Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Ultrasmall Europium, Gadolinium, and Dysprosium Oxide Nanoparticles: Polyol Synthesis, Properties, and Biomedical Imaging Applications

Author(s): Huan Yue, Ja Young Park, Yongmin Chang* and Gang Ho Lee*

Volume 20, Issue 17, 2020

Page: [1767 - 1780] Pages: 14

DOI: 10.2174/1389557520666200604163452

Price: $65

Abstract

Imaging agents are crucial in diagnosing diseases. Ultrasmall lanthanide oxide (Ln2O3) nanoparticles (NPs) (Ln = Eu, Gd, and Dy) are promising materials as high-performance imaging agents because of their excellent magnetic, optical, and X-ray attenuation properties which can be applied as magnetic resonance imaging (MRI), fluorescence imaging (FI), and X-ray computed tomography (CT) agents, respectively. Ultrasmall Ln2O3 NPs (Ln = Eu, Gd, and Dy) are reviewed here. The reviewed topics include polyol synthesis, characterization, properties, and biomedical imaging applications of ultrasmall Ln2O3 NPs. Recently published papers were used as bibliographic databases. A polyol method is a simple and efficient one-pot synthesis for preparing ultrasmall Ln2O3 NPs. Ligand-coated ultrasmall Ln2O3 NPs have good colloidal stability, biocompatibility, and renal excretion ability suitable for in vivo imaging applications. Ultrasmall Eu2O3 NPs display photoluminescence in the red region suitable for use as FI agents. Ultrasmall Gd2O3 NPs have r1 values higher than those of commercial molecular contrast agents and r2/r1 ratios close to 1, which make them eligible for use as T1 MRI contrast agents. Ultrasmall Dy2O3 NPs exhibit high r2 and negligible r1 values, which make them suitable for use as T2 MRI contrast agents. All ultrasmall Ln2O3 NPs have high X-ray attenuation powers which make them suitable for use as CT contrast agents. Unmixed, mixed, or doped ultrasmall Ln2O3 NPs with different Ln are extremely useful for in vivo imaging applications in MRI, CT, FI, MRI-CT, MRI-FI, CT-FI, and MRI-CT-FI.

Keywords: Smart polyol synthesis, Ln2O3 nanoparticle (Ln = Eu, Gd, and Dy), biomedical imaging, MRI, CT, FI.

Graphical Abstract

[1]
Greenwood, N.N.; Earnshaw, A. Chemistry of the Elements, 2nd ed; Butterworth-Heinemann: New York, 1997, p. 1243.
[2]
Cotton, F.A.; Wilkinson, G. Advanced Inorganic Chemistry; 4th ed; A Wiley-Interscience Publication: New York, 1980, pp. 981-985.
[3]
Singh, R.; Singh, S. Surface Modification of Nanomaterials for biomedical applications: Strategies and recent advances. Nanobiotechnology; Dhawan, A.; Singh, S.; Kumar, A; Shanker, R., Ed.; CRC Press: Boca Raton, 2018.
[http://dx.doi.org/10.1201/9781351031585-5]
[4]
Choi, H.S.; Liu, W.; Misra, P.; Tanaka, E.; Zimmer, J.P.; Itty Ipe, B.; Bawendi, M.G.; Frangioni, J.V. Renal clearance of quantum dots. Nat. Biotechnol., 2007, 25(10), 1165-1170.
[http://dx.doi.org/10.1038/nbt1340 ] [PMID: 17891134]
[5]
Longmire, M.; Choyke, P.L.; Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. Nanomedicine (Lond.), 2008, 3(5), 703-717.
[http://dx.doi.org/10.2217/17435889.3.5.703 ] [PMID: 18817471]
[6]
Hainfeld, J.F.; Slatkin, D.N.; Focella, T.M.; Smilowitz, H.M. Gold nanoparticles: a new X-ray contrast agent. Br. J. Radiol., 2006, 79(939), 248-253.
[http://dx.doi.org/10.1259/bjr/13169882 ] [PMID: 16498039]
[7]
Li, C-J.; Trost, B.M. Green chemistry for chemical synthesis. Proc. Natl. Acad. Sci. USA, 2008, 105(36), 13197-13202.
[http://dx.doi.org/10.1073/pnas.0804348105 ] [PMID: 18768813]
[8]
Devhade, J.B.; Devade, M.J.; Kalwaghe, S.S. Green chemistry for chemical synthesis. Int. Res. J. Sci. Eng., 2014, 2, 100-103.
[9]
Dong, H.; Chen, Y-C.; Feldmann, C. Polyol synthesis of nanoparticles: status and options regarding metals, oxides, chalcogenides, and non-metal elements. Green Chem., 2015, 17, 4107-4132.
[10]
Fiévet, F.; Ammar-Merah, S.; Brayner, R.; Chau, F.; Giraud, M.; Mammeri, F.; Peron, J.; Piquemal, J-Y.; Sicard, L.; Viau, G. The polyol process: A unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions. Chem. Soc. Rev., 2018, 47(14), 5187-5233.
[http://dx.doi.org/10.1039/C7CS00777A ] [PMID: 29901663]
[11]
Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26(18), 3995-4021.
[http://dx.doi.org/10.1016/j.biomaterials.2004.10.012 ] [PMID: 15626447]
[12]
Wu, W.; He, Q.; Jiang, C. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett., 2008, 3(11), 397-415.
[http://dx.doi.org/10.1007/s11671-008-9174-9 ] [PMID: 21749733]
[13]
Sun, S.; Zeng, H. Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc., 2002, 124(28), 8204-8205.
[http://dx.doi.org/10.1021/ja026501x ] [PMID: 12105897]
[14]
O’Brien, S.; Brus, L.; Murray, C.B. Synthesis of monodisperse nanoparticles of barium titanate: Toward a generalized strategy of oxide nanoparticle synthesis. J. Am. Chem. Soc., 2001, 123(48), 12085-12086.
[http://dx.doi.org/10.1021/ja011414a ] [PMID: 11724617]
[15]
de Carvalho, J.F.; de Medeiros, S.N.; Morales, M.A.; Dantas, A.L.; Carriço, A.S. Synthesis of magnetite nanoparticles by high energy ball milling. Appl. Surf. Sci., 2013, 275, 84-87.
[http://dx.doi.org/10.1016/j.apsusc.2013.01.118]
[16]
Koch, C.C. Synthesis of nanostructured materials by mechanical milling: problems and opportunities. Nanostruct. Mater., 1997, 9, 13-22.
[http://dx.doi.org/10.1016/S0965-9773(97)00014-7]
[17]
Chang, C.; Mao, D. Thermal dehydration kinetics of a rare earth hydroxide, Gd(OH)3. Int. J. Chem. Kinet., 2007, 39, 75-81.
[http://dx.doi.org/10.1002/kin.20221]
[18]
Mahajan, S.V.; Dickerson, J.H. Synthesis of monodisperse sub-3 nm RE2O3 and Gd2O3:RE3+ nanocrystals Nanotechnology , 2007; 18, p. 325605 (6 pp)..
[19]
Ahab, A.; Rohman, F.; Iskandar, F.; Haryanto, F.; Arif, I. A simple straightforward thermal decomposition synthesis of PEG-covered Gd2O3 (Gd2O3@PEG) nanoparticles. Adv. Powder Technol., 2016, 27, 1800-1805.
[http://dx.doi.org/10.1016/j.apt.2016.06.012]
[20]
Henglein, A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev., 1989, 89, 1861-1873.
[http://dx.doi.org/10.1021/cr00098a010]
[21]
Park, J.Y.; Baek, M.J.; Choi, E.S.; Woo, S.; Kim, J.H.; Kim, T.J.; Jung, J.C.; Chae, K.S.; Chang, Y.; Lee, G.H. Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: account for large longitudinal relaxivity, optimal particle diameter, and in vivo T1 MR images. ACS Nano, 2009, 3(11), 3663-3669.
[http://dx.doi.org/10.1021/nn900761s ] [PMID: 19835389]
[22]
Miao, X.; Ho, S.L.; Tegafaw, T.; Cha, H.; Chang, Y.; Oh, I.T.; Yaseen, A.M.; Marasini, S.; Ghazanfari, A.; Yue, H.; Chae, K.S.; Lee, G.H. Stable and non-toxic ultrasmall gadolinium oxide nanoparticle colloids (coating material = polyacrylic acid) as high-performance T1 magnetic resonance imaging contrast agents. RSC Advances, 2018, 8, 3189-3197.
[http://dx.doi.org/10.1039/C7RA11830A]
[23]
Kattel, K.; Park, J.Y.; Xu, W.; Kim, H.G.; Lee, E.J.; Bony, B.A.; Heo, W.C.; Chang, Y.; Kim, T.J.; Do, J.Y.; Chae, K.S.; Kwak, Y.W.; Lee, G.H. Water-soluble ultrasmall Eu2O3 nanoparticles as a fluorescent imaging agent: In vitro and in vivo studies. Colloid. Surf. A, 2012, 394, 85-91.
[http://dx.doi.org/10.1016/j.colsurfa.2011.11.032]
[24]
Wu, J.; Ye, Z.; Wang, G.; Jin, D.; Yuan, J.; Guan, Y.; Piper, J. Visible-light-sensitized highly luminescent europium nanoparticles: preparation and application for time-gated luminescence bioimaging. J. Mater. Chem., 2009, 19, 1258-1264.
[http://dx.doi.org/10.1039/b815999h]
[25]
Wong, K-L.; Law, G-L.; Murphy, M.B.; Tanner, P.A.; Wong, W-T.; Lam, P.K-S.; Lam, M.H-W. Functionalized europium nanorods for in vitro imaging. Inorg. Chem., 2008, 47(12), 5190-5196.
[http://dx.doi.org/10.1021/ic8000416 ] [PMID: 18491890]
[26]
Lechevallier, S.; Lecante, P.; Mauricot, R.; Dexpert, H.; Dexpert-Ghys, J.; Kong, H-K.; Law, G-L.; Wong, K-L. Gadolinium-europium carbonate particles: controlled precipitation for luminescent biolabeling. Chem. Mater., 2010, 22, 6153-6161.
[http://dx.doi.org/10.1021/cm102134k]
[27]
Xu, W.; Park, J.Y.; Kattel, K.; Bony, B.A.; Heo, W.C.; Jin, S.; Park, J.W.; Chang, Y.; Do, J.Y.; Chae, K.S.; Kim, T.J.; Park, J.A.; Park, Y.W.; Lee, G.H.A. T1, T2 magnetic resonance imaging (MRI)-fluorescent imaging (FI) by using ultrasmall mixed gadolinium-europium oxide nanoparticles. New J. Chem., 2012, 36, 2361-2367.
[http://dx.doi.org/10.1039/c2nj40149e]
[28]
Shi, Z.; Neoh, K.G.; Kang, E.T.; Shuter, B.; Wang, S-C. Bifunctional Eu(3+)-doped Gd2O3 nanoparticles as a luminescent and T1 contrast agent for stem cell labeling. Contrast Media Mol. Imaging, 2010, 5(2), 105-111.
[PMID: 20419762]
[29]
Zhang, L.; Yin, M.; You, H.; Yang, M.; Song, Y.; Huang, Y. Mutifuntional GdPO4:Eu3+ hollow spheres: Synthesis and magnetic and luminescent properties. Inorg. Chem., 2011, 50(21), 10608-10613.
[http://dx.doi.org/10.1021/ic200867a ] [PMID: 21970439]
[30]
Kattel, K.; Park, J.Y.; Xu, W.; Kim, H.G.; Lee, E.J.; Bony, B.A.; Heo, W.C.; Lee, J.J.; Jin, S.; Baeck, J.S.; Chang, Y.; Kim, T.J.; Bae, J.E.; Chae, K.S.; Lee, G.H. A facile synthesis, in vitro and in vivo MR studies of d-glucuronic acid-coated ultrasmall Ln2O3 (Ln = Eu, Gd, Dy, Ho, and Er) nanoparticles as a new potential MRI contrast agent. ACS Appl. Mater. Interfaces, 2011, 3(9), 3325-3334.
[http://dx.doi.org/10.1021/am200437r ] [PMID: 21853997]
[31]
Kim, C.R.; Baeck, J.S.; Chang, Y.; Bae, J.E.; Chae, K.S.; Lee, G.H. Ligand-size dependent water proton relaxivities in ultrasmall gadolinium oxide nanoparticles and in vivo T1 MR images in a 1.5 T MR field. Phys. Chem. Chem. Phys., 2014, 16(37), 19866-19873.
[http://dx.doi.org/10.1039/C4CP01946F ] [PMID: 25123195]
[32]
Miao, X.; Xu, W.; Cha, H.; Chang, Y.; Oh, I.T.; Chae, K.S.; Tegafaw, T.; Ho, S.L.; Kim, S.J.; Lee, G.H. Ultrasmall Gd2O3 nanoparticles surface-coated by polyacrylic acid (PAA) and their PAA-size dependent relaxometric properties. Appl. Surf. Sci., 2019, 477, 111-115.
[http://dx.doi.org/10.1016/j.apsusc.2017.11.225]
[33]
Tegafaw, T.; Xu, W.; Lee, S-H.; Chae, K.S.; Cha, H.; Chang, Y.; Lee, G.H. Ligand-size and ligand-chain hydrophilicity effects on the relaxometric properties of ultrasmall Gd2O3 nanoparticles. AIP Adv., 2016.6065114
[http://dx.doi.org/10.1063/1.4954182]
[34]
Bridot, J-L.; Faure, A-C.; Laurent, S.; Rivière, C.; Billotey, C.; Hiba, B.; Janier, M.; Josserand, V.; Coll, J-L.; Elst, L.V.; Muller, R.; Roux, S.; Perriat, P.; Tillement, O. Hybrid gadolinium oxide nanoparticles: Multimodal contrast agents for in vivo imaging. J. Am. Chem. Soc., 2007, 129(16), 5076-5084.
[http://dx.doi.org/10.1021/ja068356j ] [PMID: 17397154]
[35]
Ahrén, M.; Selegård, L.; Klasson, A.; Söderlind, F.; Abrikossova, N.; Skoglund, C.; Bengtsson, T.; Engström, M.; Käll, P-O.; Uvdal, K. Synthesis and characterization of PEGylated Gd2O3 nanoparticles for MRI contrast enhancement. Langmuir, 2010, 26(8), 5753-5762.
[http://dx.doi.org/10.1021/la903566y ] [PMID: 20334417]
[36]
Miyawaki, J.; Yudasaka, M.; Imai, H.; Yorimitsu, H.; Isobe, H.; Nakamura, E.; Iijima, S. Synthesis of ultrafine Gd2O3 nanoparticles inside single-wall carbon nanohorns. J. Phys. Chem. B, 2006, 110(11), 5179-5181.
[http://dx.doi.org/10.1021/jp0607622 ] [PMID: 16539444]
[37]
McDonald, M.A.; Watkin, K.L. Investigations into the physicochemical properties of dextran small particulate gadolinium oxide nanoparticles. Acad. Radiol., 2006, 13(4), 421-427.
[http://dx.doi.org/10.1016/j.acra.2005.11.005 ] [PMID: 16554221]
[38]
Fortin, M-A.; Petoral, R.M., Jr; Söderlind, F.; Klasson, A.; Engström, M.; Veres, T.; Käll, P-O.; Uvdal, K. Polyethylene glycolcovered ultra-small Gd2O3 nanoparticles for positive contrast at 1.5 T magnetic resonance clinical scanning In: Nanotechnology; , 2007; 18, p. 395501 (9 pp)..
[39]
Engström, M.; Klasson, A.; Pedersen, H.; Vahlberg, C.; Käll, P-O.; Uvdal, K. High proton relaxivity for gadolinium oxide nanoparticles. MAGMA, 2006, 19(4), 180-186.
[http://dx.doi.org/10.1007/s10334-006-0039-x ] [PMID: 16909260]
[40]
Lee, E.J.; Heo, W.C.; Park, J.W.; Chang, Y.; Bae, J-E.; Chae, K.S.; Kim, T.J.; Park, J.A.; Lee, G.H. D-glucuronic acid coated Gd(IO3)3∙2H2O nanomaterial as a potential T1 MRI-CT dual contrast agent. Eur. J. Inorg. Chem., 2013, 16, 2858-2866.
[http://dx.doi.org/10.1002/ejic.201201481]
[41]
Ahmad, M.W.; Xu, W.; Kim, S.J.; Baeck, J.S.; Chang, Y.; Bae, J.E.; Chae, K.S.; Park, J.A.; Kim, T.J.; Lee, G.H. Potential dualimaging nanoparticle: Gd2O3 nanoparticle In: Sci. Rep; , 2015; 5, p. 8549 (11 pp)..
[42]
Bony, B.A.; Baeck, J.S.; Chang, Y.; Lee, G.H. Non-specific Zn2+ ion sensing using ultrasmall gadolinium oxide nanoparticles as a magnetic resonance imaging contrast agent. J. Nanosci. Nanotechnol., 2016, 16(3), 2433-2437.
[http://dx.doi.org/10.1166/jnn.2016.11052 ] [PMID: 27455652]
[43]
Xu, W.; Miao, X.; Oh, I-T.; Chae, K.S.; Cha, H.; Chang, Y.; Lee, G.H. Dextran-coated ultrasmall Gd2O3 nanoparticles as potential T1 MRI contrast agent. Chem. Select, 2016, 1, 6086-6091.
[http://dx.doi.org/10.1002/slct.201600832]
[44]
Petoral, R.M., Jr; Söderlind, F.; Klasson, A.; Suska, A.; Fortin, M.A.; Abrikossova, N.; Selegård, L.; Käll, P.O.; Engström, M.; Uvdal, K. Synthesis and characterization of Tb3+-doped Gd2O3 nanocrystals: A bifunctional material with combined fluorescent labeling and MRI contrast agent properties. J. Phys. Chem. C, 2009, 113, 6913-6920.
[http://dx.doi.org/10.1021/jp808708m]
[45]
Cheung, E.N.M.; Alvares, R.D.A.; Oakden, W.; Chaudhary, R.; Hill, M.L.; Pichaandi, J.; Mo, G.C.H.; Yip, C.; Macdonald, P.M.; Stanisz, G.J.; van Veggel, F.C.J.M.; Prosser, R.S. Polymer-stabilized lanthanide fluoride nanoparticle aggregates as contrast agents for magnetic resonance imaging and computed tomography. Chem. Mater., 2010, 22, 4728-4739.
[http://dx.doi.org/10.1021/cm101036a]
[46]
Kattel, K.; Park, J.Y.; Xu, W.; Kim, H.G.; Lee, E.J.; Bony, B.A.; Heo, W.C.; Jin, S.; Baeck, J.S.; Chang, Y.; Kim, T.J.; Bae, J.E.; Chae, K.S.; Lee, G.H. Paramagnetic dysprosium oxide nanoparticles and dysprosium hydroxide nanorods as T2 MRI contrast agents. Biomaterials, 2012, 33(11), 3254-3261.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.008 ] [PMID: 22277624]
[47]
Norek, M.; Pereira, G.A.; Geraldes, C.F.G.C.; Denkova, A.; Zhou, W.; Peters, J.A. NMR transversal relaxivity of suspensions of lanthanide oxide nanoparticles. J. Phys. Chem. C, 2007, 111, 10240-10246.
[http://dx.doi.org/10.1021/jp072288l]
[48]
Norek, M.; Kampert, E.; Zeitler, U.; Peters, J.A. Tuning of the size of Dy2O3 nanoparticles for optimal performance as an MRI contrast agent. J. Am. Chem. Soc., 2008, 130(15), 5335-5340.
[http://dx.doi.org/10.1021/ja711492y ] [PMID: 18355014]
[49]
Marasini, S.; Yue, H.; Ho, S.L.; Jung, K-H.; Park, J.A.; Cha, H.S.; Ghazanfari, A.; Ahmad, M.Y.; Liu, S.; Jang, Y.J.; Miao, X.; Chae, K-S.; Chang, Y.; Lee, G.H. D-glucuronic acid-coated ultrasmall paramagnetic Ln2O3 (Ln = Tb, Dy, and Ho) nanoparticles: magnetic properties, water proton relaxivities, and fluorescence properties. Eur. J. Inorg. Chem., 2019, 34, 3832-3839.
[http://dx.doi.org/10.1002/ejic.201900378]
[50]
Hubbell, J.H.; Seltzer, S.M. Tables of X-Ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest, online available at http://www.nist.gov/pml/data/xraycoef (Gaithersburg, NIST, USA), 1996.
[51]
Lusic, H.; Grinstaff, M.W. X-ray-computed tomography contrast agents. Chem. Rev., 2013, 113(3), 1641-1666.
[http://dx.doi.org/10.1021/cr200358s ] [PMID: 23210836]
[52]
Yu, S-B.; Watson, A.D. Metal-based X-ray contrast media. Chem. Rev., 1999, 99(9), 2353-2378.
[http://dx.doi.org/10.1021/cr980441p ] [PMID: 11749484]
[53]
Krueger, K.M.; Al-Somali, A.M.; Mejia, M.; Colvin, V.L. The hydrodynamic size of polymer stabilized nanocrystals. Nanotechnology, 2007.18475709
[http://dx.doi.org/10.1088/0957-4484/18/47/475709]
[54]
Lim, J.K.; Yeap, S.P.; Che, H.X.; Low, S.C. Characterization of magnetic nanoparticle by dynamic light scattering; Nanoscale Res. Lett; , 2013, 8, p. 381 (14 pp)..
[http://dx.doi.org/10.1186/1556-276X-8-381]
[55]
Söderlind, F.; Pedersen, H.; Petoral, R.M., Jr; Käll, P-O.; Uvdal, K. Synthesis and characterisation of Gd2O3 nanocrystals functionalised by organic acids. J. Colloid Interface Sci., 2005, 288(1), 140-148.
[http://dx.doi.org/10.1016/j.jcis.2005.02.089 ] [PMID: 15927572]
[56]
Card number: 43-1008 (Eu2O3), 43-1014 (Gd2O3), and 43-1006 (Dy2O3) JCPDS-International Centre for Diffraction Data, PCPDFWIN. Version 1.30, 1997.
[57]
Duckworth, O.W.; Martin, S.T. Surface complexation and dissolution of hematite by C1-C6 dicarboxylic acids at pH = 5.0. Geochim. Cosmochim. Acta, 2001, 65, 4289-4301.
[http://dx.doi.org/10.1016/S0016-7037(01)00696-2]
[58]
Hug, S.J.; Sulzberger, B. In situ Fourier transform infrared spectroscopic evidence for the formation of several different surface complexes of oxalate on TiO2 in the aqueous phase. Langmuir, 1994, 10, 3587-3597.
[http://dx.doi.org/10.1021/la00022a036]
[59]
Mendive, C.B.; Bredow, T.; Blesa, M.A.; Bahnemann, D.W. ATR-FTIR measurements and quantum chemical calculations concerning the adsorption and photoreaction of oxalic acid on TiO2. Phys. Chem. Chem. Phys., 2006, 8(27), 3232-3247.
[http://dx.doi.org/10.1039/b518007b ] [PMID: 16902716]
[60]
Pearson, R.G. Hard and soft acids and bases. J. Am. Chem. Soc., 1963, 85, 3533-3539.
[http://dx.doi.org/10.1021/ja00905a001]
[61]
Pearson, R.G. Hard and soft acids and bases, HSAB, part 1: Fundamental principles. J. Chem. Educ., 1968, 45, 581-587.
[http://dx.doi.org/10.1021/ed045p581]
[62]
Pearson, R.G. Hard and soft acids and bases, HSAB, part II: Underlying theories. J. Chem. Educ., 1968, 45, 643-648.
[http://dx.doi.org/10.1021/ed045p643]
[63]
Corbierre, M.K.; Cameron, N.S.; Lennox, R.B. Polymer-stabilized gold nanoparticles with high grafting densities. Langmuir, 2004, 20(7), 2867-2873.
[http://dx.doi.org/10.1021/la0355702 ] [PMID: 15835165]
[64]
Roch, A.; Muller, R.N.; Gillis, P. Theory of proton relaxation induced by superparamagnetic particles. J. Chem. Phys., 1999, 110, 5403-5411.
[http://dx.doi.org/10.1063/1.478435]
[65]
Roch, A.; Gossuin, Y.; Muller, R.N.; Gillis, P. Superparamagnetic colloid suspensions: water magnetic relaxation and clustering. J. Magn. Magn. Mater., 2005, 293, 532-539.
[http://dx.doi.org/10.1016/j.jmmm.2005.01.070]
[66]
Arajs, S.; Colvin, R.V. Paramagnetic susceptibility of Eu2O3 from 300o to 1300oK. J. Appl. Phys., 1964, 35, 1181-1183.
[http://dx.doi.org/10.1063/1.1713589]
[67]
Moon, R.M.; Koehler, W.C. Magnetic properties of Gd2O3. Phys. Rev. B, 1975, 11, 1609-1622.
[http://dx.doi.org/10.1103/PhysRevB.11.1609]
[68]
Arajs, S.; Colvin, R.V. Magnetic susceptibility of gadolinium and dysprosium sesquioxides at elevated temperatures. J. Appl. Phys., 1962, 33, 2517-2519.
[http://dx.doi.org/10.1063/1.1729007]
[69]
Caravan, P.; Ellison, J.J.; McMurry, T.J.; Lauffer, R.B. Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem. Rev., 1999, 99(9), 2293-2352.
[http://dx.doi.org/10.1021/cr980440x ] [PMID: 11749483]
[70]
Lauffer, R.B. Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: Theory and design. Chem. Rev., 1987, 87, 901-927.
[http://dx.doi.org/10.1021/cr00081a003]
[71]
Kattel, K.; Park, J.Y.; Xu, W.; Bony, B.A.; Heo, W.C.; Tegafaw, T.; Kim, C.R.; Ahmad, M.W.; Jin, S.; Baeck, J.S.; Chang, Y.; Kim, T.J.; Bae, J.E.; Chae, K.S.; Jeong, J.Y.; Lee, G.H. Surface coated Eu(OH)3 nanorods: A facile synthesis, characterization, MR relaxivities and in vitro cytotoxicity. J. Nanosci. Nanotechnol., 2013, 13(11), 7214-7219.
[http://dx.doi.org/10.1166/jnn.2013.8081 ] [PMID: 24245232]
[72]
Ghazanfari, A.; Marasini, S.; Miao, X.; Park, J.A.; Jung, K-H.; Ahmad, M.Y.; Yue, H.; Ho, S.L.; Liu, S.; Jang, Y.J.; Chae, K.S.; Chang, Y.; Lee, G.H. Synthesis, characterization, and X-ray attenuation properties of polyacrylic acid-coated ultrasmall heavy metal oxide (Bi2O3, Yb2O3, NaTaO3, Dy2O3, and Gd2O3) nanoparticles as potential CT contrast agents. Colloid Surf. A, 2019, 576, 73-81.
[http://dx.doi.org/10.1016/j.colsurfa.2019.05.033]
[73]
Bünzli, J-C.G. Lanthanide luminescence for biomedical analyses and imaging. Chem. Rev., 2010, 110(5), 2729-2755.
[http://dx.doi.org/10.1021/cr900362e ] [PMID: 20151630]
[74]
Das, G.K.; Zhang, Y.; D’Silva, L.; Padmanabhan, P.; Heng, B.C.; Loo, J.S.C.; Selvan, S.T.; Bhakoo, K.K.; Tan, T.T.Y. Single-phase Dy2O3:Tb3+ nanocrystals as dual-modal contrast agent for high field magnetic resonance and optical imaging. Chem. Mater., 2011, 23, 2439-2446.
[http://dx.doi.org/10.1021/cm2003066]
[75]
Zhang, Y.; Vijayaragavan, V.; Das, G.K.; Bhakoo, K.K.; Tan, T.T.Y. Single-phase NaDyF4:Tb3+ nanocrystals as multifunctional contrast agents in high-field magnetic resonance and optical imaging. Eur. J. Inorg. Chem., 2012, 12, 2044-2048.
[http://dx.doi.org/10.1002/ejic.201101203]
[76]
Haley, T.J.; Komesu, N.; Colvin, G.; Koste, L.; Upham, H.C. Pharmacology and toxicology of europium chloride. J. Pharm. Sci., 1965, 54(4), 643-645.
[http://dx.doi.org/10.1002/jps.2600540435 ] [PMID: 5842357]
[77]
Haley, T.J.; Raymond, K.; Komesu, N.; Upham, H.C. Toxicological and pharmacological effects of gadolinium and samarium chlorides. Br. J. Pharmacol. Chemother., 1961, 17, 526-532.
[http://dx.doi.org/10.1111/j.1476-5381.1961.tb01139.x ] [PMID: 13903826]
[78]
Haley, T.J.; Koste, L.; Komesu, N.; Efros, M.; Upham, H.C. Pharmacology and toxicology of dysprosium, holmium, and erbium chlorides. Toxicol. Appl. Pharmacol., 1966, 8(1), 37-43.
[http://dx.doi.org/10.1016/0041-008X(66)90098-6 ] [PMID: 5921895]
[79]
Sherry, A.D.; Caravan, P.; Lenkinski, R.E. Primer on gadolinium chemistry. J. Magn. Reson. Imaging, 2009, 30(6), 1240-1248.
[http://dx.doi.org/10.1002/jmri.21966 ] [PMID: 19938036]
[80]
Penfield, J.G.; Reilly, R.F., Jr What nephrologists need to know about gadolinium. Nat. Clin. Pract. Nephrol., 2007, 3(12), 654-668.
[http://dx.doi.org/10.1038/ncpneph0660 ] [PMID: 18033225]
[81]
Rogosnitzky, M.; Branch, S. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals, 2016, 29(3), 365-376.
[http://dx.doi.org/10.1007/s10534-016-9931-7 ] [PMID: 27053146]
[82]
Han, Y.; Lee, D.K.; Kim, S.H.; Lee, S.; Jeon, S.; Cho, W.S. High inflammogenic potential of rare earth oxide nanoparticles: the New Hazardous Entity. Nanotoxicology, 2018, 12(7), 712-728.
[http://dx.doi.org/10.1080/17435390.2018.1472311 ] [PMID: 29848123]
[83]
Chaudhary, S.; Sharma, P.; Kumar, S.; Alex, S.A.; Kumar, R.; Mehta, S.K.; Mukherjee, A.; Umar, A. A comparative multi-assay approach to study the toxicity behaviour of Eu2O3 nanoparticles. J. Mol. Liq., 2018, 269, 783-795.
[http://dx.doi.org/10.1016/j.molliq.2018.08.082]
[84]
Ho, S.L.; Cha, H.; Oh, I.T.; Jung, K-H.; Kim, M.H.; Lee, Y.J.; Miao, X.; Tegafaw, T.; Ahmad, M.Y.; Chae, K.S.; Chang, Y.; Lee, G.H. Magnetic resonance imaging, gadolinium neutron capture therapy, and tumor cell detection using ultrasmall Gd2O3 nanoparticles coated with polyacrylic acid-rhodamine B as a multifunctional tumor theragnostic agent. RSC Advances, 2018, 8, 12653-12665.
[http://dx.doi.org/10.1039/C8RA00553B]
[85]
Das, S.; Reed McDonagh, P.; Selvan Sakthivel, T.; Barkam, S.; Killion, K.; Ortiz, J.; Saraf, S.; Kumar, A.; Gupta, A.; Zweit, J.; Seal, S. Tissue deposition and toxicological effects of commercially significant rare earth oxide nanomaterials: Material and physical properties. Environ. Toxicol., 2017, 32(3), 904-917.
[http://dx.doi.org/10.1002/tox.22290 ] [PMID: 27255187]
[86]
Heng, B.C.; Das, G.K.; Zhao, X.; Ma, L-L.; Tan, T.T-Y.; Ng, K.W.; Loo, J.S-C. Comparative cytotoxicity evaluation of lanthanide nanomaterials on mouse and human cell lines with metabolic and DNA-quantification assays. Biointerphases, 2010, 5(3), FA88-FA97.
[http://dx.doi.org/10.1116/1.3494617 ] [PMID: 21171718]
[87]
Anaya, N.M.; Solomon, F.; Oyanedel-Craver, V. Effects of dysprosium oxide nanoparticles on Escherichia coli. Environ. Sci. Nano, 2016, 3, 67-73.
[http://dx.doi.org/10.1039/C5EN00074B]
[88]
Tian, X.; Yang, F.; Yang, C.; Peng, Y.; Chen, D.; Zhu, J.; He, F.; Li, L.; Chen, X. Toxicity evaluation of Gd2O3@SiO2 nanoparticles prepared by laser ablation in liquid as MRI contrast agents in vivo. Int. J. Nanomedicine, 2014, 9, 4043-4053.
[http://dx.doi.org/10.2147/IJN.S66164 ] [PMID: 25187708]
[89]
Thomsen, H.S. Nephrogenic systemic fibrosis: A serious late adverse reaction to gadodiamide. Eur. Radiol., 2006, 16(12), 2619-2621.
[http://dx.doi.org/10.1007/s00330-006-0495-8 ] [PMID: 17061066]
[90]
Gao, S.; Chen, M-L.; Zhou, Z-H. Substitution of gadolinium ethylenediaminetetraacetate with phosphites: towards gadolinium deposit in nephrogenic systemic fibrosis. Dalton Trans., 2014, 43(2), 639-645.
[http://dx.doi.org/10.1039/C3DT52015C ] [PMID: 24132302]
[91]
Kim, D.; Park, S.; Lee, J.H.; Jeong, Y.Y.; Jon, S. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J. Am. Chem. Soc., 2007, 129(24), 7661-7665.
[http://dx.doi.org/10.1021/ja071471p ] [PMID: 17530850]
[92]
Park, J-A.; Kim, H-K.; Kim, J-H.; Jeong, S-W.; Jung, J-C.; Lee, G-H.; Lee, J.; Chang, Y.; Kim, T-J. Gold nanoparticles functionalized by gadolinium-DTPA conjugate of cysteine as a multimodal bioimaging agent. Bioorg. Med. Chem. Lett., 2010, 20(7), 2287-2291.
[http://dx.doi.org/10.1016/j.bmcl.2010.02.002 ] [PMID: 20188545]
[93]
Ai, K.; Liu, Y.; Liu, J.; Yuan, Q.; He, Y.; Lu, L. Large-scale synthesis of Bi2S3 nanodots as a contrast agent for in vivo X-ray computed tomography imaging. Adv. Mater., 2011, 23(42), 4886-4891.
[http://dx.doi.org/10.1002/adma.201103289 ] [PMID: 21956662]
[94]
Rabin, O.; Manuel Perez, J.; Grimm, J.; Wojtkiewicz, G.; Weissleder, R. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat. Mater., 2006, 5(2), 118-122.
[http://dx.doi.org/10.1038/nmat1571 ] [PMID: 16444262]
[95]
Kinsella, J.M.; Jimenez, R.E.; Karmali, P.P.; Rush, A.M.; Kotamraju, V.R.; Gianneschi, N.C.; Ruoslahti, E.; Stupack, D.; Sailor, M.J. X-ray computed tomography imaging of breast cancer by using targeted peptide-labeled bismuth sulfide nanoparticles. Angew. Chem. Int. Ed. Engl., 2011, 50(51), 12308-12311.
[http://dx.doi.org/10.1002/anie.201104507 ] [PMID: 22028313]
[96]
Bonitatibus, P.J., Jr; Torres, A.S.; Goddard, G.D.; FitzGerald, P.F.; Kulkarni, A.M. Synthesis, characterization, and computed tomography imaging of a tantalum oxide nanoparticle imaging agent. Chem. Commun. (Camb.), 2010, 46(47), 8956-8958.
[http://dx.doi.org/10.1039/c0cc03302b ] [PMID: 20976321]
[97]
Oh, M.H.; Lee, N.; Kim, H.; Park, S.P.; Piao, Y.; Lee, J.; Jun, S.W.; Moon, W.K.; Choi, S.H.; Hyeon, T. Large-scale synthesis of bioinert tantalum oxide nanoparticles for X-ray computed tomography imaging and bimodal image-guided sentinel lymph node mapping. J. Am. Chem. Soc., 2011, 133(14), 5508-5515.
[http://dx.doi.org/10.1021/ja200120k ] [PMID: 21428437]
[98]
Liu, Y.; Ai, K.; Lu, L. Nanoparticulate X-ray computed tomography contrast agents: From design validation to in vivo applications. Acc. Chem. Res., 2012, 45(10), 1817-1827.
[http://dx.doi.org/10.1021/ar300150c ] [PMID: 22950890]
[99]
Liu, Y.; Ai, K.; Liu, J.; Yuan, Q.; He, Y.; Lu, L. A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging. Angew. Chem. Int. Ed. Engl., 2012, 51(6), 1437-1442.
[http://dx.doi.org/10.1002/anie.201106686 ] [PMID: 22223303]
[100]
Zhou, Z.; Kong, B.; Yu, C.; Shi, X.; Wang, M.; Liu, W.; Sun, Y.; Zhang, Y.; Yang, H.; Yang, S. Tungsten oxide nanorods: An efficient nanoplatform for tumor CT imaging and photothermal therapy In: Sci. Rep; , 2014; 4, p. 3653 (10 pp)..
[101]
Du, F.; Lou, J.; Jiang, R.; Fang, Z.; Zhao, X.; Niu, Y.; Zou, S.; Zhang, M.; Gong, A.; Wu, C. Hyaluronic acid-functionalized bismuth oxide nanoparticles for computed tomography imaging-guided radiotherapy of tumor. Int. J. Nanomedicine, 2017, 12, 5973-5992.
[http://dx.doi.org/10.2147/IJN.S130455 ] [PMID: 28860761]
[102]
Ghazanfari, A.; Marasini, S.; Tegafaw, T.; Ho, S.L.; Miao, X.; Ahmad, M.Y.; Yue, H.; Lee, G.H.; Park, J.A.; Jung, K-H.; Chang, Y.; Oh, I.T.; Chae, K-S. X-ray attenuation properties of ultrasmall Yb2O3 nanoparticles as a high-performance CT contrast agent. J. Korean Phys. Soc., 2019, 74, 286-291.
[http://dx.doi.org/10.3938/jkps.74.286]
[103]
Liu, Z.; Li, Z.; Liu, J.; Gu, S.; Yuan, Q.; Ren, J.; Qu, X. Long-circulating Er3+-doped Yb2O3 up-conversion nanoparticle as an in vivo X-Ray CT imaging contrast agent. Biomaterials, 2012, 33(28), 6748-6757.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.033 ] [PMID: 22770569]
[104]
Kovar, J.L.; Simpson, M.A.; Schutz-Geschwender, A.; Olive, D.M. A systematic approach to the development of fluorescent contrast agents for optical imaging of mouse cancer models. Anal. Biochem., 2007, 367(1), 1-12.
[http://dx.doi.org/10.1016/j.ab.2007.04.011 ] [PMID: 17521598]
[105]
Eliseeva, S.V.; Bünzli, J-C.G. Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev., 2010, 39(1), 189-227.
[http://dx.doi.org/10.1039/B905604C ] [PMID: 20023849]
[106]
Michalet, X.; Pinaud, F.F.; Bentolila, L.A.; Tsay, J.M.; Doose, S.; Li, J.J.; Sundaresan, G.; Wu, A.M.; Gambhir, S.S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 2005, 307(5709), 538-544.
[http://dx.doi.org/10.1126/science.1104274 ] [PMID: 15681376]
[107]
Lin, S.; Xie, X.; Patel, M.R.; Yang, Y-H.; Li, Z.; Cao, F.; Gheysens, O.; Zhang, Y.; Gambhir, S.S.; Rao, J.H.; Wu, J.C. Quantum dot imaging for embryonic stem cells. BMC Biotechnol, 2007, 7, 67 (10 pp).
[http://dx.doi.org/10.1186/1472-6750-7-67]
[108]
Li, I-F.; Yeh, C-S. Synthesis of Gd doped CdSe nanoparticles for potential optical and MR imaging applications. J. Mater. Chem., 2010, 20, 2079-2081.
[http://dx.doi.org/10.1039/b924089f]
[109]
Ballou, B.; Lagerholm, B.C.; Ernst, L.A.; Bruchez, M.P.; Waggoner, A.S. Noninvasive imaging of quantum dots in mice. Bioconjug. Chem., 2004, 15(1), 79-86.
[http://dx.doi.org/10.1021/bc034153y ] [PMID: 14733586]
[110]
Chan, W.C.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281(5385), 2016-2018.
[http://dx.doi.org/10.1126/science.281.5385.2016 ] [PMID: 9748158]
[111]
Bruchez, M., Jr; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A.P. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281(5385), 2013-2016.
[http://dx.doi.org/10.1126/science.281.5385.2013 ] [PMID: 9748157]
[112]
Xu, W.; Bony, B.A.; Kim, C.R.; Baeck, J.S.; Chang, Y.; Bae, J.E.; Chae, K.S.; Kim, T.J.; Lee, G.H. Mixed lanthanide oxide nanoparticles as dual imaging agent in biomedicine. In: Sci. Rep; , 2013; 3, p. 3210 (10 pp)..
[http://dx.doi.org/10.1038/srep03210]
[113]
Wang, G.; Peng, Q.; Li, Y. Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications. Acc. Chem. Res., 2011, 44(5), 322-332.
[http://dx.doi.org/10.1021/ar100129p ] [PMID: 21395256]
[114]
Osseni, S.A.; Lechevallier, S.; Verelst, M.; Perriat, P.; Dexpert-Ghys, J.; Neumeyer, D.; Garcia, R.; Mayer, F.; Djanashvili, K.; Peters, J.A.; Magdeleine, E.; Gros-Dagnac, H.; Celsis, P.; Mauricot, R. Gadolinium oxysulfide nanoparticles as multimodal imaging agents for T2-weighted MR, X-ray tomography and photoluminescence. Nanoscale, 2014, 6(1), 555-564.
[http://dx.doi.org/10.1039/C3NR03982J ] [PMID: 24241248]
[115]
McDonald, M.A.; Watkin, K.L. Small particulate gadolinium oxide and gadolinium oxide albumin microspheres as multimodal contrast and therapeutic agents. Invest. Radiol., 2003, 38(6), 305-310.
[http://dx.doi.org/10.1097/01.rli.0000067487.84243.91 ] [PMID: 12908697]
[116]
Watkin, K.L.; McDonald, M.A. Multi-modal contrast agents: a first step. Acad. Radiol., 2002, 9(Suppl. 2), S285-S289.
[http://dx.doi.org/10.1016/S1076-6332(03)80205-2 ] [PMID: 12188250]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy