Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

Exploring the Potential of Neuroproteomics in Alzheimer's Disease

Author(s): Md. Sahab Uddin*, Md. Tanvir Kabir, Md. Jakaria, Eduardo Sobarzo-Sánchez, George E. Barreto, Asma Perveen, Abdul Hafeez, May N. Bin-Jumah, Mohamed M. Abdel-Daim and Ghulam M. Ashraf*

Volume 20, Issue 25, 2020

Page: [2263 - 2278] Pages: 16

DOI: 10.2174/1568026620666200603112030

Price: $65

Abstract

Alzheimer's disease (AD) is progressive brain amyloidosis that damages brain regions associated with memory, thinking, behavioral and social skills. Neuropathologically, AD is characterized by intraneuronal hyperphosphorylated tau inclusions as neurofibrillary tangles (NFTs), and buildup of extracellular amyloid-beta (Aβ) peptide as senile plaques. Several biomarker tests capturing these pathologies have been developed. However, for the full clinical expression of the neurodegenerative events of AD, there exist other central molecular pathways. In terms of understanding the unidentified underlying processes for the progression and development of AD, a complete comprehension of the structure and composition of atypical aggregation of proteins is essential. Presently, to aid the prognosis, diagnosis, detection, and development of drug targets in AD, neuroproteomics is elected as one of the leading essential tools for the efficient exploratory discovery of prospective biomarker candidates estimated to play a crucial role. Therefore, the aim of this review is to present the role of neuroproteomics to analyze the complexity of AD.

Keywords: Neuroproteomics, Alzheimer's Disease, Amyloid precursor protein, Amyloid-beta, Tau, Microglia, Biomarkers.

Graphical Abstract

[1]
Al Mamun, A.; Uddin, M.S. KDS2010: A potent highly selective and reversible MAO-B inhibitor to abate Alzheimer’s disease. Comb. Chem. High Throughput Screen., 2020. (ePub ahead of Print)
[http://dx.doi.org/10.2174/1386207323666200117103144 ] [PMID: 31957612]
[2]
Hossain, M.F.; Uddin, M.S.; Uddin, G.M.S.; Sumsuzzman, D.M.; Islam, M.S.; Barreto, G.E.; Mathew, B.; Ashraf, G.M. Melatonin in Alzheimer’s disease: A latent endogenous regulator of neurogenesis to mitigate Alzheimer’s neuropathology. Mol. Neurobiol., 2019, 56(12), 8255-8276.
[http://dx.doi.org/10.1007/s12035-019-01660-3 ] [PMID: 31209782]
[3]
Uddin, M.S.; Hossain, M.F.; Al Mamun, A.; Shah, M.A.; Hasana, S.; Bulbul, I.J.; Sarwar, M.S.; Mansouri, R.A.; Ashraf, G.M.; Rauf, A.; Abdel-Daim, M.M.; Bin-Jumah, M.N. Exploring the multimodal role of phytochemicals in the modulation of cellular signaling pathways to combat age-related neurodegeneration. Sci. Total Environ., 2020, 725(10)138313
[http://dx.doi.org/10.1016/j.scitotenv.2020.138313]
[4]
Wimo, A.; Guerchet, M.; Ali, G-C.; Wu, Y-T.; Prina, A.M.; Winblad, B.; Jönsson, L.; Liu, Z.; Prince, M. The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimers Dement., 2017, 13(1), 1-7.
[http://dx.doi.org/10.1016/j.jalz.2016.07.150 ] [PMID: 27583652]
[5]
Uddin, M.S.; Mamun, A.A.; Hossain, M.S.; Akter, F.; Iqbal, M.A.; Asaduzzaman, M. Exploring the effect of Phyllanthus emblica L. on cognitive performance, brain antioxidant markers and acetylcholinesterase activity in rats: Promising natural gift for the mitigation of Alzheimer’s disease. Ann. Neurosci., 2016, 23(4), 218-229.
[http://dx.doi.org/10.1159/000449482 ] [PMID: 27780989]
[6]
Mamun, A. Al; Uddin, M.S.; Bin Bashar, M.F.; Zaman, S.; Begum, Y.; Bulbul, I.J.; Islam, M.S.; Sarwar, M.S.; Mathew, B.; Amran, M.S.; Md Ashraf, G.; Bin-Jumah, M.N.; Mousa, S.A.; Abdel-Daim, M.M. Molecular insight into the therapeutic promise of targeting APOE4 for Alzheimer’s disease. Oxid. Med. Cell. Longev., 2020, 20205086250
[http://dx.doi.org/10.1155/2020/5086250] [PMID: 32509144]
[7]
Graham, W.V.; Bonito-Oliva, A.; Sakmar, T.P. Update on Alzheimer’s disease therapy and prevention strategies. Annu. Rev. Med., 2017, 68, 413-430.
[http://dx.doi.org/10.1146/annurev-med-042915-103753 ] [PMID: 28099083]
[8]
Zaplatic, E.; Bule, M.; Shah, S.Z.A.; Uddin, M.S.; Niaz, K. Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer’s disease. Life Sci., 2019, 224, 109-119.
[http://dx.doi.org/10.1016/j.lfs.2019.03.055 ] [PMID: 30914316]
[9]
Ridge, P.G.; Ebbert, M.T.W.; Kauwe, J.S.K. Genetics of Alzheimer’s disease. BioMed Res. Int., 2013.2013254954 [ePub ahead of Print]
[http://dx.doi.org/10.1155/2013/254954] [PMID: 23984328]
[10]
Kabir, M.T.; Uddin, M.S.; Begum, M.M.; Thangapandiyan, S.; Rahman, M.S.; Aleya, L.; Mathew, B.; Ahmed, M.; Barreto, G.E.; Ashraf, G.M. Cholinesterase inhibitors for Alzheimer’s disease: Multitargeting strategy based on anti-Alzheimer’s drugs repositioning. Curr. Pharm. Des., 2019, 25(33), 3519-3535.
[http://dx.doi.org/10.2174/1381612825666191008103141 ] [PMID: 31593530]
[11]
Kamboh, M.I. A Brief Synopsis on the Genetics of Alzheimer’s Disease. Curr. Genet. Med. Rep., 2018, 6(4), 133-135.
[http://dx.doi.org/10.1007/s40142-018-0155-8]
[12]
Steinberg, S.; Stefansson, H.; Jonsson, T.; Johannsdottir, H.; Ingason, A.; Helgason, H.; Sulem, P.; Magnusson, O.T.; Gudjonsson, S.A.; Unnsteinsdottir, U.; Kong, A.; Helisalmi, S.; Soininen, H.; Lah, J.J.; Aarsland, D.; Fladby, T.; Ulstein, I.D.; Djurovic, S.; Sando, S.B.; White, L.R.; Knudsen, G-P.; Westlye, L.T.; Selbæk, G.; Giegling, I.; Hampel, H.; Hiltunen, M.; Levey, A.I.; Andreassen, O.A.; Rujescu, D.; Jonsson, P.V.; Bjornsson, S.; Snaedal, J.; Stefansson, K.; Stefansson, K. Loss-of-function variants in ABCA7 confer risk of Alzheimer’s disease. Nat. Genet., 2015, 47(5), 445-447.
[http://dx.doi.org/10.1038/ng.3246 ] [PMID: 25807283]
[13]
Sims, R. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat. Genet., 2017, 49(9), 1373-1384.
[http://dx.doi.org/10.1038/ng.3916 ] [PMID: 28714976]
[14]
Wetzel-Smith, M.K.; Hunkapiller, J.; Bhangale, T.R.; Srinivasan, K.; Maloney, J.A.; Atwal, J.K.; Sa, S.M.; Yaylaoglu, M.B.; Foreman, O.; Ortmann, W.; Rathore, N.; Hansen, D.V.; Tessier-Lavigne, M.; Mayeux, R.; Pericak-Vance, M.; Haines, J.; Farrer, L.A.; Schellenberg, G.D.; Goate, A.; Behrens, T.W.; Cruchaga, C.; Watts, R.J.; Graham, R.R. A rare mutation in UNC5C predisposes to late-onset Alzheimer’s disease and increases neuronal cell death. Nat. Med., 2014, 20(12), 1452-1457.
[http://dx.doi.org/10.1038/nm.3736 ] [PMID: 25419706]
[15]
Colonna, M.; Wang, Y. TREM2 variants: new keys to decipher Alzheimer disease pathogenesis. Nat. Rev. Neurosci., 2016, 17(4), 201-207.
[http://dx.doi.org/10.1038/nrn.2016.7 ] [PMID: 26911435]
[16]
Tanzi, R.E. The genetics of Alzheimer disease. Cold Spring Harb. Perspect. Med., 2012, 2(10), a006296-a006296.
[http://dx.doi.org/10.1101/cshperspect.a006296 ] [PMID: 23028126]
[17]
Chin-Chan, M.; Navarro-Yepes, J.; Quintanilla-Vega, B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front. Cell. Neurosci., 2015, 9, 124.
[http://dx.doi.org/10.3389/fncel.2015.00124 ] [PMID: 25914621]
[18]
Eimer, W.A.; Vijaya Kumar, D.K.; Navalpur Shanmugam, N.K.; Rodriguez, A.S.; Mitchell, T.; Washicosky, K.J.; György, B.; Breakefield, X.O.; Tanzi, R.E.; Moir, R.D. Alzheimer’s disease-associated β-amyloid is rapidly seeded by herpesviridae to protect against brain infection. Neuron, 2018, 99(1), 56-63.e3.
[http://dx.doi.org/10.1016/j.neuron.2018.06.030 ] [PMID: 30001512]
[19]
Readhead, B.; Haure-Mirande, J-V.; Funk, C.C.; Richards, M.A.; Shannon, P.; Haroutunian, V.; Sano, M.; Liang, W.S.; Beckmann, N.D.; Price, N.D.; Reiman, E.M.; Schadt, E.E.; Ehrlich, M.E.; Gandy, S.; Dudley, J.T. Multiscale analysis of independent Alzheimer’s cohorts finds disruption of molecular, genetic, and clinical networks by human herpesvirus. Neuron, 2018, 99(1), 64-82.e7.
[http://dx.doi.org/10.1016/j.neuron.2018.05.023 ] [PMID: 29937276]
[20]
Hyman, B.T.; Phelps, C.H.; Beach, T.G.; Bigio, E.H.; Cairns, N.J.; Carrillo, M.C.; Dickson, D.W.; Duyckaerts, C.; Frosch, M.P.; Masliah, E.; Mirra, S.S.; Nelson, P.T.; Schneider, J.A.; Thal, D.R.; Thies, B.; Trojanowski, J.Q.; Vinters, H.V.; Montine, T.J. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement., 2012, 8(1), 1-13.
[http://dx.doi.org/10.1016/j.jalz.2011.10.007 ] [PMID: 22265587]
[21]
Uddin, M.S.; Al Mamun, A.; Kabir, M.T.; Jakaria, M.; Mathew, B.; Barreto, G.E.; Ashraf, G.M. Nootropic and anti-Alzheimer’s actions of medicinal plants: molecular insight into therapeutic potential to alleviate Alzheimer’s neuropathology. Mol. Neurobiol., 2019, 56(7), 4925-4944.
[http://dx.doi.org/10.1007/s12035-018-1420-2 ] [PMID: 30414087]
[22]
Uddin, M.S.; Mamun, A.A.; Kabir, M.T.; Nasrullah, M.; Wahid, F.; Begum, M.M.; Labu, Z.K.; Rahman, M.S.; Islam, M.T.; Amran, M.S.; Abdel-Daim, M.M. Neurochemistry of Neurochemicals: Messengers of Brain Functions. J. Intellect. Disability - Diagnosis and Treatment, 2018, 5, 137-151.
[23]
Ballatore, C.; Lee, V.M-Y.; Trojanowski, J.Q. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat. Rev. Neurosci., 2007, 8(9), 663-672.
[http://dx.doi.org/10.1038/nrn2194 ] [PMID: 17684513]
[24]
Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics Science (80-. ), 2002.297, 353-356.
[25]
Mamun, A.A.; Uddin, M.S.; Mathew, B.; Ashraf, G.M. Toxic tau: structural origins of tau aggregation in Alzheimer’s disease. Neural Regen. Res., 2020, 15(8), 1417-1420.
[http://dx.doi.org/10.4103/1673-5374.274329 ] [PMID: 31997800]
[26]
Uddin, M.S.; Kabir, M.T. Emerging signal regulating potential of genistein against Alzheimer’s disease: A promising molecule of interest. Front. Cell Dev. Biol., 2019, 7, 197.
[http://dx.doi.org/10.3389/fcell.2019.00197 ] [PMID: 31620438]
[27]
Uddin, M.S.; Al Mamun, A.; Asaduzzaman, M.; Hosn, F.; Abu Sufian, M.; Takeda, S.; Herrera-Calderon, O.; Abdel-Daim, M.M.; Uddin, G.M.S.; Noor, M.A.A.; Begum, M.M.; Kabir, M.T.; Zaman, S.; Sarwar, M.S.; Rahman, M.M.; Rafe, M.R.; Hossain, M.F.; Hossain, M.S.; Ashraful Iqbal, M.; Sujan, M.A.R. Spectrum of disease and prescription pattern for outpatients with neurological disorders: An empirical pilot study in Bangladesh. Ann. Neurosci., 2018, 25(1), 25-37.
[http://dx.doi.org/10.1159/000481812 ] [PMID: 29887680]
[28]
Uddin, M.S.; Mamun, A.A.; Takeda, S.; Sarwar, M.S.; Begum, M.M. Analyzing the chance of developing dementia among geriatric people: a cross-sectional pilot study in Bangladesh. Psychogeriatrics, 2019, 19(2), 87-94.
[http://dx.doi.org/10.1111/psyg.12368 ] [PMID: 30221441]
[29]
Izuo, N.; Murakami, K.; Fujihara, Y.; Maeda, M.; Saito, T.; Saido, T.C.; Irie, K.; Shimizu, T. An App knock-in mouse inducing the formation of a toxic conformer of Aβ as a model for evaluating only oligomer-induced cognitive decline in Alzheimer’s disease. Biochem. Biophys. Res. Commun., 2019, 515(3), 462-467.
[http://dx.doi.org/10.1016/j.bbrc.2019.05.131 ] [PMID: 31164199]
[30]
Ashe, K.H.; Zahs, K.R. Probing the biology of Alzheimer’s disease in mice. Neuron, 2010, 66(5), 631-645.
[http://dx.doi.org/10.1016/j.neuron.2010.04.031 ] [PMID: 20547123]
[31]
LaFerla, F.M.; Green, K.N. Animal models of Alzheimer disease. Cold Spring Harb. Perspect. Med., 2012, 2(11), a006320-a006320.
[http://dx.doi.org/10.1101/cshperspect.a006320 ] [PMID: 23002015]
[32]
Cummings, J.; Lee, G.; Ritter, A.; Zhong, K. Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement. (N. Y.), 2018, 4, 195-214.
[http://dx.doi.org/10.1016/j.trci.2018.03.009 ] [PMID: 29955663]
[33]
Volloch, V.; Rits, S. Results of beta secretase-inhibitor clinical trials support amyloid precursor protein-independent generation of beta amyloid in sporadic Alzheimer’s disease. Med. Sci. (Basel), 2018, 6(2), 45.
[http://dx.doi.org/10.3390/medsci6020045 ] [PMID: 29865246]
[34]
Honig, L.S.; Vellas, B.; Woodward, M.; Boada, M.; Bullock, R.; Borrie, M.; Hager, K.; Andreasen, N.; Scarpini, E.; Liu-Seifert, H.; Case, M.; Dean, R.A.; Hake, A.; Sundell, K.; Poole Hoffmann, V.; Carlson, C.; Khanna, R.; Mintun, M.; DeMattos, R.; Selzler, K.J.; Siemers, E. Trial of solanezumab for mild dementia due to Alzheimer’s disease. N. Engl. J. Med., 2018, 378(4), 321-330.
[http://dx.doi.org/10.1056/NEJMoa1705971 ] [PMID: 29365294]
[35]
Driscoll, I.; Troncoso, J. Asymptomatic Alzheimer’s disease: a prodrome or a state of resilience? Curr. Alzheimer Res., 2011, 8(4), 330-335.
[http://dx.doi.org/10.2174/156720511795745348 ] [PMID: 21222594]
[36]
De Strooper, B.; Karran, E. The cellular phase of Alzheimer’s disease. Cell, 2016, 164(4), 603-615.
[http://dx.doi.org/10.1016/j.cell.2015.12.056 ] [PMID: 26871627]
[37]
Kabir, M.T.; Sufian, M.A.; Uddin, M.S.; Begum, M.M.; Akhter, S.; Islam, A.; Mathew, B.; Islam, M.S.; Amran, M.S.; Md Ashraf, G. NMDA receptor antagonists: repositioning of memantine as a multitargeting agent for Alzheimer’s therapy. Curr. Pharm. Des., 2019, 25(33), 3506-3518.
[http://dx.doi.org/10.2174/1381612825666191011102444 ] [PMID: 31604413]
[38]
Jucker, M.; Walker, L.C. Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Ann. Neurol., 2011, 70(4), 532-540.
[http://dx.doi.org/10.1002/ana.22615 ] [PMID: 22028219]
[39]
Uddin, M.S.; Kabir, M.T.; Tewari, D.; Mathew, B.; Aleya, L. Emerging signal regulating potential of small molecule biflavonoids to combat neuropathological insults of Alzheimer’s disease. Sci. Total Environ., 2020, 700134836
[http://dx.doi.org/10.1016/j.scitotenv.2019.134836 ] [PMID: 31704512]
[40]
Morris, J.K.; Honea, R.A.; Vidoni, E.D.; Swerdlow, R.H.; Burns, J.M. Is Alzheimer’s disease a systemic disease? Biochim. Biophys. Acta, 2014, 1842(9), 1340-1349.
[http://dx.doi.org/10.1016/j.bbadis.2014.04.012 ] [PMID: 24747741]
[41]
Rivière, S.; Gillette-Guyonnet, S.; Andrieu, S.; Nourhashemi, F.; Lauque, S.; Cantet, C.; Salva, A.; Frisoni, G.; Vellas, B. Cognitive function and caregiver burden: Predictive factors for eating behaviour disorders in Alzheimer’s disease. Int. J. Geriatr. Psychiatry, 2002, 17(10), 950-955.
[http://dx.doi.org/10.1002/gps.724 ] [PMID: 12325056]
[42]
Lausted, C.; Lee, I.; Zhou, Y.; Qin, S.; Sung, J.; Price, N.D.; Hood, L.; Wang, K. Systems approach to neurodegenerative disease biomarker discovery. Annu. Rev. Pharmacol. Toxicol., 2014, 54, 457-481.
[http://dx.doi.org/10.1146/annurev-pharmtox-011613-135928 ] [PMID: 24160693]
[43]
Hampel, H.; Lista, S.; Khachaturian, Z.S. Development of biomarkers to chart all Alzheimer’s disease stages: the royal road to cutting the therapeutic Gordian Knot. Alzheimers Dement., 2012, 8(4), 312-336.
[http://dx.doi.org/10.1016/j.jalz.2012.05.2116 ] [PMID: 22748938]
[44]
Rahman, M.A.; Rahman, M.R.; Zaman, T.; Uddin, M.S.; Islam, R.; Abdel-Daim, M.M.; Rhim, H. Emerging potential of naturally occurring autophagy modulators against neurodegeneration. Curr. Pharm. Des., 2020, 26(7), 772-779.
[http://dx.doi.org/10.2174/1381612826666200107142541 ] [PMID: 31914904]
[45]
Sahab Uddin, M.; Ashraf, G.M. Quality Control of Cellular Protein in Neurodegenerative Disorders; IGI Global: Hershey, 2020.
[http://dx.doi.org/10.4018/978-1-7998-1317-0]
[46]
Bensimon, A.; Heck, A.J.R.; Aebersold, R. Mass spectrometry-based proteomics and network biology. Annu. Rev. Biochem., 2012, 81, 379-405.
[http://dx.doi.org/10.1146/annurev-biochem-072909-100424 ] [PMID: 22439968]
[47]
Sabidó, E.; Selevsek, N.; Aebersold, R. Mass spectrometry-based proteomics for systems biology. Curr. Opin. Biotechnol., 2012, 23(4), 591-597.
[http://dx.doi.org/10.1016/j.copbio.2011.11.014 ] [PMID: 22169889]
[48]
Noorbakhsh, F.; Overall, C.M.; Power, C. Deciphering complex mechanisms in neurodegenerative diseases: The advent of systems biology. Trends Neurosci., 2009, 32(2), 88-100.
[http://dx.doi.org/10.1016/j.tins.2008.10.003 ] [PMID: 19135729]
[49]
Shevchenko, G.; Konzer, A.; Musunuri, S.; Bergquist, J. Neuroproteomics tools in clinical practice. Biochim. Biophys. Acta, 2015, 1854(7), 705-717.
[http://dx.doi.org/10.1016/j.bbapap.2015.01.016 ] [PMID: 25680928]
[50]
Kim, S.I.; Voshol, H.; van Oostrum, J.; Hastings, T.G.; Cascio, M.; Glucksman, M.J. Neuroproteomics: expression profiling of the brain’s proteomes in health and disease. Neurochem. Res., 2004, 29(6), 1317-1331.
[http://dx.doi.org/10.1023/B:NERE.0000023618.35579.7c ] [PMID: 15176488]
[51]
Lista, S.; O’Bryant, S.E.; Blennow, K.; Dubois, B.; Hugon, J.; Zetterberg, H.; Hampel, H. Biomarkers in Sporadic and Familial Alzheimer’s Disease. J. Alzheimers Dis., 2015, 47(2), 291-317.
[http://dx.doi.org/10.3233/JAD-143006 ] [PMID: 26401553]
[52]
Hampel, H.; Lista, S.; Teipel, S.J.; Garaci, F.; Nisticò, R.; Blennow, K.; Zetterberg, H.; Bertram, L.; Duyckaerts, C.; Bakardjian, H.; Drzezga, A.; Colliot, O.; Epelbaum, S.; Broich, K.; Lehéricy, S.; Brice, A.; Khachaturian, Z.S.; Aisen, P.S.; Dubois, B. Perspective on future role of biological markers in clinical therapy trials of Alzheimer’s disease: a long-range point of view beyond 2020. Biochem. Pharmacol., 2014, 88(4), 426-449.
[http://dx.doi.org/10.1016/j.bcp.2013.11.009 ] [PMID: 24275164]
[53]
Dubois, B.; Epelbaum, S.; Santos, A.; Di Stefano, F.; Julian, A.; Michon, A.; Sarazin, M.; Hampel, H. Alzheimer disease: from biomarkers to diagnosis. Rev. Neurol. (Paris), 2013, 169(10), 744-751.
[http://dx.doi.org/10.1016/j.neurol.2013.07.016 ] [PMID: 24041475]
[54]
Hampel, H.; Lista, S. Use of biomarkers and imaging to assess pathophysiology, mechanisms of action and target engagement. J. Nutr. Health Aging, 2013, 17(1), 54-63.
[http://dx.doi.org/10.1007/s12603-013-0003-1 ] [PMID: 23299381]
[55]
Teipel, S.J.; Grothe, M.; Lista, S.; Toschi, N.; Garaci, F.G.; Hampel, H. Relevance of magnetic resonance imaging for early detection and diagnosis of Alzheimer disease. Med. Clin. North Am., 2013, 97(3), 399-424.
[http://dx.doi.org/10.1016/j.mcna.2012.12.013 ] [PMID: 23642578]
[56]
Teipel, S.J.; Sabri, O.; Grothe, M.; Barthel, H.; Prvulovic, D.; Buerger, K.; Bokde, A.L.W.; Ewers, M.; Hoffmann, W.; Hampel, H. Perspectives for multimodal neurochemical and imaging biomarkers in Alzheimer’s disease. J. Alzheimers Dis., 2013, 33(Suppl. 1), S329-S347.
[http://dx.doi.org/10.3233/JAD-2012-129030 ] [PMID: 22735677]
[57]
Hampel, H.; Lista, S. Alzheimer disease: from inherited to sporadic AD-crossing the biomarker bridge. Nat. Rev. Neurol., 2012, 8(11), 598-600.
[http://dx.doi.org/10.1038/nrneurol.2012.202 ] [PMID: 23007701]
[58]
Bertram, L.; Hampel, H. The role of genetics for biomarker development in neurodegeneration. Prog. Neurobiol., 2011, 95(4), 501-504.
[http://dx.doi.org/10.1016/j.pneurobio.2011.09.011 ] [PMID: 22005514]
[59]
Zetzsche, T.; Rujescu, D.; Hardy, J.; Hampel, H. Advances and perspectives from genetic research: development of biological markers in Alzheimer’s disease. Expert Rev. Mol. Diagn., 2010, 10(5), 667-690.
[http://dx.doi.org/10.1586/erm.10.48 ] [PMID: 20629514]
[60]
Rosén, C.; Hansson, O.; Blennow, K.; Zetterberg, H. Fluid biomarkers in Alzheimer’s disease - current concepts. Mol. Neurodegener., 2013, 8, 20.
[http://dx.doi.org/10.1186/1750-1326-8-20 ] [PMID: 23800368]
[61]
Blennow, K.; Zetterberg, H.; Fagan, A.M. Fluid biomarkers in Alzheimer disease. Cold Spring Harb. Perspect. Med., 2012, 2(9)a006221
[http://dx.doi.org/10.1101/cshperspect.a006221 ] [PMID: 22951438]
[62]
Henriksen, K.; O’Bryant, S.E.; Hampel, H.; Trojanowski, J.Q.; Montine, T.J.; Jeromin, A.; Blennow, K.; Lönneborg, A.; Wyss-Coray, T.; Soares, H.; Bazenet, C.; Sjögren, M.; Hu, W.; Lovestone, S.; Karsdal, M.A.; Weiner, M.W. The future of blood-based biomarkers for Alzheimer’s disease. Alzheimers Dement., 2014, 10(1), 115-131.
[http://dx.doi.org/10.1016/j.jalz.2013.01.013 ] [PMID: 23850333]
[63]
O’Bryant, S.E.; Gupta, V.; Henriksen, K.; Edwards, M.; Jeromin, A.; Lista, S.; Bazenet, C.; Soares, H.; Lovestone, S.; Hampel, H.; Montine, T.; Blennow, K.; Foroud, T.; Carrillo, M.; Graff-Radford, N.; Laske, C.; Breteler, M.; Shaw, L.; Trojanowski, J.Q.; Schupf, N.; Rissman, R.A.; Fagan, A.M.; Oberoi, P.; Umek, R.; Weiner, M.W.; Grammas, P.; Posner, H.; Martins, R. Guidelines for the standardization of preanalytic variables for blood-based biomarker studies in Alzheimer’s disease research. Alzheimers Dement., 2015, 11(5), 549-560.
[http://dx.doi.org/10.1016/j.jalz.2014.08.099 ] [PMID: 25282381]
[64]
Snyder, H.M.; Carrillo, M.C.; Grodstein, F.; Henriksen, K.; Jeromin, A.; Lovestone, S.; Mielke, M.M.; O’Bryant, S.; Sarasa, M.; Sjøgren, M.; Soares, H.; Teeling, J.; Trushina, E.; Ward, M.; West, T.; Bain, L.J.; Shineman, D.W.; Weiner, M.; Fillit, H.M. Developing novel blood-based biomarkers for Alzheimer’s disease. Alzheimers Dement., 2014, 10(1), 109-114.
[http://dx.doi.org/10.1016/j.jalz.2013.10.007 ] [PMID: 24365657]
[65]
Gupta, V.B.; Sundaram, R.; Martins, R.N. Multiplex biomarkers in blood. Alzheimers Res. Ther., 2013, 5(3), 31.
[http://dx.doi.org/10.1186/alzrt185 ] [PMID: 23795953]
[66]
Lista, S.; Faltraco, F.; Prvulovic, D.; Hampel, H. Blood and plasma-based proteomic biomarker research in Alzheimer’s disease. Prog. Neurobiol., 2013, 101-102, 1-17.
[http://dx.doi.org/10.1016/j.pneurobio.2012.06.007 ] [PMID: 22743552]
[67]
Blennow, K.; Dubois, B.; Fagan, A.M.; Lewczuk, P.; de Leon, M.J.; Hampel, H. Clinical utility of cerebrospinal fluid biomarkers in the diagnosis of early Alzheimer’s disease. Alzheimers Dement., 2015, 11(1), 58-69.
[http://dx.doi.org/10.1016/j.jalz.2014.02.004 ] [PMID: 24795085]
[68]
Blennow, K.; Hampel, H.; Weiner, M.; Zetterberg, H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat. Rev. Neurol., 2010, 6(3), 131-144.
[http://dx.doi.org/10.1038/nrneurol.2010.4 ] [PMID: 20157306]
[69]
Hampel, H.; Shen, Y.; Walsh, D.M.; Aisen, P.; Shaw, L.M.; Zetterberg, H.; Trojanowski, J.Q.; Blennow, K. Biological markers of amyloid β-related mechanisms in Alzheimer’s disease. Exp. Neurol., 2010, 223(2), 334-346.
[http://dx.doi.org/10.1016/j.expneurol.2009.09.024 ] [PMID: 19815015]
[70]
Hampel, H.; Blennow, K.; Shaw, L.M.; Hoessler, Y.C.; Zetterberg, H.; Trojanowski, J.Q. Total and phosphorylated tau protein as biological markers of Alzheimer’s disease. Exp. Gerontol., 2010, 45(1), 30-40.
[http://dx.doi.org/10.1016/j.exger.2009.10.010 ] [PMID: 19853650]
[71]
Edwards, M.; Balldin, V.H.; Hall, J.; O’Bryant, S. Combining select neuropsychological assessment with blood-based biomarkers to detect mild Alzheimer’s disease: a molecular neuropsychology approach. J. Alzheimers Dis., 2014, 42(2), 635-640.
[http://dx.doi.org/10.3233/JAD-140852 ] [PMID: 24916542]
[72]
Lista, S.; Garaci, F.G.; Ewers, M.; Teipel, S.; Zetterberg, H.; Blennow, K.; Hampel, H. CSF Aβ1-42 combined with neuroimaging biomarkers in the early detection, diagnosis and prediction of Alzheimer’s disease. Alzheimers Dement., 2014, 10(3), 381-392.
[http://dx.doi.org/10.1016/j.jalz.2013.04.506 ] [PMID: 23850330]
[73]
Lista, S.; Emanuele, E. Role of amyloid β1-42 and neuroimaging biomarkers in Alzheimer’s disease. Biomarkers Med., 2011, 5(4), 411-413.
[http://dx.doi.org/10.2217/bmm.11.50 ] [PMID: 21861661]
[74]
Broich, K.; Weiergräber, M.; Hampel, H. Biomarkers in clinical trials for neurodegenerative diseases: regulatory perspectives and requirements. Prog. Neurobiol., 2011, 95(4), 498-500.
[http://dx.doi.org/10.1016/j.pneurobio.2011.09.004 ] [PMID: 21945642]
[75]
Hampel, H.; Frank, R.; Broich, K.; Teipel, S.J.; Katz, R.G.; Hardy, J.; Herholz, K.; Bokde, A.L.W.; Jessen, F.; Hoessler, Y.C.; Sanhai, W.R.; Zetterberg, H.; Woodcock, J.; Blennow, K. Biomarkers for Alzheimer’s disease: academic, industry and regulatory perspectives. Nat. Rev. Drug Discov., 2010, 9(7), 560-574.
[http://dx.doi.org/10.1038/nrd3115 ] [PMID: 20592748]
[76]
Hardy, J. Alzheimer’s disease: the amyloid cascade hypothesis: an update and reappraisal. J. Alzheimers Dis., 2006, 9(3)(Suppl.), 151-153.
[http://dx.doi.org/10.3233/JAD-2006-9S317 ] [PMID: 16914853]
[77]
Bitan, G.; Vollers, S.S.; Teplow, D.B. Elucidation of primary structure elements controlling early amyloid β-protein oligomerization. J. Biol. Chem., 2003, 278(37), 34882-34889.
[http://dx.doi.org/10.1074/jbc.M300825200 ] [PMID: 12840029]
[78]
Bitan, G.; Fradinger, E.A.; Spring, S.M.; Teplow, D.B. Neurotoxic protein oligomers--what you see is not always what you get. Amyloid, 2005, 12(2), 88-95.
[http://dx.doi.org/10.1080/13506120500106958 ] [PMID: 16011984]
[79]
Uddin, M.S.; Kabir, M.T.; Tewari, D.; Al Mamun, A.; Mathew, B.; Aleya, L.; Barreto, G.E.; Bin-Jumah, M.N.; Abdel-Daim, M.M.; Ashraf, G.M. Revisiting the role of brain and peripheral Aβ in the pathogenesis of Alzheimer’s disease. J. Neurol. Sci., 2020, 416116974
[http://dx.doi.org/10.1016/j.jns.2020.116974]]
[80]
Salloway, S.; Sperling, R.; Fox, N.C.; Blennow, K.; Klunk, W.; Raskind, M.; Sabbagh, M.; Honig, L.S.; Porsteinsson, A.P.; Ferris, S.; Reichert, M.; Ketter, N.; Nejadnik, B.; Guenzler, V.; Miloslavsky, M.; Wang, D.; Lu, Y.; Lull, J.; Tudor, I.C.; Liu, E.; Grundman, M.; Yuen, E.; Black, R.; Brashear, H.R. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N. Engl. J. Med., 2014, 370(4), 322-333.
[http://dx.doi.org/10.1056/NEJMoa1304839 ] [PMID: 24450891]
[81]
Kabir, M.T.; Uddin, M.S.; Mathew, B.; Das, P.K.; Ashraf, G.M. Emerging promise of immunotherapy for Alzheimer’s disease: A new hope for the development of Alzheimer’s vaccine. Curr. Top. Med. Chem., 2020, 20(13), 1214-1234.
[http://dx.doi.org/10.2174/1568026620666200422105156] [PMID: 32321405]
[82]
Karran, E.; Hardy, J. Antiamyloid therapy for Alzheimer’s disease--are we on the right road? N. Engl. J. Med., 2014, 370(4), 377-378.
[http://dx.doi.org/10.1056/NEJMe1313943 ] [PMID: 24450897]
[83]
Brinkmalm, A.; Portelius, E.; Öhrfelt, A.; Brinkmalm, G.; Andreasson, U.; Gobom, J.; Blennow, K.; Zetterberg, H. Explorative and targeted neuroproteomics in Alzheimer’s disease. Biochim. Biophys. Acta, 2015, 1854(7), 769-778.
[http://dx.doi.org/10.1016/j.bbapap.2015.01.009 ] [PMID: 25619854]
[84]
Müller, T.; Jung, K.; Ullrich, A.; Schrötter, A.; Meyer, H.E.; Stephan, C.; Egensperger, R.; Marcus, K. Disease state, age, sex, and post-mortem time-dependent expression of proteins in AD vs. control frontal cortex brain samples. Curr. Alzheimer Res., 2008, 5(6), 562-571.
[http://dx.doi.org/10.2174/156720508786898488 ] [PMID: 19075583]
[85]
Korolainen, M.A.; Goldsteins, G.; Nyman, T.A.; Alafuzoff, I.; Koistinaho, J.; Pirttilä, T. Oxidative modification of proteins in the frontal cortex of Alzheimer’s disease brain. Neurobiol. Aging, 2006, 27(1), 42-53.
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.11.010 ] [PMID: 16298240]
[86]
Cheon, M.S.; Fountoulakis, M.; Cairns, N.J.; Dierssen, M.; Herkner, K.; Lubec, G. Decreased Protein Levels of Stathmin in Adult Brains with Down Syndrome and Alzheimer’s Disease. In: Protein Expression in Down Syndrome Brain; Springer Vienna: Vienna, 2001; pp. 281-288.
[http://dx.doi.org/10.1007/978-3-7091-6262-0_23]
[87]
Tsuji, T.; Shiozaki, A.; Kohno, R.; Yoshizato, K.; Shimohama, S. Proteomic profiling and neurodegeneration in Alzheimer’s disease. Neurochem. Res., 2002, 27(10), 1245-1253.
[http://dx.doi.org/10.1023/A:1020941929414 ] [PMID: 12462422]
[88]
Sultana, R.; Boyd-Kimball, D.; Poon, H.F.; Cai, J.; Pierce, W.M.; Klein, J.B.; Markesbery, W.R.; Zhou, X.Z.; Lu, K.P.; Butterfield, D.A. Oxidative modification and down-regulation of Pin1 in Alzheimer’s disease hippocampus: A redox proteomics analysis. Neurobiol. Aging, 2006, 27(7), 918-925.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.05.005 ] [PMID: 15950321]
[89]
Schonberger, S.J.; Edgar, P.F.; Kydd, R.; Faull, R.L.M.; Cooper, G.J.S. Proteomic analysis of the brain in Alzheimer’s disease: molecular phenotype of a complex disease process. Proteomics, 2001, 1(12), 1519-1528.
[http://dx.doi.org/10.1002/1615-9861(200111)1:12<1519:AID-PROT1519>3.0.CO;2-L ] [PMID: 11747211]
[90]
Sultana, R.; Boyd-Kimball, D.; Cai, J.; Pierce, W.M.; Klein, J.B.; Merchant, M.; Butterfield, D.A. Proteomics analysis of the Alzheimer’s disease hippocampal proteome. J. Alzheimers Dis., 2007, 11(2), 153-164.
[http://dx.doi.org/10.3233/JAD-2007-11203 ] [PMID: 17522440]
[91]
Pamplona, R.; Dalfó, E.; Ayala, V.; Bellmunt, M.J.; Prat, J.; Ferrer, I.; Portero-Otín, M. Proteins in human brain cortex are modified by oxidation, glycoxidation, and lipoxidation. Effects of Alzheimer disease and identification of lipoxidation targets. J. Biol. Chem., 2005, 280(22), 21522-21530.
[http://dx.doi.org/10.1074/jbc.M502255200 ] [PMID: 15799962]
[92]
Choi, J.; Levey, A.I.; Weintraub, S.T.; Rees, H.D.; Gearing, M.; Chin, L-S.; Li, L. Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson’s and Alzheimer’s diseases. J. Biol. Chem., 2004, 279(13), 13256-13264.
[http://dx.doi.org/10.1074/jbc.M314124200 ] [PMID: 14722078]
[93]
Shiozaki, A.; Tsuji, T.; Kohno, R.; Kawamata, J.; Uemura, K.; Teraoka, H.; Shimohama, S. Proteome analysis of brain proteins in Alzheimer’s disease: subproteomics following sequentially extracted protein preparation. J. Alzheimers Dis., 2004, 6(3), 257-268.
[http://dx.doi.org/10.3233/JAD-2004-6306 ] [PMID: 15201480]
[94]
Greber, S.; Lubec, G.; Cairns, N.; Fountoulakis, M. Decreased levels of synaptosomal associated protein 25 in the brain of patients with Down syndrome and Alzheimer’s disease. Electrophoresis, 1999, 20(4-5), 928-934.
[http://dx.doi.org/10.1002/(SICI)1522-2683(19990101)20:4/5<928:AID-ELPS928>3.0.CO;2-Z ] [PMID: 10344268]
[95]
Korolainen, M.A.; Auriola, S.; Nyman, T.A.; Alafuzoff, I.; Pirttilä, T. Proteomic analysis of glial fibrillary acidic protein in Alzheimer’s disease and aging brain. Neurobiol. Dis., 2005, 20(3), 858-870.
[http://dx.doi.org/10.1016/j.nbd.2005.05.021 ] [PMID: 15979880]
[96]
Sultana, R.; Boyd-Kimball, D.; Poon, H.F.; Cai, J.; Pierce, W.M.; Klein, J.B.; Merchant, M.; Markesbery, W.R.; Butterfield, D.A. Redox proteomics identification of oxidized proteins in Alzheimer’s disease hippocampus and cerebellum: an approach to understand pathological and biochemical alterations in AD. Neurobiol. Aging, 2006, 27(11), 1564-1576.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.09.021 ] [PMID: 16271804]
[97]
Sultana, R.; Poon, H.F.; Cai, J.; Pierce, W.M.; Merchant, M.; Klein, J.B.; Markesbery, W.R.; Butterfield, D.A. Identification of nitrated proteins in Alzheimer’s disease brain using a redox proteomics approach. Neurobiol. Dis., 2006, 22(1), 76-87.
[http://dx.doi.org/10.1016/j.nbd.2005.10.004 ] [PMID: 16378731]
[98]
Perluigi, M.; Sultana, R.; Cenini, G.; Di Domenico, F.; Memo, M.; Pierce, W.M.; Coccia, R.; Butterfield, D.A. Redox proteomics identification of 4-hydroxynonenal-modified brain proteins in Alzheimer’s disease: Role of lipid peroxidation in Alzheimer’s disease pathogenesis. Proteomics Clin. Appl., 2009, 3(6), 682-693.
[http://dx.doi.org/10.1002/prca.200800161 ] [PMID: 20333275]
[99]
Choi, Y.S.; Hou, S.; Choe, L.H.; Lee, K.H. Targeted human cerebrospinal fluid proteomics for the validation of multiple Alzheimer’s disease biomarker candidates. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 930, 129-135.
[http://dx.doi.org/10.1016/j.jchromb.2013.05.003 ] [PMID: 23735279]
[100]
Hölttä, M.; Minthon, L.; Hansson, O.; Holmén-Larsson, J.; Pike, I.; Ward, M.; Kuhn, K.; Rüetschi, U.; Zetterberg, H.; Blennow, K.; Gobom, J. An integrated workflow for multiplex CSF proteomics and peptidomics-identification of candidate cerebrospinal fluid biomarkers of Alzheimer’s disease. J. Proteome Res., 2015, 14(2), 654-663.
[http://dx.doi.org/10.1021/pr501076j ] [PMID: 25490617]
[101]
Russell, C.L.; Heslegrave, A.; Mitra, V.; Zetterberg, H.; Pocock, J.M.; Ward, M.A.; Pike, I. Combined tissue and fluid proteomics with Tandem Mass Tags to identify low-abundance protein biomarkers of disease in peripheral body fluid: An Alzheimer’s Disease case study. Rapid Commun. Mass Spectrom., 2017, 31(2), 153-159.
[http://dx.doi.org/10.1002/rcm.7777 ] [PMID: 27813239]
[102]
Wang, J.; Cunningham, R.; Zetterberg, H.; Asthana, S.; Carlsson, C.; Okonkwo, O.; Li, L. Label-free quantitative comparison of cerebrospinal fluid glycoproteins and endogenous peptides in subjects with Alzheimer’s disease, mild cognitive impairment, and healthy individuals. Proteomics Clin. Appl., 2016, 10(12), 1225-1241.
[http://dx.doi.org/10.1002/prca.201600009 ] [PMID: 27863112]
[103]
Wildsmith, K.R.; Schauer, S.P.; Smith, A.M.; Arnott, D.; Zhu, Y.; Haznedar, J.; Kaur, S.; Mathews, W.R.; Honigberg, L.A. Identification of longitudinally dynamic biomarkers in Alzheimer’s disease cerebrospinal fluid by targeted proteomics. Mol. Neurodegener., 2014, 9, 22.
[http://dx.doi.org/10.1186/1750-1326-9-22 ] [PMID: 24902845]
[104]
Shi, M.; Movius, J.; Dator, R.; Aro, P.; Zhao, Y.; Pan, C.; Lin, X.; Bammler, T.K.; Stewart, T.; Zabetian, C.P.; Peskind, E.R.; Hu, S-C.; Quinn, J.F.; Galasko, D.R.; Zhang, J. Cerebrospinal fluid peptides as potential Parkinson disease biomarkers: a staged pipeline for discovery and validation. Mol. Cell. Proteomics, 2015, 14(3), 544-555.
[http://dx.doi.org/10.1074/mcp.M114.040576 ] [PMID: 25556233]
[105]
Hendrickson, R.C.; Lee, A.Y.H.; Song, Q.; Liaw, A.; Wiener, M.; Paweletz, C.P.; Seeburger, J.L.; Li, J.; Meng, F.; Deyanova, E.G.; Mazur, M.T.; Settlage, R.E.; Zhao, X.; Southwick, K.; Du, Y.; Holder, D.; Sachs, J.R.; Laterza, O.F.; Dallob, A.; Chappell, D.L.; Snyder, K.; Modur, V.; King, E.; Joachim, C.; Bondarenko, A.Y.; Shearman, M.; Soper, K.A.; Smith, A.D.; Potter, W.Z.; Koblan, K.S.; Sachs, A.B.; Yates, N.A. High resolution discovery proteomics reveals candidate disease progression markers of Alzheimer’s disease in human cerebrospinal fluid. PLoS One, 2015, 10(8)e0135365
[http://dx.doi.org/10.1371/journal.pone.0135365 ] [PMID: 26270474]
[106]
Heywood, W.E.; Galimberti, D.; Bliss, E.; Sirka, E.; Paterson, R.W.; Magdalinou, N.K.; Carecchio, M.; Reid, E.; Heslegrave, A.; Fenoglio, C.; Scarpini, E.; Schott, J.M.; Fox, N.C.; Hardy, J.; Bhatia, K.; Heales, S.; Sebire, N.J.; Zetterberg, H.; Mills, K. Identification of novel CSF biomarkers for neurodegeneration and their validation by a high-throughput multiplexed targeted proteomic assay. Mol. Neurodegener., 2015, 10, 64.
[http://dx.doi.org/10.1186/s13024-015-0059-y ] [PMID: 26627638]
[107]
Paterson, R.W.; Heywood, W.E.; Heslegrave, A.J.; Magdalinou, N.K.; Andreasson, U.; Sirka, E.; Bliss, E.; Slattery, C.F.; Toombs, J.; Svensson, J.; Johansson, P.; Fox, N.C.; Zetterberg, H.; Mills, K.; Schott, J.M. A targeted proteomic multiplex CSF assay identifies increased malate dehydrogenase and other neurodegenerative biomarkers in individuals with Alzheimer’s disease pathology. Transl. Psychiatry, 2016, 6(11), e952-e952.
[http://dx.doi.org/10.1038/tp.2016.194 ] [PMID: 27845782]
[108]
Castaño, E.M.; Roher, A.E.; Esh, C.L.; Kokjohn, T.A.; Beach, T. Comparative proteomics of cerebrospinal fluid in neuropathologically-confirmed Alzheimer’s disease and non-demented elderly subjects. Neurol. Res., 2006, 28(2), 155-163.
[http://dx.doi.org/10.1179/016164106X98035 ] [PMID: 16551433]
[109]
Davidsson, P.; Westman-Brinkmalm, A.; Nilsson, C.L.; Lindbjer, M.; Paulson, L.; Andreasen, N.; Sjögren, M.; Blennow, K. Proteome analysis of cerebrospinal fluid proteins in Alzheimer patients. Neuroreport, 2002, 13(5), 611-615.
[http://dx.doi.org/10.1097/00001756-200204160-00015 ] [PMID: 11973456]
[110]
Puchades, M.; Hansson, S.F.; Nilsson, C.L.; Andreasen, N.; Blennow, K.; Davidsson, P. Proteomic studies of potential cerebrospinal fluid protein markers for Alzheimer’s disease. Brain Res. Mol. Brain Res., 2003, 118(1-2), 140-146.
[http://dx.doi.org/10.1016/j.molbrainres.2003.08.005 ] [PMID: 14559363]
[111]
Begcevic, I.; Brinc, D.; Brown, M.; Martinez-Morillo, E.; Goldhardt, O.; Grimmer, T.; Magdolen, V.; Batruch, I.; Diamandis, E.P. Brain-related proteins as potential CSF biomarkers of Alzheimer’s disease: A targeted mass spectrometry approach. J. Proteomics, 2018, 182, 12-20.
[http://dx.doi.org/10.1016/j.jprot.2018.04.027 ] [PMID: 29684683]
[112]
Brinkmalm, G.; Sjödin, S.; Simonsen, A.H.; Hasselbalch, S.G.; Zetterberg, H.; Brinkmalm, A.; Blennow, K. A Parallel reaction monitoring mass spectrometric method for analysis of potential CSF biomarkers for Alzheimer’s disease. Proteomics Clin. Appl., 2018, 12(1)1700131
[http://dx.doi.org/10.1002/prca.201700131 ] [PMID: 29028155]
[113]
Spellman, D.S.; Wildsmith, K.R.; Honigberg, L.A.; Tuefferd, M.; Baker, D.; Raghavan, N.; Nairn, A.C.; Croteau, P.; Schirm, M.; Allard, R.; Lamontagne, J.; Chelsky, D.; Hoffmann, S.; Potter, W.Z. Development and evaluation of a multiplexed mass spectrometry based assay for measuring candidate peptide biomarkers in Alzheimer’s Disease Neuroimaging Initiative (ADNI) CSF. Proteomics Clin. Appl., 2015, 9(7-8), 715-731.
[http://dx.doi.org/10.1002/prca.201400178 ] [PMID: 25676562]
[114]
Korolainen, M.A.; Nyman, T.A.; Nyyssönen, P.; Hartikainen, E.S.; Pirttilä, T. Multiplexed proteomic analysis of oxidation and concentrations of cerebrospinal fluid proteins in Alzheimer disease. Clin. Chem., 2007, 53(4), 657-665.
[http://dx.doi.org/10.1373/clinchem.2006.078014 ] [PMID: 17289803]
[115]
Oeckl, P.; Steinacker, P.; von Arnim, C.A.F.; Straub, S.; Nagl, M.; Feneberg, E.; Weishaupt, J.H.; Ludolph, A.C.; Otto, M. Intact protein analysis of ubiquitin in cerebrospinal fluid by multiple reaction monitoring reveals differences in Alzheimer’s disease and frontotemporal lobar degeneration. J. Proteome Res., 2014, 13(11), 4518-4525.
[http://dx.doi.org/10.1021/pr5006058 ] [PMID: 25091646]
[116]
Sjödin, S.; Hansson, O.; Öhrfelt, A.; Brinkmalm, G.; Zetterberg, H.; Brinkmalm, A.; Blennow, K. Mass Spectrometric Analysis of Cerebrospinal Fluid Ubiquitin in Alzheimer’s Disease and Parkinsonian Disorders. Proteomics Clin. Appl., 2017, 11(11-12)1700100
[http://dx.doi.org/10.1002/prca.201700100 ] [PMID: 28972305]
[117]
Utermann, G.; Hees, M.; Steinmetz, A. Polymorphism of apolipoprotein E and occurrence of dysbetalipoproteinaemia in man. Nature, 1977, 269(5629), 604-607.
[http://dx.doi.org/10.1038/269604a0 ] [PMID: 199847]
[118]
Weisgraber, K.H.; Rall, S.C., Jr; Mahley, R.W.; Human, E. Human E apoprotein heterogeneity. Cysteine-arginine interchanges in the amino acid sequence of the apo-E isoforms. J. Biol. Chem., 1981, 256(17), 9077-9083.
[PMID: 7263700]
[119]
Rall, S.C., Jr; Weisgraber, K.H.; Mahley, R.W. Human apolipoprotein E. The complete amino acid sequence. J. Biol. Chem., 1982, 257(8), 4171-4178.
[PMID: 7068630]
[120]
Liu, C-C.; Liu, C-C.; Kanekiyo, T.; Xu, H.; Bu, G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat. Rev. Neurol., 2013, 9(2), 106-118.
[http://dx.doi.org/10.1038/nrneurol.2012.263 ] [PMID: 23296339]
[121]
Martínez-Morillo, E.; Hansson, O.; Atagi, Y.; Bu, G.; Minthon, L.; Diamandis, E.P.; Nielsen, H.M. Total apolipoprotein E levels and specific isoform composition in cerebrospinal fluid and plasma from Alzheimer’s disease patients and controls. Acta Neuropathol., 2014, 127(5), 633-643.
[http://dx.doi.org/10.1007/s00401-014-1266-2 ] [PMID: 24633805]
[122]
Cruchaga, C.; Kauwe, J.S.K.; Nowotny, P.; Bales, K.; Pickering, E.H.; Mayo, K.; Bertelsen, S.; Hinrichs, A.; Fagan, A.M.; Holtzman, D.M.; Morris, J.C.; Goate, A.M.; Goate, A.M. Cerebrospinal fluid APOE levels: an endophenotype for genetic studies for Alzheimer’s disease. Hum. Mol. Genet., 2012, 21(20), 4558-4571.
[http://dx.doi.org/10.1093/hmg/dds296 ] [PMID: 22821396]
[123]
Hölttä, M.; Zetterberg, H.; Mirgorodskaya, E.; Mattsson, N.; Blennow, K.; Gobom, J. Peptidome analysis of cerebrospinal fluid by LC-MALDI MS. PLoS One, 2012, 7(8)e42555
[http://dx.doi.org/10.1371/journal.pone.0042555 ] [PMID: 22880031]
[124]
Brinkmalm, G.; Brinkmalm, A.; Bourgeois, P.; Persson, R.; Hansson, O.; Portelius, E.; Mercken, M.; Andreasson, U.; Parent, S.; Lipari, F.; Öhrfelt, A.; Bjerke, M.; Minthon, L.; Zetterberg, H.; Blennow, K.; Nutu, M. Soluble amyloid precursor protein α and β in CSF in Alzheimer’s disease. Brain Res., 2013, 1513, 117-126.
[http://dx.doi.org/10.1016/j.brainres.2013.03.019 ] [PMID: 23541617]
[125]
Schedin-Weiss, S.; Winblad, B.; Tjernberg, L.O. The role of protein glycosylation in Alzheimer disease. FEBS J., 2014, 281(1), 46-62.
[http://dx.doi.org/10.1111/febs.12590 ] [PMID: 24279329]
[126]
Halim, A.; Brinkmalm, G.; Rüetschi, U.; Westman-Brinkmalm, A.; Portelius, E.; Zetterberg, H.; Blennow, K.; Larson, G.; Nilsson, J. Site-specific characterization of threonine, serine, and tyrosine glycosylations of amyloid precursor protein/amyloid beta-peptides in human cerebrospinal fluid. Proc. Natl. Acad. Sci. USA, 2011, 108(29), 11848-11853.
[http://dx.doi.org/10.1073/pnas.1102664108 ] [PMID: 21712440]
[127]
Brinkmalm, G.; Portelius, E.; Öhrfelt, A.; Mattsson, N.; Persson, R.; Gustavsson, M.K.; Vite, C.H.; Gobom, J.; Månsson, J-E.; Nilsson, J.; Halim, A.; Larson, G.; Rüetschi, U.; Zetterberg, H.; Blennow, K.; Brinkmalm, A. An online nano-LC-ESI-FTICR-MS method for comprehensive characterization of endogenous fragments from amyloid β and amyloid precursor protein in human and cat cerebrospinal fluid. J. Mass Spectrom., 2012, 47(5), 591-603.
[http://dx.doi.org/10.1002/jms.2987 ] [PMID: 22576872]
[128]
Perdivara, I.; Petrovich, R.; Allinquant, B.; Deterding, L.J.; Tomer, K.B.; Przybylski, M.; Przybylski, M. Elucidation of O-glycosylation structures of the β-amyloid precursor protein by liquid chromatography-mass spectrometry using electron transfer dissociation and collision induced dissociation. J. Proteome Res., 2009, 8(2), 631-642.
[http://dx.doi.org/10.1021/pr800758g ] [PMID: 19093876]
[129]
Portelius, E.; Brinkmalm, G.; Tran, A.; Andreasson, U.; Zetterberg, H.; Westman-Brinkmalm, A.; Blennow, K.; Öhrfelt, A. Identification of novel N-terminal fragments of amyloid precursor protein in cerebrospinal fluid. Exp. Neurol., 2010, 223(2), 351-358.
[http://dx.doi.org/10.1016/j.expneurol.2009.06.011 ] [PMID: 19559702]
[130]
Chen, J.; Wang, M.; Turko, I.V. Quantification of amyloid precursor protein isoforms using quantification concatamer internal standard. Anal. Chem., 2013, 85(1), 303-307.
[http://dx.doi.org/10.1021/ac3033239 ] [PMID: 23186391]
[131]
Andreasson, U.; Portelius, E.; Andersson, M.E.; Blennow, K.; Zetterberg, H. Aspects of β-amyloid as a biomarker for Alzheimer’s disease. Biomarkers Med., 2007, 1(1), 59-78.
[http://dx.doi.org/10.2217/17520363.1.1.59 ] [PMID: 20477461]
[132]
Uddin, M.S.; Kabir, M.T.; Rahman, M.H.; Alim, M.A.; Rahman, M.M.; Khatkar, A.; Al Mamun, A.; Rauf, A.; Mathew, B.; Ashraf, G.M. Exploring the multifunctional neuroprotective promise of rasagiline derivatives for multi-dysfunctional Alzheimer’s disease. Curr. Pharm. Des., 2020, 26(37), 4690-4698.
[http://dx.doi.org/10.2174/1381612826666200406075044 ] [PMID: 32250219]
[133]
Uddin, M.S.; Kabir, M.T.; Niaz, K.; Jeandet, P.; Clément, C.; Mathew, B.; Rauf, A.; Rengasamy, K.R.R.; Sobarzo-Sánchez, E.; Ashraf, G.M.; Aleya, L. Molecular insight into the therapeutic promise of flavonoids against Alzheimer’s disease. Molecules, 2020, 25(6), 1267.
[http://dx.doi.org/10.3390/molecules25061267 ] [PMID: 32168835]
[134]
Vassar, R.; Kandalepas, P.C. The β-secretase enzyme BACE1 as a therapeutic target for Alzheimer’s disease. Alzheimers Res. Ther., 2011, 3(3), 20.
[http://dx.doi.org/10.1186/alzrt82 ] [PMID: 21639952]
[135]
Steiner, H.; Fluhrer, R.; Haass, C. Intramembrane proteolysis by γ-secretase. J. Biol. Chem., 2008, 283(44), 29627-29631.
[http://dx.doi.org/10.1074/jbc.R800010200 ] [PMID: 18650432]
[136]
Uddin, M.S.; Kabir, M.T.; Rahman, M.M.; Mathew, B.; Shah, M.A.; Ashraf, G.M. TV 3326 for Alzheimer’s dementia: A novel multimodal ChE and MAO inhibitors to mitigate Alzheimer’s‐like neuropathology. J. Pharm. Pharmacol., 2020, 72(8), 1001-1012.
[http://dx.doi.org/10.1111/jphp.13244] [PMID: 32149402]
[137]
Portelius, E.; Price, E.; Brinkmalm, G.; Stiteler, M.; Olsson, M.; Persson, R.; Westman-Brinkmalm, A.; Zetterberg, H.; Simon, A.J.; Blennow, K. A novel pathway for amyloid precursor protein processing. Neurobiol. Aging, 2011, 32(6), 1090-1098.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.06.002 ] [PMID: 19604603]
[138]
Glenner, G.G.; Wong, C.W. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun., 1984, 120(3), 885-890.
[http://dx.doi.org/10.1016/S0006-291X(84)80190-4 ] [PMID: 6375662]
[139]
Masters, C.L.; Simms, G.; Weinman, N.A.; Multhaup, G.; McDonald, B.L.; Beyreuther, K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. USA, 1985, 82(12), 4245-4249.
[http://dx.doi.org/10.1073/pnas.82.12.4245 ] [PMID: 3159021]
[140]
Seubert, P.; Vigo-Pelfrey, C.; Esch, F.; Lee, M.; Dovey, H.; Davis, D.; Sinha, S.; Schlossmacher, M.; Whaley, J.; Swindlehurst, C.; McCormack, R.; Wolfert, R.; Selkoe, D.; Lieberburg, I.; Schenk, D. Isolation and quantification of soluble Alzheimer’s β-peptide from biological fluids. Nature, 1992, 359(6393), 325-327.
[http://dx.doi.org/10.1038/359325a0 ] [PMID: 1406936]
[141]
Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; Snyder, P.J.; Carrillo, M.C.; Thies, B.; Phelps, C.H. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement., 2011, 7(3), 270-279.
[http://dx.doi.org/10.1016/j.jalz.2011.03.008 ] [PMID: 21514249]
[142]
Nalivaeva, N.N.; Beckett, C.; Belyaev, N.D.; Turner, A.J. Are amyloid-degrading enzymes viable therapeutic targets in Alzheimer’s disease? J. Neurochem., 2012, 120(Suppl. 1), 167-185.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07510.x ] [PMID: 22122230]
[143]
Portelius, E.; Mattsson, N.; Andreasson, U.; Blennow, K.; Zetterberg, H. Novel aβ isoforms in Alzheimer’s disease - their role in diagnosis and treatment. Curr. Pharm. Des., 2011, 17(25), 2594-2602.
[http://dx.doi.org/10.2174/138161211797416039 ] [PMID: 21728980]
[144]
Vigo-Pelfrey, C.; Lee, D.; Keim, P.; Lieberburg, I.; Schenk, D.B. Characterization of beta-amyloid peptide from human cerebrospinal fluid. J. Neurochem., 1993, 61(5), 1965-1968.
[http://dx.doi.org/10.1111/j.1471-4159.1993.tb09841.x ] [PMID: 8229004]
[145]
Coric, V.; van Dyck, C.H.; Salloway, S.; Andreasen, N.; Brody, M.; Richter, R.W.; Soininen, H.; Thein, S.; Shiovitz, T.; Pilcher, G.; Colby, S.; Rollin, L.; Dockens, R.; Pachai, C.; Portelius, E.; Andreasson, U.; Blennow, K.; Soares, H.; Albright, C.; Feldman, H.H.; Berman, R.M. Safety and tolerability of the γ-secretase inhibitor avagacestat in a phase 2 study of mild to moderate Alzheimer disease. Arch. Neurol., 2012, 69(11), 1430-1440.
[http://dx.doi.org/10.1001/archneurol.2012.2194 ] [PMID: 22892585]
[146]
Portelius, E.; Dean, R.A.; Gustavsson, M.K.; Andreasson, U.; Zetterberg, H.; Siemers, E.; Blennow, K. A novel Abeta isoform pattern in CSF reflects γ-secretase inhibition in Alzheimer disease. Alzheimers Res. Ther., 2010, 2(2), 7.
[http://dx.doi.org/10.1186/alzrt30 ] [PMID: 20350302]
[147]
Pannee, J.; Portelius, E.; Oppermann, M.; Atkins, A.; Hornshaw, M.; Zegers, I.; Höjrup, P.; Minthon, L.; Hansson, O.; Zetterberg, H.; Blennow, K.; Gobom, J. A selected reaction monitoring (SRM)-based method for absolute quantification of Aβ38, Aβ40, and Aβ42 in cerebrospinal fluid of Alzheimer’s disease patients and healthy controls. J. Alzheimers Dis., 2013, 33(4), 1021-1032.
[http://dx.doi.org/10.3233/JAD-2012-121471 ] [PMID: 23076076]
[148]
Lame, M.E.; Chambers, E.E.; Blatnik, M. Quantitation of amyloid beta peptides Aβ(1-38), Aβ(1-40), and Aβ(1-42) in human cerebrospinal fluid by ultra-performance liquid chromatography-tandem mass spectrometry. Anal. Biochem., 2011, 419(2), 133-139.
[http://dx.doi.org/10.1016/j.ab.2011.08.010 ] [PMID: 21888888]
[149]
Korecka, M.; Waligorska, T.; Figurski, M.; Toledo, J.B.; Arnold, S.E.; Grossman, M.; Trojanowski, J.Q.; Shaw, L.M. Qualification of a surrogate matrix-based absolute quantification method for amyloid-β42 in human cerebrospinal fluid using 2D UPLC-tandem mass spectrometry. J. Alzheimers Dis., 2014, 41(2), 441-451.
[http://dx.doi.org/10.3233/JAD-132489 ] [PMID: 24625802]
[150]
Leinenbach, A.; Pannee, J.; Dulffer, T.; Huber, A.; Bittner, T.; Andreasson, U.; Gobom, J.; Zetterberg, H.; Kobold, U.; Portelius, E.; Blennow, K. IFCC scientific division working group on CSF proteins. Mass spectrometry-based candidate reference measurement procedure for quantification of amyloid- in cerebrospinal fluid. Clin. Chem., 2014, 60, 987-994.
[http://dx.doi.org/10.1373/clinchem.2013.220392 ] [PMID: 24842955]
[151]
Uddin, M.S.; Tewari, D.; Mamun, A.A.; Kabir, M.T.; Niaz, K.; Wahed, M.I.I.; Barreto, G.E.; Ashraf, G.M. Circadian and sleep dysfunction in Alzheimer’s disease. Ageing Res. Rev., 2020.60101046
[http://dx.doi.org/10.1016/j.arr.2020.101046 ] [PMID: 32171783]
[152]
Uddin, M.S.; Rahman, M.M.; Jakaria, M.; Rahman, M.S.; Hossain, M.S.; Islam, A.; Ahmed, M.; Mathew, B.; Omar, U.M.; Barreto, G.E.; Ashraf, G.M. Estrogen signaling in Alzheimer’s disease: Molecular insights and therapeutic targets for Alzheimer’s dementia. Mol. Neurobiol., 2020, 57, 2654-2670.
[http://dx.doi.org/10.1007/s12035-020-01911-8 ] [PMID: 32297302]
[153]
Grundke-Iqbal, I.; Iqbal, K.; Tung, Y.C.; Quinlan, M.; Wisniewski, H.M.; Binder, L.I. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA, 1986, 83(13), 4913-4917.
[http://dx.doi.org/10.1073/pnas.83.13.4913 ] [PMID: 3088567]
[154]
Vanmechelen, E.; Vanderstichele, H.; Davidsson, P.; Van Kerschaver, E.; Van Der Perre, B.; Sjögren, M.; Andreasen, N.; Blennow, K. Quantification of tau phosphorylated at threonine 181 in human cerebrospinal fluid: a sandwich ELISA with a synthetic phosphopeptide for standardization. Neurosci. Lett., 2000, 285(1), 49-52.
[http://dx.doi.org/10.1016/S0304-3940(00)01036-3 ] [PMID: 10788705]
[155]
Portelius, E.; Hansson, S.F.; Tran, A.J.; Zetterberg, H.; Grognet, P.; Vanmechelen, E.; Höglund, K.; Brinkmalm, G.; Westman-Brinkmalm, A.; Nordhoff, E.; Blennow, K.; Gobom, J. Characterization of tau in cerebrospinal fluid using mass spectrometry. J. Proteome Res., 2008, 7(5), 2114-2120.
[http://dx.doi.org/10.1021/pr7008669 ] [PMID: 18351740]
[156]
McAvoy, T.; Lassman, M.E.; Spellman, D.S.; Ke, Z.; Howell, B.J.; Wong, O.; Zhu, L.; Tanen, M.; Struyk, A.; Laterza, O.F. Quantification of tau in cerebrospinal fluid by immunoaffinity enrichment and tandem mass spectrometry. Clin. Chem., 2014, 60(4), 683-689.
[http://dx.doi.org/10.1373/clinchem.2013.216515 ] [PMID: 24566260]
[157]
Zilka, N.; Filipcik, P.; Koson, P.; Fialova, L.; Skrabana, R.; Zilkova, M.; Rolkova, G.; Kontsekova, E.; Novak, M. Truncated tau from sporadic Alzheimer’s disease suffices to drive neurofibrillary degeneration in vivo. FEBS Lett., 2006, 580(15), 3582-3588.
[http://dx.doi.org/10.1016/j.febslet.2006.05.029 ] [PMID: 16753151]
[158]
Koson, P.; Zilka, N.; Kovac, A.; Kovacech, B.; Korenova, M.; Filipcik, P.; Novak, M. Truncated tau expression levels determine life span of a rat model of tauopathy without causing neuronal loss or correlating with terminal neurofibrillary tangle load. Eur. J. Neurosci., 2008, 28(2), 239-246.
[http://dx.doi.org/10.1111/j.1460-9568.2008.06329.x ] [PMID: 18702695]
[159]
Hrnkova, M.; Zilka, N.; Minichova, Z.; Koson, P.; Novak, M. Neurodegeneration caused by expression of human truncated tau leads to progressive neurobehavioural impairment in transgenic rats. Brain Res., 2007, 1130(1), 206-213.
[http://dx.doi.org/10.1016/j.brainres.2006.10.085 ] [PMID: 17169350]
[160]
Cente, M.; Filipcik, P.; Pevalova, M.; Novak, M. Expression of a truncated tau protein induces oxidative stress in a rodent model of tauopathy. Eur. J. Neurosci., 2006, 24(4), 1085-1090.
[http://dx.doi.org/10.1111/j.1460-9568.2006.04986.x ] [PMID: 16930434]
[161]
Novak, M.; Wischik, C.M.; Edwards, P.; Pannell, R.; Milstein, C. Characterisation of the first monoclonal antibody against the pronase resistant core of the Alzheimer PHF. Prog. Clin. Biol. Res., 1989, 317, 755-761.
[PMID: 2602435]
[162]
Khuebachova, M.; Verzillo, V.; Skrabana, R.; Ovecka, M.; Vaccaro, P.; Panni, S.; Bradbury, A.; Novak, M. Mapping the C terminal epitope of the Alzheimer’s disease specific antibody MN423. J. Immunol. Methods, 2002, 262(1-2), 205-215.
[http://dx.doi.org/10.1016/S0022-1759(02)00006-6 ] [PMID: 11983234]
[163]
Skrabana, R.; Kontsek, P.; Mederlyova, A.; Iqbal, K.; Novak, M. Folding of Alzheimer’s core PHF subunit revealed by monoclonal antibody 423. FEBS Lett., 2004, 568(1-3), 178-182.
[http://dx.doi.org/10.1016/j.febslet.2004.04.098 ] [PMID: 15196943]
[164]
Wischik, C.M.; Novak, M.; Edwards, P.C.; Klug, A.; Tichelaar, W.; Crowther, R.A. Structural characterization of the core of the paired helical filament of Alzheimer disease. Proc. Natl. Acad. Sci. USA, 1988, 85(13), 4884-4888.
[http://dx.doi.org/10.1073/pnas.85.13.4884 ] [PMID: 2455299]
[165]
Wischik, C.M.; Novak, M.; Thøgersen, H.C.; Edwards, P.C.; Runswick, M.J.; Jakes, R.; Walker, J.E.; Milstein, C.; Roth, M.; Klug, A. Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease. Proc. Natl. Acad. Sci. USA, 1988, 85(12), 4506-4510.
[http://dx.doi.org/10.1073/pnas.85.12.4506 ] [PMID: 3132715]
[166]
Sevcik, J.; Skrabana, R.; Dvorsky, R.; Csokova, N.; Iqbal, K.; Novak, M. X-ray structure of the PHF core C-terminus: insight into the folding of the intrinsically disordered protein tau in Alzheimer’s disease. FEBS Lett., 2007, 581(30), 5872-5878.
[http://dx.doi.org/10.1016/j.febslet.2007.11.067 ] [PMID: 18061582]
[167]
Uddin, M.S.; Kabir, M.T.; Mamun, A.A.; Barreto, G.E.; Rashid, M.; Perveen, A.; Ashraf, G.M. Pharmacological approaches to mitigate neuroinflammation in Alzheimer’s disease. Int. Immunopharmacol., 2020, 84106479
[http://dx.doi.org/10.1016/j.intimp.2020.106479 ] [PMID: 32353686]
[168]
Jonsson, T.; Stefansson, H.; Steinberg, S.; Jonsdottir, I.; Jonsson, P.V.; Snaedal, J.; Bjornsson, S.; Huttenlocher, J.; Levey, A.I.; Lah, J.J.; Rujescu, D.; Hampel, H.; Giegling, I.; Andreassen, O.A.; Engedal, K.; Ulstein, I.; Djurovic, S.; Ibrahim-Verbaas, C.; Hofman, A.; Ikram, M.A.; van Duijn, C.M.; Thorsteinsdottir, U.; Kong, A.; Stefansson, K. Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl. J. Med., 2013, 368(2), 107-116.
[http://dx.doi.org/10.1056/NEJMoa1211103 ] [PMID: 23150908]
[169]
Guerreiro, R.; Wojtas, A.; Bras, J.; Carrasquillo, M.; Rogaeva, E.; Majounie, E.; Cruchaga, C.; Sassi, C.; Kauwe, J.S.K.; Younkin, S.; Hazrati, L.; Collinge, J.; Pocock, J.; Lashley, T.; Williams, J.; Lambert, J-C.; Amouyel, P.; Goate, A.; Rademakers, R.; Morgan, K.; Powell, J.; St George-Hyslop, P.; Singleton, A.; Hardy, J. TREM2 variants in Alzheimer’s disease. N. Engl. J. Med., 2013, 368(2), 117-127.
[http://dx.doi.org/10.1056/NEJMoa1211851 ] [PMID: 23150934]
[170]
Mattsson, N.; Tabatabaei, S.; Johansson, P.; Hansson, O.; Andreasson, U.; Månsson, J-E.; Johansson, J-O.; Olsson, B.; Wallin, A.; Svensson, J.; Blennow, K.; Zetterberg, H. Cerebrospinal fluid microglial markers in Alzheimer’s disease: elevated chitotriosidase activity but lack of diagnostic utility. Neuromolecular Med., 2011, 13(2), 151-159.
[http://dx.doi.org/10.1007/s12017-011-8147-9 ] [PMID: 21567187]
[171]
Olsson, B.; Hertze, J.; Lautner, R.; Zetterberg, H.; Nägga, K.; Höglund, K.; Basun, H.; Annas, P.; Lannfelt, L.; Andreasen, N.; Minthon, L.; Blennow, K.; Hansson, O. Microglial markers are elevated in the prodromal phase of Alzheimer’s disease and vascular dementia. J. Alzheimers Dis., 2013, 33(1), 45-53.
[http://dx.doi.org/10.3233/JAD-2012-120787 ] [PMID: 22890100]
[172]
Varghese, A.M.; Sharma, A.; Mishra, P.; Vijayalakshmi, K.; Harsha, H.C.; Sathyaprabha, T.N.; Bharath, S.M.; Nalini, A.; Alladi, P.A.; Raju, T.R. Chitotriosidase - a putative biomarker for sporadic amyotrophic lateral sclerosis. Clin. Proteomics, 2013, 10(1), 19.
[http://dx.doi.org/10.1186/1559-0275-10-19 ] [PMID: 24295388]
[173]
Aebersold, R.; Mann, M. Mass spectrometry-based proteomics. Nature, 2003, 422(6928), 198-207.
[http://dx.doi.org/10.1038/nature01511 ] [PMID: 12634793]
[174]
Ong, S-E.; Blagoev, B.; Kratchmarova, I.; Kristensen, D.B.; Steen, H.; Pandey, A.; Mann, M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics, 2002, 1(5), 376-386.
[http://dx.doi.org/10.1074/mcp.M200025-MCP200 ] [PMID: 12118079]
[175]
Evans, C.; Noirel, J.; Ow, S.Y.; Salim, M.; Pereira-Medrano, A.G.; Couto, N.; Pandhal, J.; Smith, D.; Pham, T.K.; Karunakaran, E.; Zou, X.; Biggs, C.A.; Wright, P.C. An insight into iTRAQ: where do we stand now? Anal. Bioanal. Chem., 2012, 404(4), 1011-1027.
[http://dx.doi.org/10.1007/s00216-012-5918-6 ] [PMID: 22451173]
[176]
Mattsson, N.; Zegers, I.; Andreasson, U.; Bjerke, M.; Blankenstein, M.A.; Bowser, R.; Carrillo, M.C.; Gobom, J.; Heath, T.; Jenkins, R.; Jeromin, A.; Kaplow, J.; Kidd, D.; Laterza, O.F.; Lockhart, A.; Lunn, M.P.; Martone, R.L.; Mills, K.; Pannee, J.; Ratcliffe, M.; Shaw, L.M.; Simon, A.J.; Soares, H.; Teunissen, C.E.; Verbeek, M.M.; Umek, R.M.; Vanderstichele, H.; Zetterberg, H.; Blennow, K.; Portelius, E. Reference measurement procedures for Alzheimer’s disease cerebrospinal fluid biomarkers: definitions and approaches with focus on amyloid β42. Biomarkers Med., 2012, 6(4), 409-417.
[http://dx.doi.org/10.2217/bmm.12.39 ] [PMID: 22917143]
[177]
Mann, M.; Kulak, N.A.; Nagaraj, N.; Cox, J. The coming age of complete, accurate, and ubiquitous proteomes. Mol. Cell, 2013, 49(4), 583-590.
[http://dx.doi.org/10.1016/j.molcel.2013.01.029 ] [PMID: 23438854]
[178]
Anderson, N.L.; Anderson, N.G. The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteomics, 2002, 1(11), 845-867.
[http://dx.doi.org/10.1074/mcp.R200007-MCP200 ] [PMID: 12488461]
[179]
Eriksson, J.; Fenyö, D. Improving the success rate of proteome analysis by modeling protein-abundance distributions and experimental designs. Nat. Biotechnol., 2007, 25(6), 651-655.
[http://dx.doi.org/10.1038/nbt1315 ] [PMID: 17557102]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy