Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

Effects of Nanobionics in Crop Production: A Review

Author(s): Vinayak Fasake, Nita Patil, Zoya Javed, Mansi Mishra, Gyan Tripathi, Ayushi Srivastava and Kavya Dashora*

Volume 11, Issue 3, 2021

Published on: 02 June, 2020

Page: [249 - 261] Pages: 13

DOI: 10.2174/2210681210999200602173303

Price: $65

Abstract

Nanobionics involves the improvement of plant or plant productivity using nanomaterials. Growth of a plant from a seed encompasses various factors that are directly or indirectly dependent upon the imbibition of micro- and macro-nutrients and vital elements from the soil. Since most of the nutrition is physiologically unavailable to the plants, it leads to mineral deficiencies in the plant and mineral toxicity in the soil. Either way, it is not a favorable situation for the microcosm. The new era of nanotechnology offers a potential solution to the availability of the nutrients to the plants due to its unique chemical and physical properties of nanoparticles. The positive and negative impact of these nanoparticles on seed quality and plant growth varies according to the specific properties of nanoparticles. The present review is an attempt to summarize the impact of nanobionics in agriculture.

Keywords: Agriculture, nanobionics, seed quality, plant growth, nanotechnology, nanoparticles.

Graphical Abstract

[1]
Biswas, P.; Wu, C.Y. Nanoparticles and the environment. J. Air Waste Manag. Assoc., 2005, 55(6), 708-746.
[http://dx.doi.org/10.1080/10473289.2005.10464656] [PMID: 16022411]
[2]
Singh, A.; Singh, N.B.; Hussain, I.; Singh, H.; Singh, S.C. Plant-nanoparticle interaction: An approach to improve agricultural practices and plant productivity. Int. J. Pharmaceut. Sci. Invent., 2015, 4(8), 25-40.
[3]
Wang, Z.; Xu, L.; Zhao, J.; Wang, X.; White, J.C.; Xing, B. CuO nanoparticle interaction with Arabidopsis thaliana: Toxicity, parent-progeny transfer, and gene expression. Environ. Sci. Technol., 2016, 50(11), 6008-6016.
[http://dx.doi.org/10.1021/acs.est.6b01017] [PMID: 27226046]
[4]
Teske, S.S.; Detweiler, C.S. The biomechanisms of metal and metal-oxide nanoparticles’ interactions with cells. Int. J. Environ. Res. Public Health, 2015, 12(2), 1112-1134.
[http://dx.doi.org/10.3390/ijerph120201112] [PMID: 25648173]
[5]
Levard, C.; Hotze, E.M.; Lowry, G.V.; Brown, G.E., Jr Environmental transformations of silver nanoparticles: Impact on stability and toxicity. Environ. Sci. Technol., 2012, 46(13), 6900-6914.
[http://dx.doi.org/10.1021/es2037405] [PMID: 22339502]
[6]
Qian, H.; Peng, X.; Han, X.; Ren, J.; Sun, L.; Fu, Z. Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J. Environ. Sci. (China), 2013, 25(9), 1947-1955.
[http://dx.doi.org/10.1016/S1001-0742(12)60301-5] [PMID: 24520739]
[7]
Perreault, F.; Samadani, M.; Dewez, D. Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemna gibba L. Nanotoxicology, 2014, 8(4), 374-382.
[http://dx.doi.org/10.3109/17435390.2013.789936] [PMID: 23521766]
[8]
Tripathi, D.K.; Singh, S.; Singh, S.; Srivastava, P.K.; Singh, V.P.; Singh, S.; Prasad, S.M.; Singh, P.K.; Dubey, N.K.; Pandey, A.C.; Chauhan, D.K. Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol. Biochem., 2017, 110, 167-177.
[http://dx.doi.org/10.1016/j.plaphy.2016.06.015] [PMID: 27449300]
[9]
Kalaji, H.M.; Schansker, G.; Ladle, R.J.; Goltsev, V.; Bosa, K.; Allakhverdiev, S.I.; Brestic, M.; Bussotti, F.; Calatayud, A.; Dąbrowski, P.; Elsheery, N.I.; Ferroni, L.; Guidi, L.; Hogewoning, S.W.; Jajoo, A.; Misra, A.N.; Nebauer, S.G.; Pancaldi, S.; Penella, C.; Poli, D.; Pollastrini, M.; Romanowska-Duda, Z.B.; Rutkowska, B.; Serôdio, J.; Suresh, K.; Szulc, W.; Tambussi, E.; Yanniccari, M.; Zivcak, M. Frequently asked questions about in vivo chlorophyll fluorescence: Practical issues. Photosynth. Res., 2014, 122(2), 121-158.
[http://dx.doi.org/10.1007/s11120-014-0024-6] [PMID: 25119687]
[10]
Giraldo, J.P.; Landry, M.P.; Faltermeier, S.M.; McNicholas, T.P.; Iverson, N.M.; Boghossian, A.A.; Reuel, N.F.; Hilmer, A.J.; Sen, F.; Brew, J.A.; Strano, M.S. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater., 2014, 13(4), 400-408.
[http://dx.doi.org/10.1038/nmat3890] [PMID: 24633343]
[11]
Cossins, D. Next generation: Nanoparticles augment plant functions. In: The incorporation of synthetic nanoparticles into plants can enhance photosynthesis and transform leaves into biochemical sensors. The scientist; News & Opinion, 2014.
[12]
Khot, L.R.; Sankaran, S.; Maja, J.M.; Ehsani, R.; Schuster, E.W. Applications of nanomaterials in agricultural production and crop protection: A review. Crop Prot., 2012, 35, 64-70.
[http://dx.doi.org/10.1016/j.cropro.2012.01.007]
[13]
Mahakham, W.; Sarmah, A.K.; Maensiri, S.; Theerakulpisut, P. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci. Rep., 2017, 7(1), 8263.
[http://dx.doi.org/10.1038/s41598-017-08669-5] [PMID: 28811584]
[14]
Limbach, L.K.; Li, Y.; Grass, R.N.; Brunner, T.J.; Hintermann, M.A.; Muller, M.; Gunther, D.; Stark, W.J. Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ. Sci. Technol., 2005, 39(23), 9370-9376.
[http://dx.doi.org/10.1021/es051043o] [PMID: 16382966]
[15]
Yang, L.; Watts, D.J. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol. Lett., 2005, 158(2), 122-132.
[http://dx.doi.org/10.1016/j.toxlet.2005.03.003] [PMID: 16039401]
[16]
Chithrani, B.D.; Ghazani, A.A.; Chan, W.C. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett., 2006, 6(4), 662-668.
[http://dx.doi.org/10.1021/nl052396o] [PMID: 16608261]
[17]
Lin, D.; Xing, B. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ. Pollut., 2007, 150(2), 243-250.
[http://dx.doi.org/10.1016/j.envpol.2007.01.016] [PMID: 17374428]
[18]
Boonyanitipong, P.; Kositsup, B.; Kumar, P.; Baruah, S.; Dutta, J. Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L. Int. J. Biosci. Biochem. Bioinform., 2011, 1(4), 282-285.
[http://dx.doi.org/10.7763/IJBBB.2011.V1.53]
[19]
Castiglione, M.R.; Giorgetti, L.; Geri, C.; Cremonini, R. The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J. Nanopart. Res., 2011, 13(6), 2443-2449.
[http://dx.doi.org/10.1007/s11051-010-0135-8]
[20]
Mirzajani, F.; Askari, H.; Hamzelou, S.; Farzaneh, M.; Ghassempour, A. Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol. Environ. Saf., 2013, 88, 48-54.
[http://dx.doi.org/10.1016/j.ecoenv.2012.10.018] [PMID: 23174269]
[21]
Rad, J.S. Karimi. J.; Mohsenzadeh, S.; Rad, M.S.; Javad, M. Evaluating SiO2 nanoparticles effects on developmental characteristic and photosynthetic pigment contents of Zea mays L. Bulletin of Environment. Pharmacol. Life Sci., 2014, 33(3), 194-201.
[22]
Nhan, V.; Ma, C.; Rui, Y.; Liu, S.; Li, X.; Xing, B.; Liu, L. Phytotoxic mechanism of nanoparticles: Destruction of chloroplasts and vascular bundles and alteration of nutrient absorption. Sci. Rep., 2015, 5, 11618.
[http://dx.doi.org/10.1038/srep11618] [PMID: 26108166]
[23]
Khalaki, M.A.; Ghorbani, A.; Moameri, M. Effects of silica and silver nanoparticles on seed germination traits of Thymus kotschyanusin laboratory conditions. J. Rangeland Sci., 2016, 6(3), 221-230.
[24]
Hojjat, S.S.; Hojjat, H. Effects of silver nanoparticle exposure on germination of lentil (Lens culinaris Medik). Int. J. Farm. Allied Sci., 2016, 5(3), 248-252.
[25]
Taran, N.; Storozhenko, V.; Svietlova, N.; Batsmanova, L.; Shvartau, V.; Kovalenko, M. Effect of zinc and copper nanoparticles on drought resistance of wheat seedlings. Nanoscale Res. Lett., 2017, 12(1), 60.
[http://dx.doi.org/10.1186/s11671-017-1839-9] [PMID: 28105609]
[26]
Latef, A.A.H.A.; Alhmad, M.F.A.; Abdelfattah, K.E. The possible roles of priming with zno nanoparticles in mitigation of salinity stress in Lupine (Lupinus termis) plants. J. Plant Growth Regul., 2017, 36(1), 60-70.
[http://dx.doi.org/10.1007/s00344-016-9618-x]
[27]
Ratnikova, T.A.; Podila, R.; Rao, A.M.; Taylor, A.G. Tomato seed coat permeability to selected carbon nanomaterials and enhancement of germination and seedling growth. Sci. World J., 2015, 2015, 419215.
[http://dx.doi.org/10.1155/2015/419215] [PMID: 26495423]
[28]
Zheng, L.; Hong, F.; Lu, S.; Liu, C. Effect of nano-TiO(2) on strength of naturally aged seeds and growth of spinach. Biol. Trace Elem. Res., 2005, 104(1), 83-92.
[http://dx.doi.org/10.1385/BTER:104:1:083] [PMID: 15851835]
[29]
Adhikari, T.; Kundu, S.; Biswas, A.K.; Tarafdar, J.C.; Rao, A.S. Effect of copper oxide nano particle on seed germination of selected crops. J. Agric. Sci. Technol., 2012, 2(6A), 815-823.
[30]
Sridhar, C. Effect of nanoparticles for the maintenance of tomato seed vigour and viability. . M. Sc. (Agri.) Thesis, TNAU, Coimbatore (India), 2012.
[31]
Lu, C.; Zhang, C.; Wen, J.; Wu, G.; Tao, M. Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Dadou Kexue, 2002, 21(3), 168-171.
[32]
Lee, W.M.; An, Y.J.; Yoon, H.; Kweon, H.S. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): Plant agar test for water-insoluble nanoparticles. Environ. Toxicol. Chem., 2008, 27(9), 1915-1921.
[http://dx.doi.org/10.1897/07-481.1] [PMID: 19086317]
[33]
Shyla, K.K.; Natarajan, N. Customizing zinc oxide, silver and titanium dioxide nanoparticles for enhancing groundnut seed quality. Indian J. Sci. Technol., 2014, 7(9), 1376-1381.
[34]
Ma, X.; Geisler-Lee, J.; Deng, Y.; Kolmakov, A. Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Sci. Total Environ., 2010, 408(16), 3053-3061.
[http://dx.doi.org/10.1016/j.scitotenv.2010.03.031] [PMID: 20435342]
[35]
Adhikari, T.; Kundu, S.; Rao, A.S. Impact of SiO2 and Mo nano particles on seed germination of rice (Oryza Sativa L.). Int. J. Agric. Food Sci. Technol., 2013, 4(8), 809-816.
[36]
Azimi, R.; Heshmati, G.A.; Kavandi, R. Evaluation of SiO2 nanoparticles effects on seed germination in Astragalus squarrosus. J. Rangeland Sci., 2016, 6(2), 135-143.
[37]
Mazumdar, H.; Ahmed, G.U. Synthesis of silver nanoparticles and its adverse effect on seed germinations in Oryza sativa, Vigna radiata and brassica campestris. Int. J. Adv. Biotechnol. Res., 2011, 2(4), 404-413.
[38]
Khodakovskaya, M.; Dervishi, E.; Mahmood, M.; Xu, Y.; Li, Z.; Watanabe, F.; Biris, A.S. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano, 2009, 3(10), 3221-3227.
[http://dx.doi.org/10.1021/nn900887m] [PMID: 19772305]
[39]
Mishra, M.; Dashora, K.; Srivastava, A.; Fasake, V.D.; Nag, R.H. Prospects, challenges and need for regulation of nanotechnology with special reference to India. Ecotoxicol. Environ. Saf., 2019, 171, 677-682.
[http://dx.doi.org/10.1016/j.ecoenv.2018.12.085] [PMID: 30658303]
[40]
Ma, J.F.; Yamaji, N. Silicon uptake and accumulation in higher plants. Trends Plant Sci., 2006, 11(8), 392-397.
[http://dx.doi.org/10.1016/j.tplants.2006.06.007] [PMID: 16839801]
[41]
Currie, H.A.; Perry, C.C. Silica in plants: Biological, biochemical and chemical studies. Ann. Bot., 2007, 100(7), 1383-1389.
[http://dx.doi.org/10.1093/aob/mcm247] [PMID: 17921489]
[42]
Parveen, N.; Ashraf, M. Role of silicon in mitigating the adverse effects of salt stress on growth and photosynthetic attributes of two maize (Zea mays L.) cultivars grown hydroponically. Pak. J. Bot., 2010, 42(3), 1675-1684.
[43]
Bao-shan, L.; Chun-hui, L.; Li-jun, F.; Shu-chun, Q.; Min, Y. Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. J. For. Res., 2004, 15, 138-140.
[http://dx.doi.org/10.1007/BF02856749]
[44]
Azimi, R. Borzelabad. M.; Feizi, H.; Azimi, A. Interaction of SiO2 nanoparticles with seed prechilling on germination and early seedling growth of tall wheatgrass (Agropyron elongatum L.). Pol. J. Chem. Technol., 2014, 16(3), 25-29.
[http://dx.doi.org/10.2478/pjct-2014-0045]
[45]
Siddiqui, M.H.; Al-Whaibi, M.H. Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J. Biol. Sci., 2014, 21(1), 13-17.
[http://dx.doi.org/10.1016/j.sjbs.2013.04.005] [PMID: 24596495]
[46]
Suriyaprabha, R.; Karunakaran, G.; Yuvakkumar, R.; Prabu, P.; Rajendran, V.; Kannan, N. Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. J. Nanopart. Res., 2012a, 14(12), 1-14.
[http://dx.doi.org/10.1007/s11051-012-1294-6]
[47]
Lu, M.M.D.; De Silva, D.M.R.; Peralta, E.K.; Fajardo, A.N.; Peralta, M.M. Effects of nanosilica powder from rice hull ash on seed germination of tomato (Lycopersicon esculentum). Appl. Res. Develop., 2015, 5, 11-22.
[48]
Wei, C.; Zhang, Y.; Guo, J.; Han, B.; Yang, X.; Yuan, J. Effects of silica nanoparticles on growth and photosynthetic pigment contents of Scenedesmus obliquus. J. Environ. Sci. (China), 2010, 22(1), 155-160.
[http://dx.doi.org/10.1016/S1001-0742(09)60087-5] [PMID: 20397400]
[49]
Suriyaprabha, R.; Karunakaran, G.; Yuvakkumar, R.; Rajendran, V.; Kannan, N. Silica nanoparticles for increased silica availability in maize (Zea mays L.) seeds under hydroponic conditions. Curr. Nanosci., 2012b, 8(6), 902-908.
[http://dx.doi.org/10.2174/157341312803989033]
[50]
Roohizadeh, G.; Majd, A.; Arbabian, S. The effect of sodium silicate and silica nanoparticles on seed germination and growth in the Vicia faba L. Int. J. Soc. Tropical Plant Res., 2015, 2(2), 85-89.
[51]
Haghighi, M.; Afifipour, Z.; Mozafarian, M. The effect of N-Si on tomato seed germination under salinity levels. J. Biol. Environ. Sci., 2012, 6(16), 87-90.
[52]
Sharifi-Rad, J.; Sharifi-Rad, M. A Teixeira da Silva, J. Morphological, physiological and biochemical responses of crops (Zea mays L., Phaseolus vulgaris L.), medicinal plants (Hyssopus officinalis L., Nigella sativa L.), and weeds (Amaranthus retroflexus L., Taraxacum officinale FH Wigg) exposed to SiO2 nanoparticles. J. Agric. Sci. Technol., 2016, 18(4), 1027-1040.
[53]
Parveen, A.; Rao, S. Effect of nanosilver on seed germination and seedling growth in Pennisetum glaucum. J. Cluster Sci., 2015, 26(3), 693-701.
[http://dx.doi.org/10.1007/s10876-014-0728-y]
[54]
Almutairi, Z.M.; Alharbi, A. Effect of silver nanoparticles on seed germination of crop plants. International Journal of Biological, Biomolecular, Agricultural. Food Biotechnol. Eng., 2015, 9(6), 594-598.
[55]
Salama, H.M. Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int. Res. J. Biotechnol., 2012, 3(10), 190-197.
[56]
Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot., 2012, 2012, 217037.
[http://dx.doi.org/10.1155/2012/217037]
[57]
Sarabi, M.; Safipour Afshar, A.; Mahmoodzadeh, H. Physiological analysis of silver nanoparticles and AgNO3 effect to Brassica napus L. J. Chem. Health Risks, 2015, 2015, 59454032.
[58]
Savithramma, N.; Ankanna, S.; Bhumi, G. Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata- an endemic andendangered medicinal tree taxon. Nano Vision, 2012, 2(1), 61-68.
[59]
Garg, P.; Malik, C.P. Influence of nanoparticles on seed germination and seedling growth of Vignaradiata L. Nano Vision, 2014, 4(1), 1-12.
[60]
Arora, S.; Sharma, P.; Kumar, S.; Nayan, R.; Khanna, P.K.; Zaidi, M.G.H. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul., 2012, 66(3), 303-310.
[http://dx.doi.org/10.1007/s10725-011-9649-z]
[61]
Hojjat, S.S. Effect of nano silver on seed germination and seedling growth in Fenugreek seed. Int. J. Food Eng., 2015, 1(2), 106-110.
[62]
Wang, L.; Zhu, J.; Wu, Q.; Huang, Y. Effects of silver nanoparticles on seed germination and seedling growth of radish (Raphanus sativus L.). 2nd International Conference on Civil, Materials and Environmental Sciences, April 17-18, 2013, Vancouver, Canada,2015.
[http://dx.doi.org/10.2991/cmes-15.2015.165]
[63]
Hruby, M.; Cigler, P.; Kuzel, S. Contribution to understanding the mechanism of titanium action in plant. J. Plant Nutr., 2002, 25(3), 577-598.
[http://dx.doi.org/10.1081/PLN-120003383]
[64]
Yang, F.; Liu, C.; Gao, F.; Su, M.; Wu, X.; Zheng, L.; Hong, F.; Yang, P. The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol. Trace Elem. Res., 2007, 119(1), 77-88.
[http://dx.doi.org/10.1007/s12011-007-0046-4] [PMID: 17914222]
[65]
Hong, F.; Zhou, J.; Liu, C.; Yang, F.; Wu, C.; Zheng, L.; Yang, P. Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol. Trace Elem. Res., 2005, 105(1-3), 269-279.
[http://dx.doi.org/10.1385/BTER:105:1-3:269] [PMID: 16034170]
[66]
Feizi, H.; Amirmoradi, S.; Abdollahi, F.; Pour, S.J. Comparative effects of nanosized and bulk titanium dioxide concentrations on medicinal plant Salvia officinalis L. Annual Rev. Res. Biol., 2013, 3, 814-824.
[67]
Mahmoodzadeh, H.; Nabavi, M.; Kashefi, H. Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). J. Ornament. Horticult. Plants, 2013a, 3(1), 25-32.
[68]
Hatami, M.; Ghorbanpour, M.; Salehiarjomand, H. Nano-anatase TiO2 modulates the germination behavior and seedling vigority of some commercially important medicinal and aromatic plants. J. Biol. Environ. Sci., 2014, 8(22), 53-59.
[69]
Mahmoodzadeh, H.; Aghili, R. Effect on germination and early growth characteristics in wheat plants (Triticum aestivum L.) seeds exposed to TiO2 nanoparticles. J. Chem. Health Risks, 2014, 4(3), 209-216.
[70]
Dehkourdi, E.H.; Chehrazi, M.; Hosseini, H.; Hosseini, M. The effect of anatase nanoparticles (TiO2) on pepper seed germination (Capsicum annum L.). Int. J. Biosci., 2014, 4(5), 141-145.
[71]
Jalill, R.D.H.A.; Yousef, A.M. Comparison the phytotoxicity of TiO2 nanoparticles with bulk particles on Amber 33 variety of rice (Oryza sativa) in vitro. Scholars Acad. J. Biosci., 2015, 3(3), 254-262.
[http://dx.doi.org/10.1155/2011/696535]
[72]
Jayarambabu, N.; Kumari, B.S.; Rao, K.Y.; Prabhu, Y.T. Germination and growth characteristics of mungbean seeds (Vigna radiata L.) affected by synthesized zinc oxide nanoparticles. International J. Curr. Eng. Technol., 2014, 4(5), 3411-3416.
[73]
Raliya, R.; Tarafdar, J.C. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agric. Res., 2013, 2(1), 48-57.
[http://dx.doi.org/10.1007/s40003-012-0049-z]
[74]
Doğaroğlu, Z.; Köleli, N. Effects of TiO2 and ZnO nanoparticles on germination and antioxidant system of wheat (Triticum aestivum L.). Appl. Ecol. Environ. Res., 2017, 15, 1499-1510.
[http://dx.doi.org/10.15666/aeer/1503_14991510]
[75]
Mahajan, P.; Dhoke, S.K.; Khanna, A.S. Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J. Nanotechnol., 2011, 2011, 1-7.
[76]
Prasad, T.N.V.K.V.; Sudhakar, P.; Sreenivasulu, Y.; Latha, P.; Munaswamy, V.; Reddy, K.R.; Sreeprasad, T.S.; Sajanlal, P.R.; Pradeep, T. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J. Plant Nutr., 2012, 35(6), 905-927.
[http://dx.doi.org/10.1080/01904167.2012.663443]
[77]
Koizumi, M.; Kikuchi, K.; Isobe, S.; Ishida, N.; Naito, S.; Kano, H. Role of seed coat in imbibing soybean seeds observed by micro-magnetic resonance imaging. Ann. Bot., 2008, 102(3), 343-352.
[http://dx.doi.org/10.1093/aob/mcn095] [PMID: 18565982]
[78]
Narendhran, S.; Rajiv, P.; Sivaraj, R. Influence of zinc oxide nanoparticles on growth of Sesamum indicum L. in zinc deficient soil. Int. J. Pharm. Pharm. Sci., 2016, 8(3), 365-371.
[79]
Gokak, I.B.; Taranath, T.C. Seed germination and growth responses of Macrotyloma uniflorum (Lam.) Verdc. exposed to zinc and zinc nanoparticles. Int. J. Environ. Sci., 2015, 5(4), 840.
[80]
Ramesh, M.; Palanisamy, K.; Babu, K.; Sharma, N.K. Effects of bulk and nano titanium dioxide and zinc oxide on physio morphological changes in triticum aestivum linn. J. Global Biosci., 2014, 3, 415-422.
[81]
Sedghi, M.; Hadi, M.; Toluie, S.G. Effect of nano zinc oxide on the germination of soybean seeds under drought stress. J. Ann. West Univ. Timisoara: Seriesof Biol., 2013, 16(2), 73-78.
[82]
Korishettar, P.; Vasudevan, S.N.; Shakuntala, N.M.; Doddagoudar, S.R.; Hiregoudar, S.; Kisan, B. Seed polymer coating with Zn and Fe nanoparticles: An innovative seed quality enhancement technique in pigeonpea. J. Appl. Nat. Sci., 2016, 8(1), 445-450.
[http://dx.doi.org/10.31018/jans.v8i1.814]
[83]
Chiahi, N.; Bouloudenine, M.; Daira, N.H.; Guerfi, N.; Brinis, L. The effect of nanoparticles on development parameters in a plant species: durum wheat (Triticum durum Desf). Der Pharmacia Lettre, 2016, 8(6), 154-159.
[84]
Rosa, G.D.L.; Lopez-Moreno, M.L.; Haro, D.D.; Botez, C.E.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: Root development and X-ray absorption spectroscopy studies. Pure Appl. Chem., 2013, 85(12), 2161-2174.
[http://dx.doi.org/10.1351/pac-con-12-09-05]
[85]
Kumar, K.V.; Udayasoorian, C. Toxicity potential of different metal oxides nanoparticles on germination of maize plant. Global J. Res. Anal., 2014, 3(1), 116-118.
[http://dx.doi.org/10.15373/22778160/January2014/61]
[86]
Adhikari, T.; Sarkar, D.; Mashayekhi, H.; Xing, B. Growth and enzymatic activity of maize (Zea mays L.) plant: Solution culture test for copper dioxide nano particles. J. Plant Nutr., 2016, 39, 99-115.
[http://dx.doi.org/10.1080/01904167.2015.1044012]
[87]
Hafeez, A.; Razzaq, A.; Mahmood, T.; Jhanzab, H.M. Potential of copper nanoparticles to increase growth and yield of wheat. J. Nanosci. Adv. Technol., 2015, 1(1), 6-11.
[http://dx.doi.org/10.24218/jnat.2015.02]
[88]
Wu, S.G.; Huang, L.; Head, J.; Chen, D.R.; Kong, I.C.; Tang, Y.J. Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. J. Pet. Environ. Biotechnol., 2012, 3(4), 126.
[89]
Zhou, D.; Jin, S.; Li, L.; Wang, Y.; Weng, N. Quantifying the adsorption and uptake of CuO nanoparticles by wheat root based on chemical extractions. J. Environ. Sci. (China), 2011, 23(11), 1852-1857.
[http://dx.doi.org/10.1016/S1001-0742(10)60646-8] [PMID: 22432310]
[90]
Helar, G.; Chavan, A. Synthesis, characterization and stability of gold nanoparticles using the fungus Fusarium oxysporum and its impact on seed germination. Int. J. Recent Sci. Res., 2015, 6, 3181-3185.
[91]
Rizwan, M.; Ali, S.; Qayyum, M.F.; Ok, Y.S.; Adrees, M.; Ibrahim, M.; Zia-Ur-Rehman, M.; Farid, M.; Abbas, F. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review. J. Hazard. Mater., 2017, 322(Pt A), 2-16.
[http://dx.doi.org/10.1016/j.jhazmat.2016.05.061] [PMID: 27267650]
[92]
Gopinath, K.; Gowri, S.; Karthika, V.; Arumugam, A. Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba. J. Nanostruct. Chem., 2014, 4(3), 115.
[http://dx.doi.org/10.1007/s40097-014-0115-0]
[93]
Hamuda, H.E.B. Influence of engineered metal oxide nanoparticles on seed germination, seedling development and chlorophyll content. Obuda Univ. e-Bull., 2015, 5(1), 79.
[94]
Alam, M.J.; Sultana, F.; Iqbal, M.T. Potential of iron nanoparticles to increase germination and growth of wheat seedling. J. Nanosci. Adv. Technol., 2015, 1(3), 14-20.
[http://dx.doi.org/10.24218/jnat.2015.12]
[95]
Fleischer, A.; O’Neill, M.A.; Ehwald, R. The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol., 1999, 121(3), 829-838.
[http://dx.doi.org/10.1104/pp.121.3.829] [PMID: 10557231]
[96]
Yugandhar, P.; Savithramma, N. Green synthesis of calcium carbonate nanoparticles and their effects on seed germination and seedling growth of Vigna mungo (L.) hepper. Int. J. Adv. Res. (Indore), 2013, 1(8), 89-103.
[97]
Ngo, Q.B.; Dao, T.H.; Nguyen, H.C.; Tran, X.T.; Van Nguyen, T.; Khuu, T.D.; Huynh, T.H. Effects of nanocrystalline powders (Fe, Co and Cu) on the germination, growth, crop yield and product quality of soybean (Vietnamese species DT-51). Adv. Nat. Sci. Nanosci. Nanotechnol., 2014, 5(1), 15-16.
[http://dx.doi.org/10.1088/2043-6262/5/1/015016]
[98]
Pradhan, S.; Patra, P.; Das, S.; Chandra, S.; Mitra, S.; Dey, K.K.; Akbar, S.; Palit, P.; Goswami, A. Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: A detailed molecular, biochemical, and biophysical study. Environ. Sci. Technol., 2013, 47(22), 13122-13131.
[99]
Kumar, S.; Patra, A.K.; Datta, S.C.; Rosin, K.G.; Purakayastha, T.J. Phytotoxicity of nanoparticles to seed germination of plants. Int. J. Adv. Res. (Indore), 2015, 3, 854-865.
[100]
Riahi-Madvar, A.; Rezaee, F.; Jalali, V. Effects of alumina nanoparticles on morphological properties and antioxidant system of Triticum aestivum. Indian J. Plant. Physiol., 2012, 3(1), 593-603.
[http://dx.doi.org/10.1021/es402659t] [PMID: 24144189]
[101]
Stampoulis, D.; Sinha, S.K.; White, J.C. Assay-dependent phytotoxicity of nanoparticles to plants. Environ. Sci. Technol., 2009, 43(24), 9473-9479.
[http://dx.doi.org/10.1021/es901695c] [PMID: 19924897]
[102]
Shah, V.; Belozerova, I. Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut., 2009, 197(1-4), 143-148.
[http://dx.doi.org/10.1007/s11270-008-9797-6]
[103]
El-Temsah, Y.S.; Joner, E.J. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ. Toxicol., 2012, 27(1), 42-49.
[http://dx.doi.org/10.1002/tox.20610] [PMID: 20549639]
[104]
Dimkpa, C.O.; McLean, J.E.; Martineau, N.; Britt, D.W.; Haverkamp, R.; Anderson, A.J. Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ. Sci. Technol., 2013, 47(2), 1082-1090.
[http://dx.doi.org/10.1021/es302973y] [PMID: 23259709]
[105]
Wang, W.N.; Lenggoro, I.W.; Terashi, Y.; Kimc, T.O.; Okuyamaa, K. One-step synthesis of titanium oxide nanoparticles by spraypyrolysis of organic precursors. Mater. Sci. Eng., 2005, 123(3), 194-202.
[http://dx.doi.org/10.1016/j.mseb.2005.08.006]
[106]
Razzaq, A.; Ammara, R.; Jhanzab, H.M.; Mahmood, T.; Hafeez, A.; Hussain, S. A novel nanomaterial to enhance growth and yield of wheat. J. Nanosci. Technol., 2016, 2, 55-58.
[107]
Mahmoodzadeh, H.; Aghili, R.; Nabavi, M. Physiological effects of TiO2 nanoparticles on wheat (Triticum aestivum). Techn. J. Eng. Appl. Sci., 2013b, 3, 1365-1370.
[108]
Feizi, H.; Kamali, M.; Jafari, L.; Rezvani Moghaddam, P. Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere, 2013, 91(4), 506-511.
[http://dx.doi.org/10.1016/j.chemosphere.2012.12.012] [PMID: 23357866]
[109]
Kumar, V.; Guleria, P.; Kumar, V.; Yadav, S.K. Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci. Total Environ., 2013, 461-462, 462-468.
[http://dx.doi.org/10.1016/j.scitotenv.2013.05.018] [PMID: 23747561]
[110]
Barrena, R.; Casals, E.; Colón, J.; Font, X.; Sánchez, A.; Puntes, V. Evaluation of the ecotoxicity of model nanoparticles. Chemosphere, 2009, 75(7), 850-857.
[http://dx.doi.org/10.1016/j.chemosphere.2009.01.078] [PMID: 19264345]
[111]
López-Moreno, M.L.; de la Rosa, G.; Hernández-Viezcas, J.A.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO(2) nanoparticles and assessment of their differential toxicity in four edible plant species. J. Agric. Food Chem., 2010, 58(6), 3689-3693.
[http://dx.doi.org/10.1021/jf904472e] [PMID: 20187606]
[112]
Morales, M.I.; Rico, C.M.; Hernandez-Viezcas, J.A.; Nunez, J.E.; Barrios, A.C.; Tafoya, A.; Flores-Marges, J.P.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil. J. Agric. Food Chem., 2013, 61(26), 6224-6230.
[http://dx.doi.org/10.1021/jf401628v] [PMID: 23799644]
[113]
Rico, C.M.; Morales, M.I.; Barrios, A.C.; McCreary, R.; Hong, J.; Lee, W.Y.; Nunez, J.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Effect of cerium oxide nanoparticles on the quality of rice (Oryza sativa L.) grains. J. Agric. Food Chem., 2013, 61(47), 11278-11285.
[http://dx.doi.org/10.1021/jf404046v] [PMID: 24188281]
[114]
Doshi, R.; Braida, W.; Christodoulatos, C.; Wazne, M.; O’Connor, G. Nano-aluminum: Transport through sand columns and environmental effects on plants and soil communities. Environ. Res., 2008, 106(3), 296-303.
[http://dx.doi.org/10.1016/j.envres.2007.04.006] [PMID: 17537426]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy