.org/10.1016/S1001-0742(12)60301-5] [PMID: 24520739]
[91]
Haverkamp R, Marshall A. The mechanism of metal nanoparticle formation in plants: limits on accumulation. J Nanopart Res 2009; 11: 1453-63.
[http://dx.doi.org/10.1007/s11051-008-9533-6]
[92]
Cox A, Venkatachalam P, Sahi S, Sharma N. Silver and titanium dioxide nanoparticle toxicity in plants: A review of current research. Plant Physiol Biochem 2016; 107: 147-63.
[http://dx.doi.org/10.1016/j.plaphy.2016.05.022] [PMID: 27288991]
[93]
Qiu H, Smolders E. Nanospecific phytotoxicity of CuO nanoparticles in soils disappeared when bioavailability factors were considered. Environ Sci Technol 2017; 51(20): 11976-85.
[http://dx.doi.org/10.1021/acs.est.7b01892] [PMID: 28934849]
[94]
Gao X, Avellan A, Laughton S, et al. CuO nanoparticle dissolution and toxicity to wheat (Triticum aestivum) in rhizosphere soil. Environ Sci Technol 2018; 52(5): 2888-97.
[http://dx.doi.org/10.1021/acs.est.7b05816] [PMID: 29385794]
[95]
Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H. TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 2011; 13(4): 822-8.
[http://dx.doi.org/10.1039/c0em00611d] [PMID: 21267473]
[96]
Larue C, Veronesi G, Flank A-M, Surble S, Herlin-Boime N, Carrière M. Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed. J Toxicol Environ Health A 2012; 75(13-15): 722-34.
[http://dx.doi.org/10.1080/15287394.2012.689800] [PMID: 22788360]

© 2024 Bentham Science Publishers | Privacy Policy