Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Nanoparticles and Significance of Photocatalytic Nanoparticles in Wastewater Treatment: A Review

Author(s): Muhammad Sagir*, Muhammad B. Tahir, Jehangir Akram, Muhammad S. Tahir and Usama Waheed

Volume 17, Issue 1, 2021

Published on: 07 June, 2020

Page: [38 - 48] Pages: 11

DOI: 10.2174/1573411016999200607172553

Price: $65

Abstract

Background: In the present situation where there is a water shortage globally, nanoparticles can play a vital role in treating wastewater to make it usable for several processes. Industrial wastewater contains numerous heavy metals and associated wastes that enter our food chain by one means or other. This article provides a review of applications of nanoparticles in wastewater treatment and highlights the significance of photocatalytic nanoparticles in general.

Methods: Online journals and books related to wastewater treatment using nanoparticles are reviewed to compile their essentials findings. General mechanisms, applications, limitations, and comparison of photocatalytic nanoparticles are reviewed as well.

Results: A study of photocatalytic nanoparticles shows that TiO2 and ZnO nanoparticles have excellent photocatalytic capabilities as compared to other nanoparticles due to their bandgap properties; however, the usage of these nanoparticles is limited since there is higher recombination rate of electrons and holes in photocatalysis. Further, individual limitations also exist as TiO2 is inoperable in the visible light region. So, their heterostructures with other nanoparticles have been developed to overcome their limitations. Other nanoparticles, like noble metals, and those like CuO, CeO2, SnO2 have potential in carrying out photocatalytic degradation of contaminants of wastewaters.

Conclusion: Several contaminants can be eliminated from wastewater bodies using photocatalytic nanoparticles. The efficiency of photocatalytic nanoparticles can be enhanced by coupling them with suitable species. Research in this area can prevent the water shortage of upcoming years.

Keywords: Catalyst, nano particle, photocatalyst, TiO2, wasterwater, ZnO.

Graphical Abstract

[1]
Montgomery, A.M.; Elimelech, M. Water and sanitation in developing countries: including health in the equation. Environ. Sci. Technol., 2007, 41, 17-24.
[2]
Ellis, T.G. Chemistry of wastewater. Encyclopedia of Life Support System (EOLSS), 2004, 2, 1-10.
[3]
Szekely, G.; Jimenez-Solomon, M.F.; Marchetti, P.; Kim, J.F.; Livingston, A.G.J.G.C. Sustainability assessment of organic solvent nanofiltration: from fabrication to application. Green Chem., 2014, 16(10), 4440-4473.
[http://dx.doi.org/10.1039/C4GC00701H]
[4]
Alrousan, D.M.; Dunlop, P.S.; McMurray, T.A.; Byrne, J.A.J.W.r. Photocatalytic inactivation of E. coli in surface water using immobilised nanoparticle TiO2 films. Water Res., 2009, 43(1), 47-54.
[5]
Shahzad, K.; Tahir, M.B.; Sagir, M.; Kabli, M.R. Role of CuCo2S4 in Z-scheme MoSe2/BiVO4 composite for efficient photocatalytic reduction of heavy metals. Ceram. Int., 2019, 45(17, Part B), 23225-23232.
[http://dx.doi.org/10.1016/j.ceramint.2019.08.018]
[6]
Bora, T.; Dutta, J. Applications of nanotechnology in wastewater treatment--a review. J. Nanosci. Nanotechnol., 2014, 14(1), 613-626.
[7]
Savage, N.; Diallo, M.S. Nanomaterials and water purification: Opportunities and challenges. J. Nanopart. Res., 2005, 7(4-5), 331-342.
[http://dx.doi.org/10.1007/s11051-005-7523-5]
[8]
Ahmad, H.; Kamarudin, S.; Minggu, L.; Kassim, M. Hydrogen from photo-catalytic water splitting process: A Review. Renew. Sustain. Energy Rev., 2015, 43, 599-610.
[9]
Tahir, M.B.; Nawaz, T.; Nabi, G.; Sagir, M.; Khan, M.I.; Malik, N. Role of nanophotocatalysts for the treatment of hazardous organic and inorganic pollutants in wastewater. Int. J. Environ. Anal. Chem., 2020, 1, 1-25.
[http://dx.doi.org/10.1080/03067319.2020.1723570]
[10]
Kamat, P.V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles; ACS Publications, 2002.
[http://dx.doi.org/10.1021/jp0209289]
[11]
El Saliby, I.; Shon, H.; Kandasamy, J.; Vigneswaran, S. Nanotechnology for Wastewater Treatment: In brief. Encyclopedia of Life Support System; EOLSS, 2008, p. 7.
[12]
Qu, X.; Alvarez, P.J.; Li, Q. Applications of nanotechnology in water and wastewater treatment. Water Res., 2013, 47(12), 3931-3946.
[http://dx.doi.org/10.1016/j.watres.2012.09.058] [PMID: 23571110]
[13]
Hu, A.; Apblett, A. Nanotechnology for water treatment and purification; Springer, 2014.
[http://dx.doi.org/10.1007/978-3-319-06578-6]
[14]
Cloete, T.E.; De Kwaadsteniet, M.; Botes, M. Nanotechnology in water treatment applications; Horizon Scientific Press, 2010.
[15]
Qu, X.; Brame, J.; Li, Q.; Alvarez, P.J. Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Acc. Chem. Res., 2013, 46(3), 834-843.
[http://dx.doi.org/10.1021/ar300029v] [PMID: 22738389]
[16]
Xu, P.; Zeng, G.M.; Huang, D.L.; Lai, C.; Zhao, M.H.; Wei, Z.; Li, N.J.; Huang, C.; Xie, G.X.J. Adsorption of Pb (II) by iron oxide nanoparticles immobilized Phanerochaete chrysosporium: equilibrium, kinetic, thermodynamic and mechanisms analysis. Chem. Eng. J., 2012, 203, 423-431.
[17]
Ambashta, R.D.; Sillanpää, M. Water purification using magnetic assistance: a review. J. Hazard. Mater., 2010, 18(1-3), 38-49.
[http://dx.doi.org/10.1016/j.jhazmat.2010.04.105]
[18]
Yantasee, W.; Warner, C.L.; Sangvanich, T.; Addleman, R.S.; Carter, T.G.; Wiacek, R.J.; Fryxell, G.E.; Timchalk, C.; Warner, M.G. Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environ. Sci. Technol., 2007, 41(14), 5114-5119.
[19]
Khaydarov, A. NATO Science for Peace and Security Series C: Environmental Security. 2012, 167-182.
[20]
Esfahani, A.R.; Firouzi, A.F.; Sayyad, G.; Kiasat, A. Lead removal from aqueous solutions using polyacrylicacid-Stabilized zero-Valent iron nanoparticles. Res. J. Environ. Earth Sci., 2013, 5(9), 548-555.
[http://dx.doi.org/10.19026/rjees.5.5685]
[21]
Elliott, D.W.; Lien, H-L.; Zhang, W. Zerovalent iron nanoparticles for treatment of ground water contaminated by hexachlorocyclohexanes. Org. Comp. Environ., 2008, 37(6), 2192-2201.
[http://dx.doi.org/10.2134/jeq2007.0545]
[22]
Nassar, N.N.; Ringsred, A. Rapid adsorption of methylene blue from aqueous solutions by goethite nanoadsorbents. Environ. Eng. Sci., 2012, 29(8), 790-797.
[http://dx.doi.org/10.1089/ees.2011.0263]
[23]
Akhtar, J.; Tahir, M.B.; Sagir, M.; Bamufleh, H.S. Improved photocatalytic performance of Gd and Nd co-doped ZnO nanorods for the degradation of methylene blue. Ceram. Int., 2020, 46(8), 11955-11961.
[http://dx.doi.org/10.1016/j.ceramint.2020.01.234]
[24]
Adams, W.A.; Impellitteri, C.A. The photocatalysis of N, N-diethyl-m-toluamide (DEET) using dispersions of Degussa P-25 TiO2 particles. J. Photochem. Photobiol. Chem., 2009, 202(1), 28-32.
[http://dx.doi.org/10.1016/j.jphotochem.2008.11.003]
[25]
Li, H.; Wang, G.; Zhang, F.; Cai, Y.; Wang, Y.; Djerdj, I. Surfactant-assisted synthesis of CeO2 nanoparticles and their application in wastewater treatment. RSC Advances, 2012, 2(32), 12413-12423.
[26]
Liu, Y.; Chen, X.; Li, J.; Burda, C. Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts. Chemosphere, 2005, 61(1), 11-18.
[http://dx.doi.org/10.1016/j.chemosphere.2005.03.069]
[27]
Shahzad, K.; Tahir, M.B.; Sagir, M. Utilization of Bi2WO6-encapsulated polyaniline-based redox reactions for the efficient detoxification of organic pollutants. Appl. Nanosci., 2020, 10, 2037-2043.
[http://dx.doi.org/10.1007/s13204-020-01265-6]
[28]
López-Muñoz, M-J.; van Grieken, R.; Aguado, J.; Marugán, J. Role of the support on the activity of silica-supported TiO2 photocatalysts: structure of the TiO2/SBA-15 photocatalysts. Catal. Today, 2005, 101(3-4), 307-314.
[http://dx.doi.org/10.1016/j.cattod.2005.03.017]
[29]
Lisha, K.; Pradeep, T. Towards a practical solution for removing inorganic mercury from drinking water using gold nanoparticles. Gold Bull., 2009, 42(2), 144-152.
[http://dx.doi.org/10.1007/BF03214924]
[30]
Echavia, G.R.M.; Matzusawa, F.; Negishi, N. Photocatalytic degradation of organophosphate and phosphonoglycine pesticides using TiO2 immobilized on silica gel. Chemosphere, 2009, 76(5), 595-600.
[http://dx.doi.org/10.1016/j.chemosphere.2009.04.055]
[31]
Pelentridou, K.; Stathatos, E.; Karasali, H.; Lianos, P. Photodegradation of the herbicide azimsulfuron using nanocrystalline titania films as photocatalyst and low intensity black light radiation or simulated solar radiation as excitation source. J. Hazard. Mater., 2009, 163(2-3), 756-760.
[http://dx.doi.org/10.1016/j.jhazmat.2008.07.023]
[32]
Lien, H-L.; Zhang, W-x. Hydrodechlorination of chlorinated ethanes by nanoscale Pd/Fe bimetallic particles. J. Environ. Eng., 2005, 131(1), 4-10.
[http://dx.doi.org/10.1061/(ASCE)0733-9372(2005)131:1(4)]
[33]
Lopez, L.; Daoud, W.; Dutta, D. Preparation of large scale photocatalytic TiO2 films by the sol-gel process. Surf. Coat. Tech., 2010, 205(2), 251-257.
[http://dx.doi.org/10.1016/j.surfcoat.2010.06.028]
[34]
Zhuang, J.; Dai, W.; Tian, Q.; Li, Z.; Xie, L.; Wang, J.; Liu, P.; Shi, X.; Wang, D. Photocatalytic degradation of RhB over TiO2 bilayer films: effect of defects and their location. Langmuir, 2010, 26(12), 9686-9694.
[35]
Song, W.; Li, G.; Grassian, V.H.; Larsen, S.C. Development of improved materials for environmental applications: Nanocrystalline NaY zeolites. Environ. Sci. Technol., 2005, 39(5), 1214-1220.
[http://dx.doi.org/10.1021/es049194z] [PMID: 15787359]
[36]
Chung, Y-C.; Chen, C-Y. Degradation of azo dye reactive violet 5 by TiO2. Photocatalysis, 2009, 7(4), 347-352.
[37]
Xiong, Z.; Zhao, D.; Pan, G. Rapid and complete destruction of perchlorate in water and ion-exchange brine using stabilized zero-valent iron nanoparticles. Water Res., 2007, 41(15), 3497-3505.
[http://dx.doi.org/10.1016/j.watres.2007.05.049] [PMID: 17597179]
[38]
Lin, Y.; Ferronato, C.; Deng, N.; Chovelon, J-M. Study of benzylparaben photocatalytic degradation by TiO2. Appl. Catal. B Environ, 2011, 104(3-4), 353-360.
[http://dx.doi.org/10.1016/j.apcatb.2011.03.006]
[39]
Nair, A.S.; Pradeep, T. Nanotechnology, Extraction of chlorpyrifos and malathion from water by metal nanoparticles. J. Nanosci. Nanotechnol., 2007, 7(6), 1871-1877.
[40]
Wang, T.C.; Lu, N.; Li, J.; Wu, Y. Plasma-TiO2 catalytic method for high-efficiency remediation of p-nitrophenol contaminated soil in pulsed discharge. Environ. Sci. Technol., 2011, 45(21), 9301-9307.
[http://dx.doi.org/10.1021/es2014314] [PMID: 21919521]
[41]
Li, G.; Park, S.; Kang, D-W.; Krajmalnik-Brown, R.; Rittmann, B.E. 2,4,5-Trichlorophenol degradation using a novel TiO2-coated biofilm carrier: roles of adsorption, photocatalysis, and biodegradation. Environ. Sci. Technol., 2011, 45(19), 8359-8367.
[http://dx.doi.org/10.1021/es2016523] [PMID: 21861477]
[42]
Ghaly, M.Y.; Jamil, T.S.; El-Seesy, I.E.; Souaya, E.R.; Nasr, R.A. Treatment of highly polluted paper mill wastewater by solar photocatalytic oxidation with synthesized nano TiO2. Chem. Eng. J., 2011, 168(1), 446-454.
[http://dx.doi.org/10.1016/j.cej.2011.01.028]
[43]
Miranda-García, N.; Suárez, S.; Sánchez, B.; Coronado, J.; Malato, S.; Maldonado, M.I. Photocatalytic degradation of emerging contaminants in municipal wastewater treatment plant effluents using immobilized TiO2 in a solar pilot plant. Appl. Catal. B, 2011, 103(3-4), 294-301.
[http://dx.doi.org/10.1016/j.apcatb.2011.01.030]
[44]
Jain, P.; Pradeep, T. Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol. Bioeng., 2005, 90(1), 59-63.
[http://dx.doi.org/10.1002/bit.20368] [PMID: 15723325]
[45]
Colmenares, J. C.; Xu, Y.-J. J. Heterogeneous Photocatalysis., 2016.
[http://dx.doi.org/10.1007/978-3-662-48719-8]
[46]
Tahir, M.B.; Nawaz, T.; Nabi, G.; Sagir, M.; Shehzad, M.A.; Yasmin, A.; Hussain, S.; Bhatti, M.P.; Ahmed, A.; Gilani, S.S.A. Recent advances on photocatalytic nanomaterials for hydrogen energy evolution in sustainable environment. Int. J. Environ. Anal. Chem., 2020, 1, 1-19.
[http://dx.doi.org/10.1080/03067319.2019.1691188]
[47]
Tahir, M.B.; Rafique, M.; Isa Khan, M.; Majid, A.; Nazar, F.; Sagir, M.; Gilani, S.; Farooq, M.; Ahmed, A. Enhanced photocatalytic hydrogen energy production of g-C3N4-WO3 composites under visible light irradiation. Int. J. Energy Res., 2018, 42(15), 4667-4673.
[http://dx.doi.org/10.1002/er.4208]
[48]
Tahir, M.B.; Sagir, M.; Abas, N. Enhanced photocatalytic performance of CdO-WO3 composite for hydrogen production. Int. J. Hydrogen Energy, 2019, 44(45), 24690-24697.
[http://dx.doi.org/10.1016/j.ijhydene.2019.07.220]
[49]
Tahir, M.B.; Sagir, M.; Muhammad, S.; Siddeeg, S.M.; Iqbal, T.; Asiri, A.M.; Ijaz, M. Hierarchical WO3@ BiVO4 nanostructures for improved green energy production. Appl. Nanosci., 2020, 10(4), 1183-1190.
[http://dx.doi.org/10.1007/s13204-019-01180-5]
[50]
Védrine, C.J. Heterogeneous Catalysis on Metal Oxides. Catalysts, 2017, 7(11), 1.
[http://dx.doi.org/10.3390/catal7110341]
[51]
Gupta, S.M.; Tripathi, M. A review of TiO 2 nanoparticles. Chin. Sci. Bull., 2011, 56(16), 1639.
[http://dx.doi.org/10.1007/s11434-011-4476-1]
[52]
Hagfeldt, A.; Graetzel, M. Light-induced redox reactions in nanocrystalline systems. Chem. Rev., 1995, 95(1), 49-68.
[http://dx.doi.org/10.1021/cr00033a003]
[53]
Bora, T.; Dutta, J. Applications of nanotechnology in wastewater treatment--a review. J. Nanosci. Nanotechnol., 2014, 14(1), 613-626.
[http://dx.doi.org/10.1166/jnn.2014.8898] [PMID: 24730286]
[54]
Mukherjee, P.S.; Ray, A.K. Major challenges in the design of a large‐scale photocatalytic reactor for water treatment. Chem. Eng. Technol., 1999, 22(3), 253-260.
[http://dx.doi.org/10.1002/(SICI)1521-4125(199903)22:3<253:AID-CEAT253>3.0.CO;2-X]
[55]
Roy, A.; Bhattacharya, J. Nanotechnology in industrial wastewater treatment; IWA Publishing, 2015.
[56]
Ajmal, A.; Majeed, I.; Malik, R.N.; Idriss, H.; Nadeem, M.A. Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: A comparative overview. RSC Advances, 2014, 4(70), 37003-37026.
[http://dx.doi.org/10.1039/C4RA06658H]
[57]
Zhang, K.; Kemp, K.C.; Chandra, V. Homogeneous anchoring of TiO2 nanoparticles on graphene sheets for waste water treatment. Mater. Lett., 2012, 81, 127-130.
[http://dx.doi.org/10.1016/j.matlet.2012.05.002]
[58]
Shahrezaei, F.; Mansouri, Y.; Zinatizadeh, A.A.L.; Akhbari, A. Process modeling and kinetic evaluation of petroleum refinery wastewater treatment in a photocatalytic reactor using TiO2 nanoparticles. Powder Technol., 2012, 221, 203-212.
[http://dx.doi.org/10.1016/j.powtec.2012.01.003]
[59]
Alebeid, O.; Zhao, T. Developing UV protection of cotton fabric (a review). J. Textil. Inst., 2017, 108, 2027-2039.
[60]
Mohapatra, D.; Brar, K.; Daghrir, R.; Tyagi, R.D.; Picard, P.; Surampalli, R.Y.; Drogui, P. Photocatalytic degradation of carbamazepine in wastewater by using a new class of whey-stabilized nanocrystalline TiO2 and ZnO. Sci. Total Environ., 2014, 485-486C, 263-269.
[61]
Rajamanickam, D.; Shanthi, M. Photocatalytic degradation of an organic pollutant by zinc oxide-solar process. Arab. J. Chem., 2016, 9, S1858-S1868.
[http://dx.doi.org/10.1016/j.arabjc.2012.05.006]
[62]
Rauf, M.; Ashraf, S.S. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J., 2009, 151(1-3), 10-18.
[http://dx.doi.org/10.1016/j.cej.2009.02.026]
[63]
Al-Hamdi, A.M.; Rinner, U.; Sillanpää, M. Tin dioxide as a photocatalyst for water treatment: A review. Process Saf. Environ. Prot., 2017, 107, 190-205.
[http://dx.doi.org/10.1016/j.psep.2017.01.022]
[64]
Kim, S.P.; Choi, M.Y.; Choi, H.C. Photocatalytic activity of SnO2 nanoparticles in methylene blue degradation. Mater. Res. Bull., 2016, 74, 85-89.
[http://dx.doi.org/10.1016/j.materresbull.2015.10.024]
[65]
Ayati, A.; Ahmadpour, A.; Bamoharram, F.F.; Tanhaei, B.; Mänttäri, M.; Sillanpää, M. A review on catalytic applications of Au/TiO2 nanoparticles in the removal of water pollutant. Chemosphere, 2014, 107, 163-174.
[http://dx.doi.org/10.1016/j.chemosphere.2014.01.040] [PMID: 24560285]
[66]
Chen, Y.; Bian, J.; Qi, L.; Liu, E.; Fan, J. Efficient degradation of methylene blue over two-dimensional Au/TiO2 nanosheet films with overlapped light harvesting nanostructures. J. Nanomater., 2015, 2015, 1-10.
[67]
Zheng, L.; Zheng, Y.; Chen, C.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K.; Zhu, J. Network structured SnO2/ZnO heterojunction nanocatalyst with high photocatalytic activity. Inorg. Chem., 2009, 48(5), 1819-1825.
[http://dx.doi.org/10.1021/ic802293p] [PMID: 19235945]
[68]
Gao, H.; Qiao, B.; Wang, T-J.; Wang, D.; Jin, Y. Cerium oxide coating of titanium dioxide pigment to decrease its photocatalytic activity. Ind. Eng. Chem. Res., 2013, 53(1), 189-197.
[http://dx.doi.org/10.1021/ie402539n]
[69]
Yue, L.; Zhang, X-M. Structural characterization and photocatalytic behaviors of doped CeO2 nanoparticles. J. Alloys Compd., 2009, 475(1-2), 702-705.
[http://dx.doi.org/10.1016/j.jallcom.2008.07.096]
[70]
Liu, J.; Li, H.; Li, Q.; Wang, X.; Zhang, M.; Yang, J. Preparation of cerium modified titanium dioxide nanoparticles and investigation of their visible light photocatalytic performance. Int. J. Photoenergy, 2014, 2014695679
[71]
Liu, Z.; Guo, B.; Hong, L.; Jiang, H.J. Preparation and characterization of cerium oxide doped TiO2 nanoparticles. J. Phys. Chem. Solids, 2005, 66(1), 161-167.
[http://dx.doi.org/10.1016/j.jpcs.2004.09.002]
[72]
Akhavan, O.; Ghaderi, E. Cu and CuO nanoparticles immobilized by silica thin films as antibacterial materials and photocatalysts. Surf. Coat. Tech., 2010, 205(1), 219-223.
[http://dx.doi.org/10.1016/j.surfcoat.2010.06.036]
[73]
Zhang, Z.; Shao, C.; Li, X.; Wang, C.; Zhang, M.; Liu, Y. Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity. ACS Appl. Mater. Interfaces, 2010, 2(10), 2915-2923.
[http://dx.doi.org/10.1021/am100618h] [PMID: 20936796]
[74]
Chan, S.H.S.; Yeong Wu, T.; Juan, J.C.; Teh, C.Y. Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste‐water. J. Chem. Technol. Biotechnol., 2011, 86(9), 1130-1158.
[http://dx.doi.org/10.1002/jctb.2636]
[75]
Gnanasekaran, L.; Hemamalini, R.; Saravanan, R.; Ravichandran, K.; Gracia, F.; Agarwal, S.; Gupta, V.K. Synthesis and characterization of metal oxides (CeO2, CuO, NiO, Mn3O4, SnO2 and ZnO) nanoparticles as photo catalysts for degradation of textile dyes. J. Photochem. Photobiol. B, 2017, 173, 43-49.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.05.027] [PMID: 28558305]
[76]
Liao, Y.; Xie, C.; Liu, Y.; Chen, H.; Li, H.; Wu, J. Comparison on photocatalytic degradation of gaseous formaldehyde by TiO2, ZnO and their composite. Ceram. Int., 2012, 38(6), 4437-4444.
[http://dx.doi.org/10.1016/j.ceramint.2012.03.016]
[77]
Fatin, S.; Lim, H.; Tan, W.; Huang, N. J. I. J. o. E. S. Comparison of photocatalytic activity and cyclic voltammetry of zinc oxide and titanium dioxide nanoparticles toward degradation of methylene blue., 2012, 7(10), 9074-9084.
[78]
Pejin, B.; Kien-Thai, Y.; Stanimirovic, B.; Vuckovic, G.; Belic, D.; Sabovljevic, M. Heavy metal content of a medicinal moss tea for hypertension. Nat. Prod. Res., 2012, 26(23), 2239-2242.
[http://dx.doi.org/10.1080/14786419.2011.648190] [PMID: 22236074]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy