Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

The P-MAPA Immunomodulator Partially Prevents Apoptosis Induced by Zika Virus Infection in THP-1 Cells

Author(s): Morganna C. Lima, Elisa A.N. Azevedo, Clarice N.L. de Morais, Larissa I.O. de Sousa, Bruno M. Carvalho, Iseu N. da Silva and Rafael F.O. Franca*

Volume 22, Issue 4, 2021

Published on: 02 June, 2020

Page: [514 - 522] Pages: 9

DOI: 10.2174/1389201021666200602140005

Price: $65

Abstract

Background: Zika virus is an emerging arbovirus of global importance. ZIKV infection is associated with a range of neurological complications such as the Congenital Zika Syndrome and Guillain Barré Syndrome. Despite the magnitude of recent outbreaks, there is no specific therapy to prevent or to alleviate disease pathology.

Objective: To investigate the role of P-MAPA immunomodulator in Zika-infected THP-1 cells.

Methods: THP-1 cells were subjected to Zika virus infection (Multiplicity of Infection = 0.5) followed by treatment with P-MAPA for until 96 hours post-infection. After that, the cell death was analyzed by annexin+/ PI+ and caspase 3/ 7+ staining by flow cytometry. In addition, virus replication and cell proliferation were accessed by RT-qPCR and Ki67 staining, respectively.

Results: We demonstrate that P-MAPA in vitro treatment significantly reduces Zika virus-induced cell death and caspase-3/7 activation on THP-1 infected cells, albeit it has no role in virus replication and cell proliferation.

Conclusion: Our study reveals that P-MAPA seems to be a satisfactory alternative to inhibit the effects of Zika virus infection in mammalian cells.

Keywords: Zika virus, apoptosis, P-MAPA, flavivirus infection, immunomodulation, antiviral.

Graphical Abstract

[1]
Ramos da Silva, S.; Gao, S-J. Zika virus: An update on epidemiology, pathology, molecular biology, and animal model. J. Med. Virol., 2016, 88(8), 1291-1296.
[http://dx.doi.org/10.1002/jmv.24563] [PMID: 27124623]
[2]
Musso, D. Zika Virus Transmission from French Polynesia to Brazil. Emerg. Infect. Dis., 2015, 21(10), 1887.
[http://dx.doi.org/10.3201/eid2110.151125] [PMID: 26403318]
[3]
Miranda-Filho, D. de B.; Martelli, C.M.T.; Ximenes, R.A. de A.; Araújo, T.V.B.; Rocha, M.A.W.; Ramos, R.C.F.; Dhalia, R.; França, R.F. de O. Marques Júnior, E.T.; Rodrigues, L.C. Initial Description of the Presumed Congenital Zika Syndrome. Am. J. Public Health, 2016, 106(4), 598-600.
[http://dx.doi.org/10.2105/AJPH.2016.303115] [PMID: 26959258]
[4]
Krauer, F.; Riesen, M.; Reveiz, L.; Oladapo, O.T.; Martínez-Vega, R.; Porgo, T.V.; Haefliger, A.; Broutet, N.J.; Low, N. Zika Virus Infection as a Cause of Congenital Brain Abnormalities and Guillain-Barré Syndrome: Systematic Review. PLoS Med., 2017, 14(1)e1002203
[http://dx.doi.org/10.1371/journal.pmed.1002203] [PMID: 28045901]
[5]
Souza, B.S.F.; Sampaio, G.L.A.; Pereira, C.S.; Campos, G.S.; Sardi, S.I.; Freitas, L.A.R.; Figueira, C.P.; Paredes, B.D.; Nonaka, C.K.V.; Azevedo, C.M.; Rocha, V.P.; Bandeira, A.C.; Mendez-Otero, R.; Dos Santos, R.R.; Soares, M.B. Zika virus infection induces mitosis abnormalities and apoptotic cell death of human neural progenitor cells. Sci. Rep., 2016, 6, 39775.
[http://dx.doi.org/10.1038/srep39775] [PMID: 28008958]
[6]
Yockey, L.J.; Jurado, K.A.; Arora, N.; Millet, A.; Rakib, T.; Milano, K.M.; Hastings, A.K.; Fikrig, E.; Kong, Y.; Horvath, T.L.; Weatherbee, S.; Kliman, H.J.; Coyne, C.B.; Iwasaki, A. 2018.
[7]
Li, C.; Xu, D.; Ye, Q.; Hong, S.; Jiang, Y.; Liu, X.; Zhang, N.; Shi, L.; Qin, C-F.; Xu, Z. Zika Virus Disrupts Neural Progenitor Development and Leads to Microcephaly in Mice. Cell Stem Cell, 2016, 19(1), 120-126.
[http://dx.doi.org/10.1016/j.stem.2016.04.017] [PMID: 27179424]
[8]
Dang, J.; Tiwari, S.K.; Lichinchi, G.; Qin, Y.; Patil, V.S.; Eroshkin, A.M.; Rana, T.M. Zika Virus Depletes Neural Progenitors in Human Cerebral Organoids through Activation of the Innate Immune Receptor TLR3. Cell Stem Cell, 2016, 19(2), 258-265.
[http://dx.doi.org/10.1016/j.stem.2016.04.014] [PMID: 27162029]
[9]
Lum, F-M.; Low, D.K.S.; Fan, Y.; Tan, J.J.L.; Lee, B.; Chan, J.K.Y.; Rénia, L.; Ginhoux, F.; Ng, L.F.P. Zika Virus Infects Human Fetal Brain Microglia and Induces Inflammation. Clin. Infect. Dis., 2017, 64(7), 914-920.
[http://dx.doi.org/10.1093/cid/ciw878] [PMID: 28362944]
[10]
Limonta, D.; Jovel, J.; Kumar, A.; Airo, A.M.; Hou, S.; Saito, L.; Branton, W.; Ka-Shu Wong, G.; Mason, A.; Power, C.; Hobman, T.C. Human Fetal Astrocytes Infected with Zika Virus Exhibit Delayed Apoptosis and Resistance to Interferon: Implications for Persistence. Viruses, 2018, 10(11)E646
[http://dx.doi.org/10.3390/v10110646] [PMID: 30453621]
[11]
Devhare, P.; Meyer, K.; Steele, R.; Ray, R.B.; Ray, R. Zika virus infection dysregulates human neural stem cell growth and inhibits differentiation into neuroprogenitor cells. Cell Death Dis., 2017, 8(10)e3106
[http://dx.doi.org/10.1038/cddis.2017.517] [PMID: 29022904]
[12]
Zou, J.; Shi, P-Y. Strategies for Zika Drug Discovery., 2019.
[13]
Ojha, C.R.; Rodriguez, M.; Lapierre, J.; Muthu Karuppan, M.K.; Branscome, H.; Kashanchi, F.; El-Hage, N. Complementary Mechanisms Potentially Involved in the Pathology of Zika Virus. Front. Immunol., 2018, 9, 2340.
[http://dx.doi.org/10.3389/fimmu.2018.02340] [PMID: 30374352]
[14]
Rausch, K.; Hackett, B.A.; Weinbren, N.L.; Reeder, S.M.; Sadovsky, Y.; Hunter, C.A.; Schultz, D.C.; Coyne, C.B.; Cherry, S. Screening Bioactives Reveals Nanchangmycin as a Broad Spectrum Antiviral Active against Zika Virus. Cell Rep., 2017, 18(3), 804-815.
[http://dx.doi.org/10.1016/j.celrep.2016.12.068] [PMID: 28099856]
[15]
Han, Y.; Mesplède, T. Investigational drugs for the treatment of Zika virus infection: a preclinical and clinical update., 2018.
[16]
Barrows, N.J.; Campos, R.K.; Powell, S.T.; Prasanth, K.R.; Schott-Lerner, G.; Soto-Acosta, R.; Galarza-Muñoz, G.; McGrath, E.L.; Urrabaz-Garza, R.; Gao, J.; Wu, P.; Menon, R.; Saade, G.; Fernandez-Salas, I.; Rossi, S.L.; Vasilakis, N.; Routh, A.; Bradrick, S.S.; Garcia-Blanco, M.A. A Screen of FDA-Approved Drugs for Inhibitors of Zika Virus Infection. Cell Host Microbe, 2016, 20(2), 259-270.
[http://dx.doi.org/10.1016/j.chom.2016.07.004] [PMID: 27476412]
[17]
Bascones-Martinez, A.; Mattila, R.; Gomez-Font, R.; Meurman, J.H. Immunomodulatory drugs: oral and systemic adverse effects. Med. Oral Patol. Oral Cir. Bucal, 2014, 19(1), e24-e31.
[http://dx.doi.org/10.4317/medoral.19087] [PMID: 23986016]
[18]
Santiago, M.E.B.; Neto, L.S.; Alexandre, E.C.; Munari, D.P.; Andrade, M.M.C.; Somenzari, M.A.; Ciarlini, P.C.; de Lima, V.M.F. Improvement in clinical signs and cellular immunity of dogs with visceral leishmaniasis using the immunomodulator P-MAPA., 2013.
[19]
Durán, N.; Gowen, B.B.; Costa, F.T.M.; Justo, G.Z.; Brocchi, M.; Nunes, O.S.; Nunes, I.S. A biotechnological product and its potential as a new immunomodulator for treatment of animal phlebovirus infection: Punta Toro virus. Antiviral Res., 2009, 83(2), 143-147.
[http://dx.doi.org/10.1016/j.antiviral.2009.04.006] [PMID: 19393266]
[20]
Garcia, P.V.; Apolinário, L.M.; Böckelmann, P.K.; da Silva Nunes, I.; Duran, N.; Fávaro, W.J. Alterations in ubiquitin ligase Siah-2 and its corepressor N-CoR after P-MAPA immunotherapy and anti-androgen therapy: new therapeutic opportunities for non-muscle invasive bladder cancer. Int. J. Clin. Exp. Pathol., 2015, 8(5), 4427-4443.
[PMID: 26191134]
[21]
Garcia, P.V.; Seiva, F.R.F.; Carniato, A.P.; de Mello Júnior, W.; Duran, N.; Macedo, A.M.; de Oliveira, A.G.; Romih, R. Nunes, Ida.S.; Nunes, Oda.S.; Fávaro, W.J. Increased toll-like receptors and p53 levels regulate apoptosis and angiogenesis in non-muscle invasive bladder cancer: mechanism of action of P-MAPA biological response modifier. BMC Cancer, 2016, 16, 422.
[http://dx.doi.org/10.1186/s12885-016-2474-z] [PMID: 27389279]
[22]
Melo, L.M.; Perosso, J.; Almeida, B.F.M.; Silva, K.L.O.; Somenzari, M.A.; de Lima, V.M.F. Effects of P-MAPA immunomodulator on Toll-like receptor 2, ROS, nitric oxide, MAPKp38 and IKK in PBMC and macrophages from dogs with visceral leishmaniasis. Int. Immunopharmacol., 2014, 18(2), 373-378.
[http://dx.doi.org/10.1016/j.intimp.2013.12.012] [PMID: 24374021]
[23]
Fávaro, W.J.; Nunes, O.S.; Seiva, F.R.; Nunes, I.S.; Woolhiser, L.K.; Durán, N.; Lenaerts, A.J. Effects of P-MAPA Immunomodulator on Toll-Like Receptors and p53: Potential Therapeutic Strategies for Infectious Diseases and Cancer. Infect. Agent. Cancer, 2012, 7(1), 14.
[http://dx.doi.org/10.1186/1750-9378-7-14] [PMID: 22709446]
[24]
Donald, C.L.; Brennan, B.; Cumberworth, S.L.; Rezelj, V.V.; Clark, J.J.; Cordeiro, M.T.; Freitas de Oliveira França, R.; Pena, L.J.; Wilkie, G.S.; Da Silva Filipe, A.; Davis, C.; Hughes, J.; Varjak, M.; Selinger, M.; Zuvanov, L.; Owsianka, A.M.; Patel, A.H.; McLauchlan, J.; Lindenbach, B.D.; Fall, G.; Sall, A.A.; Biek, R.; Rehwinkel, J.; Schnettler, E.; Kohl, A. Full Genome Sequence and sfRNA Interferon Antagonist Activity of Zika Virus from Recife, Brazil. PLoS Negl. Trop. Dis., 2016, 10(10)e0005048
[http://dx.doi.org/10.1371/journal.pntd.0005048] [PMID: 27706161]
[25]
Lanciotti, R.S.; Kosoy, O.L.; Laven, J.J.; Velez, J.O.; Lambert, A.J.; Johnson, A.J.; Stanfield, S.M.; Duffy, M.R. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg. Infect. Dis., 2008, 14(8), 1232-1239.
[http://dx.doi.org/10.3201/eid1408.080287] [PMID: 18680646]
[26]
Delvecchio, R.; Higa, L.M.; Pezzuto, P.; Valadão, A.L.; Garcez, P.P.; Monteiro, F.L.; Loiola, E.C.; Dias, A.A.; Silva, F.J.M.; Aliota, M.T.; Caine, E.A.; Osorio, J.E.; Bellio, M.; O’Connor, D.H.; Rehen, S.; de Aguiar, R.S.; Savarino, A.; Campanati, L.; Tanuri, A. Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models. Viruses, 2016, 8(12)E322
[http://dx.doi.org/10.3390/v8120322] [PMID: 27916837]
[27]
Paul, A.M.; Acharya, D.; Neupane, B.; Thompson, E.A.; Gonzalez-Fernandez, G.; Copeland, K.M.; Garrett, M.; Liu, H.; Lopez, M.E.; de Cruz, M.; Flynt, A.; Liao, J.; Guo, Y.L.; Gonzalez-Fernandez, F.; Vig, P.J.S.; Bai, F. Congenital Zika Virus Infection in Immunocompetent Mice Causes Postnatal Growth Impediment and Neurobehavioral Deficits. Front. Microbiol., 2018, 9, 2028.
[http://dx.doi.org/10.3389/fmicb.2018.02028] [PMID: 30210488]
[28]
de Araújo, T.V.B.; Ximenes, R.A.A.; Miranda-Filho, D.B.; Souza, W.V.; Montarroyos, U.R.; de Melo, A.P.L.; Valongueiro, S.; de Albuquerque, M.F.P.M.; Braga, C.; Filho, S.P.B.; Cordeiro, M.T.; Vazquez, E.; Cruz, D.D.C.S.; Henriques, C.M.P.; Bezerra, L.C.A.; Castanha, P.M.D.S.; Dhalia, R.; Marques-Júnior, E.T.A.; Martelli, C.M.T.; Rodrigues, L.C. 2018.
[29]
Singh, A.; Jana, N.K. Discovery of potential Zika virus RNA polymerase inhibitors by docking-based virtual screening., 2017.
[30]
Thornton, T.M.; Rincon, M. Non-classical p38 map kinase functions: cell cycle checkpoints and survival. Int. J. Biol. Sci., 2009, 5(1), 44-51.
[http://dx.doi.org/10.7150/ijbs.5.44] [PMID: 19159010]
[31]
Wang, Y.; Zeigler, M.M.; Lam, G.K.; Hunter, M.G.; Eubank, T.D.; Khramtsov, V.V.; Tridandapani, S.; Sen, C.K.; Marsh, C.B. The role of the NADPH oxidase complex, p38 MAPK, and Akt in regulating human monocyte/macrophage survival. Am. J. Respir. Cell Mol. Biol., 2007, 36(1), 68-77.
[http://dx.doi.org/10.1165/rcmb.2006-0165OC] [PMID: 16931806]
[32]
Gerdes, J.; Lelle, R.J.; Pickartz, H.; Heidenreich, W.; Schwarting, R.; Kurtsiefer, L.; Stauch, G.; Stein, H. Growth fractions in breast cancers determined in situ with monoclonal antibody Ki-67. J. Clin. Pathol., 1986, 39(9), 977-980.
[http://dx.doi.org/10.1136/jcp.39.9.977] [PMID: 3020096]
[33]
Meertens, L.; Labeau, A.; Dejarnac, O.; Cipriani, S.; Sinigaglia, L.; Bonnet-Madin, L.; Le Charpentier, T.; Hafirassou, M.L.; Zamborlini, A.; Cao-Lormeau, V-M.; Coulpier, M.; Missé, D.; Jouvenet, N.; Tabibiazar, R.; Gressens, P.; Schwartz, O.; Amara, A. Axl Mediates ZIKA Virus Entry in Human Glial Cells and Modulates Innate Immune Responses., 2017.
[34]
Bowen, J.R.; Quicke, K.M.; Maddur, M.S.; O’Neal, J.T.; McDonald, C.E.; Fedorova, N.B.; Puri, V.; Shabman, R.S.; Pulendran, B.; Suthar, M.S. Zika Virus Antagonizes Type I Interferon Responses during Infection of Human Dendritic Cells. PLoS Pathog., 2017, 13(2)e1006164
[http://dx.doi.org/10.1371/journal.ppat.1006164] [PMID: 28152048]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy