Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Review on Methodologies Used in the Synthesis of Metal Nanoparticles: Significance of Phytosynthesis Using Plant Extract as an Emerging Tool

Author(s): Uzair Nagra, Maryam Shabbir*, Muhammad Zaman, Asif Mahmood and Kashif Barkat

Volume 26, Issue 40, 2020

Page: [5188 - 5204] Pages: 17

DOI: 10.2174/1381612826666200531150218

Price: $65

Abstract

Nanosized particles, with a size of less than 100 nm, have a wide variety of applications in various fields of nanotechnology and biotechnology, especially in the pharmaceutical industry. Metal nanoparticles [MNPs] have been synthesized by different chemical and physical procedures. Still, the biological approach or green synthesis [phytosynthesis] is considered as a preferred method due to eco-friendliness, nontoxicity, and cost-effective production. Various plants and plant extracts have been used for the green synthesis of MNPs, including biofabrication of noble metals, metal oxides, and bimetallic combinations. Biomolecules and metabolites present in plant extracts cause the reduction of metal ions into nanosized particles by one-step preparation methods. MNPs have remarkable attractiveness in biomedical applications for their use as potential antioxidant, anticancer and antibacterial agents. The present review offers a comprehensive aspect of MNPs production via top-to-bottom and bottom-to-top approach with considerable emphasis on green technology and their possible biomedical applications. The critical parameters governing the MNPs formation by plant-based synthesis are also highlighted in this review.

Keywords: Biofabrication, metal nanoparticles, nanoparticles, nanotechnology, phytosynthesis, plant extractIntroduction to nanotechnology.

[1]
Barbinta-Patrascu ME, Ungureanu C, Iordache SM, et al. Eco-designed biohybrids based on liposomes, mint-nanosilver and carbon nanotubes for antioxidant and antimicrobial coating. Mater Sci Eng C 2014; 39: 177-85.
[http://dx.doi.org/10.1016/j.msec.2014.02.038] [PMID: 24863214]
[2]
Arya V. Phyto-nanoparticles: properties, mechanism and antimicrobial efficacy New dimensions in microbiology: Lenin Media Private Limited, Delhi, India. 2015; pp. 101-8.
[3]
Benelli G. Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 2016; 115(1): 23-34.
[http://dx.doi.org/10.1007/s00436-015-4800-9] [PMID: 26541154]
[4]
Agarwal H, Kumar SV, Rajeshkumar S. A review on green synthesis of zinc oxide nanoparticles-An eco-friendly approach. Resource-Efficient Technologies 2017; 3(4): 406-13.
[http://dx.doi.org/10.1016/j.reffit.2017.03.002]
[5]
Chung I-M, Park I, Seung-Hyun K, Thiruvengadam M, Rajakumar G. Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale Res Lett 2016; 11(1): 40.
[http://dx.doi.org/10.1186/s11671-016-1257-4] [PMID: 26821160]
[6]
Patil MP, Kim G-D. Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl Microbiol Biotechnol 2017; 101(1): 79-92.
[http://dx.doi.org/10.1007/s00253-016-8012-8] [PMID: 27915376]
[7]
Dauthal P, Mukhopadhyay M. Noble metal nanoparticles: plant-mediated synthesis, mechanistic aspects of synthesis, and applications. Ind Eng Chem Res 2016; 55(36): 9557-77.
[http://dx.doi.org/10.1021/acs.iecr.6b00861]
[8]
Nabi G, Khalid N, Tahir MB, et al. A review on novel eco-friendly green approach to synthesis TiO2 nanoparticles using different extracts. J Inorg Organomet P 2018; 28: 1552-64.
[9]
Saratale RG, Saratale GD, Shin HS, et al. New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: current knowledge, their agricultural and environmental applications. Environ Sci Pollut Res Int 2018; 25(11): 10164-83.
[http://dx.doi.org/10.1007/s11356-017-9912-6] [PMID: 28815433]
[10]
Luo C-H, Shanmugam V, Yeh C-S. Nanoparticle biosynthesis using unicellular and subcellular supports. NPG Asia Mater 2015; 7(8)e209
[http://dx.doi.org/10.1038/am.2015.90]
[11]
Kolinko I, Lohße A, Borg S, et al. Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters. Nat Nanotechnol 2014; 9(3): 193-7.
[http://dx.doi.org/10.1038/nnano.2014.13] [PMID: 24561353]
[12]
Jung JH, Park TJ, Lee SY, Seo TS. Homogeneous biogenic paramagnetic nanoparticle synthesis based on a microfluidic droplet generator. Angew Chem Int Ed Engl 2012; 51(23): 5634-7.
[http://dx.doi.org/10.1002/anie.201108977] [PMID: 22529022]
[13]
Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J Adv Res 2016; 7(1): 17-28.
[http://dx.doi.org/10.1016/j.jare.2015.02.007] [PMID: 26843966]
[14]
Cheng Y, Wang F, Fang C, Su J, Yang L. Preparation and characterization of size and morphology controllable silver nanoparticles by citrate and tannic acid combined reduction at a low temperature. J Alloys Compd 2016; 658: 684-8.
[http://dx.doi.org/10.1016/j.jallcom.2015.08.185]
[15]
Dwivedi C, Shah CP, Singh K, Kumar M, Bajaj PN. An organic acid-induced synthesis and characterization of selenium nanoparticles. J Nanotechnol 2011; 2011.
[http://dx.doi.org/10.1155/2011/651971]
[16]
Pazos E, Sleep E, Rubert Pérez CM, Lee SS, Tantakitti F, Stupp SI. Nucleation and growth of ordered arrays of silver nanoparticles on peptide nanofibers: hybrid nanostructures with antimicrobial properties. J Am Chem Soc 2016; 138(17): 5507-10.
[http://dx.doi.org/10.1021/jacs.6b01570] [PMID: 27103596]
[17]
Khan A, Rashid A, Younas R, Chong R. A chemical reduction approach to the synthesis of copper nanoparticles. Int Nano Lett 2016; 6(1): 21-6.
[http://dx.doi.org/10.1007/s40089-015-0163-6]
[18]
Hazarika M, Borah D, Bora P, Silva AR, Das P. Biogenic synthesis of palladium nanoparticles and their applications as catalyst and antimicrobial agent. PLoS One 2017; 12(9)e0184936
[http://dx.doi.org/10.1371/journal.pone.0184936] [PMID: 28957342]
[19]
Rahimi-Nasrabadi M, Ahmadi F, Fosooni A. Influence of capping agents additives on morphology of CeVO 4 nanoparticles and study of their photocatalytic properties. J Mater Sci Mater Electron 2017; 28(1): 537-42.
[http://dx.doi.org/10.1007/s10854-016-5556-4]
[20]
Ahmed S. Annu, Ikram S, Yudha SS. Biosynthesis of gold nanoparticles: A green approach. J Photochem Photobiol B 2016; 161: 141-53.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.04.034] [PMID: 27236049]
[21]
Dwivedy AK, Upadhyay N, Asawa S, Kumar M, Prakash B, Dubey NK. Therapeutic potential of plant-based metal nanoparticles: present status and future perspectives nanomaterials in plants, algae and microorganisms. Elsevier 2019; pp. 169-96.
[http://dx.doi.org/10.1016/B978-0-12-811488-9.00009-3]
[22]
DeCastro CL, Mitchell BS. Nanoparticles from mechanical attritionSynthesis, functionalization, and surface treatment of nanoparticles 2002; 1-15.
[23]
Ghorbani HR. A review of methods for synthesis of Al nanoparticles. Orient J Chem 2014; 30(4): 1941-9.
[http://dx.doi.org/10.13005/ojc/300456]
[24]
Chakka V, Altuncevahir B, Jin Z, Li Y, Liu J. Magnetic nanoparticles produced by surfactant-assisted ball milling. J Applied Phys 2006; 99(8) 08E912.
[http://dx.doi.org/10.1063/1.2170593]
[25]
Tsuzuki T, McCormick PG. Mechanochemical synthesis of metal sulphide nanoparticles. Nanostruct Mater 1999; 12(1-4): 75-8.
[http://dx.doi.org/10.1016/S0965-9773(99)00069-0]
[26]
Haynes CL, McFarland AD, Smith MT, Hulteen JC, Van Duyne RP. Angle-resolved nanosphere lithography: manipulation of nanoparticle size, shape, and interparticle spacing. J Phys Chem B 2002; 106(8): 1898-902.
[http://dx.doi.org/10.1021/jp013570+]
[27]
Shiu J-Y, Kuo C-W, Chen P, Mou C-Y. Fabrication of tunable superhydrophobic surfaces by nanosphere lithography. Chem Mater 2004; 16(4): 561-4.
[http://dx.doi.org/10.1021/cm034696h]
[28]
Duval Malinsky M, Kelly KL, Schatz GC, Van Duyne RP. Nanosphere lithography: Effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles. J Phys Chem B 2001; 105(12): 2343-50.
[http://dx.doi.org/10.1021/jp002906x]
[29]
Contreras AM, Grunes J, Yan X-M, Liddle A, Somorjai G. Fabrication of platinum nanoparticles and nanowires by electron beam lithography (EBL) and nanoimprint lithography (NIL): comparison of ethylene hydrogenation kinetics. Catal Lett 2005; 100(3-4): 115-24.
[http://dx.doi.org/10.1007/s10562-004-3436-7]
[30]
Li T, Park HG, Choi S-H. γ-Irradiation-induced preparation of Ag and Au nanoparticles and their characterizations. Mater Chem Phys 2007; 105(2-3): 325-30.
[http://dx.doi.org/10.1016/j.matchemphys.2007.04.069]
[31]
Doudna CM, Bertino MF, Blum FD, et al. Radiolytic synthesis of bimetallic Ag-Pt nanoparticles with a high aspect ratio. J Phys Chem B 2003; 107(13): 2966-70.
[http://dx.doi.org/10.1021/jp0273124]
[32]
Becker M, Brock J, Cai H, et al. Metal nanoparticles generated by laser ablation. Nanostruct Mater 1998; 10(5): 853-63.
[http://dx.doi.org/10.1016/S0965-9773(98)00121-4]
[33]
Amendola V, Meneghetti M. Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys Chem Chem Phys 2009; 11(20): 3805-21.
[http://dx.doi.org/10.1039/b900654k] [PMID: 19440607]
[34]
Zhang J, Han B, Liu M, et al. Ultrasonication-induced formation of silver nanofibers in reverse micelles and small-angle X-ray scattering studies. J Phys Chem B 2003; 107(16): 3679-83.
[http://dx.doi.org/10.1021/jp026738f]
[35]
Gedanken A. Sonochemistry and its application to nanochemistry. Curr Sci 2003; 1720-2.
[36]
Kumar RV, Palchik O, Koltypin Y, Diamant Y, Gedanken A. Sonochemical synthesis and characterization of Ag2S/PVA and CuS/PVA nanocomposite. Ultrason Sonochem 2002; 9(2): 65-70.
[http://dx.doi.org/10.1016/S1350-4177(01)00100-6]
[37]
Mănoiu V-S, Aloman A. Obtaining silver nanoparticles by sonochemical methods. UPB Buletin Stiintific Series B 2010; 72(2): 179.
[38]
Wu Y, Wang D, Li Y. Understanding of the major reactions in solution synthesis of functional nanomaterials. Science China Materials 2016; 59(11): 938-96.
[http://dx.doi.org/10.1007/s40843-016-5112-0]
[39]
Shaporev A, Ivanov V, Baranchikov A, Tret’yakov YD. Microwave-assisted hydrothermal synthesis and photocatalytic activity of ZnO. Inorg Mater 2007; 43(1): 35-9.
[http://dx.doi.org/10.1134/S0020168507010098]
[40]
Danks A, Hall S, Schnepp Z. The evolution of ‘sol-gel’chemistry as a technique for materials synthesis. Mater Horiz 2016; 3(2): 91-112.
[http://dx.doi.org/10.1039/C5MH00260E]
[41]
Owens GJ, Singh RK, Foroutan F, et al. Sol-gel based materials for biomedical applications. Prog Mater Sci 2016; 77: 1-79.
[http://dx.doi.org/10.1016/j.pmatsci.2015.12.001]
[42]
Pechini MP. Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitorUnited States patent US3330697A
[43]
Vicentini DS, Smania A Jr, Laranjeira MC. Chitosan/poly (vinyl alcohol) films containing ZnO nanoparticles and plasticizers. Mater Sci Eng C 2010; 30(4): 503-8.
[http://dx.doi.org/10.1016/j.msec.2009.01.026]
[44]
Davar F, Salavati-Niasari M. Synthesis and characterization of spinel-type zinc aluminate nanoparticles by a modified sol-gel method using new precursor. J Alloys Compd 2011; 509(5): 2487-92.
[http://dx.doi.org/10.1016/j.jallcom.2010.11.058]
[45]
Reverberi A, Kuznetsov N, Meshalkin V, Salerno M, Fabiano B. Systematical analysis of chemical methods in metal nanoparticles synthesis. Theor Found Chem Eng 2016; 50(1): 59-66.
[http://dx.doi.org/10.1134/S0040579516010127]
[46]
Indira T, Lakshmi P. Magnetic nanoparticles-a review. Int J Pharm Sci Nanotechnol 2010; 3(3): 1035-42.
[47]
Biacchi AJ, Schaak RE. The solvent matters: kinetic versus thermodynamic shape control in the polyol synthesis of rhodium nanoparticles. ACS Nano 2011; 5(10): 8089-99.
[http://dx.doi.org/10.1021/nn2026758] [PMID: 21936503]
[48]
White RJ, Luque R, Budarin VL, Clark JH, Macquarrie DJ. Supported metal nanoparticles on porous materials. Methods and applications. Chem Soc Rev 2009; 38(2): 481-94.
[http://dx.doi.org/10.1039/B802654H] [PMID: 19169462]
[49]
Ramimoghadam D, Bagheri S, Hamid SBA. Progress in electrochemical synthesis of magnetic iron oxide nanoparticles. J Magn Magn Mater 2014; 368: 207-29.
[http://dx.doi.org/10.1016/j.jmmm.2014.05.015]
[50]
Yu Y-Y, Chang S-S, Lee C-L, Wang CC. Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 1997; 101(34): 6661-4.
[http://dx.doi.org/10.1021/jp971656q]
[51]
Yin B, Ma H, Wang S, Chen S. Electrochemical synthesis of silver nanoparticles under protection of poly (N-vinylpyrrolidone). J Phys Chem B 2003; 107(34): 8898-904.
[http://dx.doi.org/10.1021/jp0349031]
[52]
Salunkhe AB, Khot VM, Pawar SH. Magnetic hyperthermia with magnetic nanoparticles: a status review. Curr Top Med Chem 2014; 14(5): 572-94.
[http://dx.doi.org/10.2174/1568026614666140118203550] [PMID: 24444167]
[53]
Bautista MC, Bomati-Miguel O, del Puerto Morales M, Serna CJ, Veintemillas-Verdaguer S. Surface characterisation of dextran-coated iron oxide nanoparticles prepared by laser pyrolysis and coprecipitation. J Magn Magn Mater 2005; 293(1): 20-7.
[http://dx.doi.org/10.1016/j.jmmm.2005.01.038]
[54]
Simchi A, Ahmadi R, Reihani SS, Mahdavi A. Kinetics and mechanisms of nanoparticle formation and growth in vapor phase condensation process. Mater Des 2007; 28(3): 850-6.
[http://dx.doi.org/10.1016/j.matdes.2005.10.017]
[55]
Abbasi E, Milani M, Fekri Aval S, et al. Silver nanoparticles: Synthesis methods, bio-applications and properties. Crit Rev Microbiol 2016; 42(2): 173-80.
[PMID: 24937409]
[56]
Holister P, Weener J-W, Román C, Harper T. Nanoparticles. Technology White Papers 2003; 3: 1-11.
[57]
Thunugunta T, Reddy AC. Green synthesis of nanoparticles: current prospectus. Nanotechnol Rev 2015; 4(4): 303-23.
[http://dx.doi.org/10.1515/ntrev-2015-0023]
[58]
Liu J, Chen C, Yang G, Chen Y, Yang C-F. Effect of the fabrication parameters of the nanosphere lithography method on the properties of the deposited Au-Ag nanoparticle arrays. Materials (Basel) 2017; 10(4): 381.
[http://dx.doi.org/10.3390/ma10040381] [PMID: 28772741]
[59]
Lu Z, Yin Y. Colloidal nanoparticle clusters: functional materials by design. Chem Soc Rev 2012; 41(21): 6874-87.
[http://dx.doi.org/10.1039/c2cs35197h] [PMID: 22868949]
[60]
Niederberger M, Garnweitner G. Organic reaction pathways in the nonaqueous synthesis of metal oxide nanoparticles. Chemistry 2006; 12(28): 7282-302.
[http://dx.doi.org/10.1002/chem.200600313] [PMID: 16927442]
[61]
Zhang J, Gao L. Synthesis and characterization of antimony-doped tin oxide (ATO) nanoparticles by a new hydrothermal method. Mater Chem Phys 2004; 87(1): 10-3.
[http://dx.doi.org/10.1016/j.matchemphys.2004.06.004]
[62]
McBain SC, Yiu HH, Dobson J. Magnetic nanoparticles for gene and drug delivery. Int J Nanomedicine 2008; 3(2): 169-80.
[PMID: 18686777]
[63]
Tavakoli A, Sohrabi M, Kargari A. A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. Chem Pap 2007; 61(3): 151-70.
[64]
Menon S, Rajeshkumar S, Kumar V. A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resource-Efficient Technologies 2017; 3(4): 519-27.
[http://dx.doi.org/10.1016/j.reffit.2017.08.002]
[65]
Shi D, Matsusaki M, Kaneko T, Akashi M. Photo-cross-linking and cleavage induced reversible size change of bio-based nanoparticles. Macromolecules 2008; 41(21): 8167-72.
[http://dx.doi.org/10.1021/ma800648e]
[66]
Saif S, Tahir A, Chen Y. Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials (Basel) 2016; 6(11): 209.
[http://dx.doi.org/10.3390/nano6110209] [PMID: 28335338]
[67]
Teimuri-Mofrad R, Hadi R, Tahmasebi B, Farhoudian S, Mehravar M, Nasiri R. Green synthesis of gold nanoparticles using plant extract: Mini-review. Nanochemistry Research 2017; 2(1): 8-19.
[68]
Kuppusamy P, Yusoff MM, Maniam GP, Govindan N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - An updated report. Saudi Pharm J 2016; 24(4): 473-84.
[http://dx.doi.org/10.1016/j.jsps.2014.11.013] [PMID: 27330378]
[69]
Teow S-Y, Wong MM, Yap H-Y, Peh S-C, Shameli K. Bactericidal properties of plants-derived metal and metal oxide nanoparticles (NPs). Molecules 2018; 23(6): 1366.
[http://dx.doi.org/10.3390/molecules23061366] [PMID: 29882775]
[70]
Rajan R, Chandran K, Harper SL, Yun S-I, Kalaichelvan PT. Plant extract synthesized silver nanoparticles: an ongoing source of novel biocompatible materials. Ind Crops Prod 2015; 70: 356-73.
[http://dx.doi.org/10.1016/j.indcrop.2015.03.015]
[71]
Erdogan O, Abbak M, Demirbolat GM, et al. Green synthesis of silver nanoparticles via Cynara scolymus leaf extracts: The characterization, anticancer potential with photodynamic therapy in MCF7 cells. PLoS One 2019; 14(6)e0216496
[http://dx.doi.org/10.1371/journal.pone.0216496] [PMID: 31220110]
[72]
Harris AT, Bali R. On the formation and extent of uptake of silver nanoparticles by live plants. J Nanopart Res 2008; 10(4): 691-5.
[http://dx.doi.org/10.1007/s11051-007-9288-5]
[73]
Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M. Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 2003; 19(4): 1357-61.
[http://dx.doi.org/10.1021/la020835i]
[74]
Gardea-Torresdey J, Parsons J, Gomez E, et al. Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2002; 2(4): 397-401.
[http://dx.doi.org/10.1021/nl015673+]
[75]
Haverkamp RG, Marshall AT, van Agterveld D. Pick your carats: nanoparticles of gold-silver-copper alloy produced in vivo. J Nanopart Res 2007; 9(4): 697-700.
[http://dx.doi.org/10.1007/s11051-006-9198-y]
[76]
Pardha-Saradhi P, Yamal G, Peddisetty T, et al. Reducing strength prevailing at root surface of plants promotes reduction of Ag+ and generation of Ag(0)/Ag2O nanoparticles exogenously in aqueous phase. PLoS One 2014; 9(9)e106715
[http://dx.doi.org/10.1371/journal.pone.0106715] [PMID: 25184239]
[77]
Durán N, Marcato PD, Durán M, Yadav A, Gade A, Rai M. Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Appl Microbiol Biotechnol 2011; 90(5): 1609-24.
[http://dx.doi.org/10.1007/s00253-011-3249-8] [PMID: 21484205]
[78]
Venkatachalam P, Sangeetha P, Geetha N, Sahi SV. Phytofabrication of bioactive molecules encapsulated metallic silver nanoparticles from Cucumis sativus L. and its enhanced wound healing potential in rat model. J Nanomater 2015; 16(1): 241.
[79]
Behravan M, Hossein Panahi A, Naghizadeh A, Ziaee M, Mahdavi R, Mirzapour A. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int J Biol Macromol 2019; 124: 148-54.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.101] [PMID: 30447360]
[80]
Bhagat M, Anand R, Datt R, Gupta V, Arya S. Green synthesis of silver nanoparticles using aqueous extract of Rosa brunonii Lindl and their morphological, biological and photocatalytic characterizations. J Inorg Organomet Polym Mater 2019; 29(3): 1039-47.
[http://dx.doi.org/10.1007/s10904-018-0994-5]
[81]
Anandan M, Poorani G, Boomi P, et al. Green synthesis of anisotropic silver nanoparticles from the aqueous leaf extract of Dodonaea viscosa with their antibacterial and anticancer activities. Process Biochem 2019; 80: 80-8.
[http://dx.doi.org/10.1016/j.procbio.2019.02.014]
[82]
Thomas B, Vithiya BSM, Prasad TAA, et al. Antioxidant and photocatalytic activity of aqueous leaf extract mediated green synthesis of silver nanoparticles using Passiflora edulis f. flavicarpa. J Nanosci Nanotechnol 2019; 19(5): 2640-8.
[http://dx.doi.org/10.1166/jnn.2019.16025] [PMID: 30501761]
[83]
Alfuraydi AA, Devanesan S, Al-Ansari M, AlSalhi MS, Ranjitsingh AJ. Eco-friendly green synthesis of silver nanoparticles from the sesame oil cake and its potential anticancer and antimicrobial activities. J Photochem Photobiol B 2019; 192: 83-9.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.01.011] [PMID: 30710829]
[84]
Sharma V, Kaushik S, Pandit P, Dhull D, Yadav JP, Kaushik S. Green synthesis of silver nanoparticles from medicinal plants and evaluation of their antiviral potential against chikungunya virus. Appl Microbiol Biotechnol 2019; 103(2): 881-91.
[http://dx.doi.org/10.1007/s00253-018-9488-1] [PMID: 30413849]
[85]
Pirtarighat S, Ghannadnia M, Baghshahi S. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J Nanostructure Chemistry 2019; 9(1): 1-9.
[http://dx.doi.org/10.1007/s40097-018-0291-4]
[86]
Kalaiselvi D, Mohankumar A, Shanmugam G, Nivitha S, Sundararaj P. Green synthesis of silver nanoparticles using latex extract of Euphorbia tirucalli: A novel approach for the management of root knot nematode, Meloidogyne incognita. Crop Prot 2019; 117: 108-14.
[http://dx.doi.org/10.1016/j.cropro.2018.11.020]
[87]
Ahn E-Y, Jin H, Park Y. Assessing the antioxidant, cytotoxic, apoptotic and wound healing properties of silver nanoparticles green-synthesized by plant extracts. Mater Sci Eng C 2019; 101: 204-16.
[http://dx.doi.org/10.1016/j.msec.2019.03.095] [PMID: 31029313]
[88]
Qasim Nasar M, Zohra T, et al. Seripheidium quettense mediated green synthesis of biogenic silver nanoparticles and their theranostic applications. Green Chem Lett Rev 2019; 12(3): 310-22.
[http://dx.doi.org/10.1080/17518253.2019.1643929]
[89]
Ravichandran V, Vasanthi S, Shalini S, Shah SAA, Tripathy M, Paliwal N. Green synthesis, characterization, antibacterial, antioxidant and photocatalytic activity of Parkia speciosa leaves extract mediated silver nanoparticles. Results in Physics 2019; 151: 02565.
[http://dx.doi.org/10.1016/j.rinp.2019.102565]
[90]
Vijayan R, Joseph S, Mathew B. Green synthesis of silver nanoparticles using Nervalia zeylanica leaf extract and evaluation of their antioxidant, catalytic, and antimicrobial potentials. Particul Sci Technol 2019; 37(7): 809-19.
[http://dx.doi.org/10.1080/02726351.2018.1450312]
[91]
Gomathi M, Prakasam A, Rajkumar P. Green synthesis, characterization and antibacterial activity of silver nanoparticles using amorphophallus paeoniifolius leaf extract. J Cluster Sci 2019; 30(4): 995-1001.
[http://dx.doi.org/10.1007/s10876-019-01559-y]
[92]
Chartarrayawadee W, Charoensin P, Saenma J, et al. Green synthesis and stabilization of silver nanoparticles using Lysimachia foenum-graecum Hance extract and their antibacterial activity. Green Processing Synthesis 2020; 9(1): 107-18.
[http://dx.doi.org/10.1515/gps-2020-0012]
[93]
Ahn E-Y, Jin H, Park Y. Green synthesis and biological activities of silver nanoparticles prepared by Carpesium cernuum extract. Arch Pharm Res 2019; 42(10): 926-34.
[http://dx.doi.org/10.1007/s12272-019-01152-x] [PMID: 30972559]
[94]
Hemmati S, Rashtiani A, Zangeneh MM, Mohammadi P, Zangeneh A, Veisi H. Green synthesis and characterization of silver nanoparticles using Fritillaria flower extract and their antibacterial activity against some human pathogens. Polyhedron 2019; 158: 8-14.
[http://dx.doi.org/10.1016/j.poly.2018.10.049]
[95]
Singh J, Dhaliwal AS. Novel green synthesis and characterization of the antioxidant activity of silver nanoparticles prepared from nepeta leucophylla root extract. Anal Lett 2019; 52(2): 213-30.
[http://dx.doi.org/10.1080/00032719.2018.1454936]
[96]
Mariadoss AVA, Ramachandran V, Shalini V, et al. Green synthesis, characterization and antibacterial activity of silver nanoparticles by Malus domestica and its cytotoxic effect on (MCF-7) cell line. Microb Pathog 2019; 135103609
[http://dx.doi.org/10.1016/j.micpath.2019.103609] [PMID: 31247255]
[97]
Girón-Vázquez N, Gómez-Gutiérrez C, Soto-Robles C, et al. Study of the effect of Persea americana seed in the green synthesis of silver nanoparticles and their antimicrobial properties. Results in Physics 2019; 13102142
[http://dx.doi.org/10.1016/j.rinp.2019.02.078]
[98]
Preet S, Satsangi N. Size controlled green synthesis of biocompatible silver nanoparticles with enhanced mosquito larvicidal activity. J Cluster Sci 2019; 30(6): 1611-21.
[http://dx.doi.org/10.1007/s10876-019-01606-8]
[99]
Rautela A, Rani J, Das MD. Green synthesis of silver nanoparticles from Tectona grandis seeds extract: characterization and mechanism of antimicrobial action on different microorganisms. J Anal Sci Technol 2019; 10(1): 1-10.
[http://dx.doi.org/10.1186/s40543-018-0163-z]
[100]
Jemilugba OT, Parani S, Mavumengwana V, Oluwafemi OS. Green synthesis of silver nanoparticles using Combretum erythrophyllum leaves and its antibacterial activities. Colloid Interface Sci Communications 2019; 31100191
[http://dx.doi.org/10.1016/j.colcom.2019.100191]
[101]
Kanniah P, Radhamani J, Chelliah P, et al. Green synthesis of multifaceted silver nanoparticles using the flower extract of aerva lanata and evaluation of its biological and environmental applications. ChemistrySelect 2020; 5(7): 2322-31.
[http://dx.doi.org/10.1002/slct.201903228]
[102]
Hernández-Morales L, Espinoza-Gómez H, Flores-López LZ, et al. Study of the green synthesis of silver nanoparticles using a natural extract of dark or white Salvia hispanica L. seeds and their antibacterial application. Appl Surf Sci 2019; 489: 952-61.
[http://dx.doi.org/10.1016/j.apsusc.2019.06.031]
[103]
Zangeneh MM, Bovandi S, Gharehyakheh S, Zangeneh A, Irani P. Green synthesis and chemical characterization of silver nanoparticles obtained using Allium saralicum aqueous extract and survey of in vitro antioxidant, cytotoxic, antibacterial and antifungal properties. Appl Organomet Chem 2019; 33(7)e4961
[http://dx.doi.org/10.1002/aoc.4961]
[104]
Tripathi D, Modi A, Narayan G, Rai SP. Green and cost effective synthesis of silver nanoparticles from endangered medicinal plant Withania coagulans and their potential biomedical properties. Mater Sci Eng C 2019; 100: 152-64.
[http://dx.doi.org/10.1016/j.msec.2019.02.113] [PMID: 30948049]
[105]
Gajendran B, Durai P, Varier KM, et al. Green synthesis of silver nanoparticle from datura inoxia flower extract and its cytotoxic activity. Bionanoscience 2019; 9(3): 564-72.
[http://dx.doi.org/10.1007/s12668-019-00645-9]
[106]
Kumar V, Singh S, Srivastava B, Bhadouria R, Singh R. Green synthesis of silver nanoparticles using leaf extract of Holoptelea integrifolia and preliminary investigation of its antioxidant, anti-inflammatory, antidiabetic and antibacterial activities. J Environ Chem Eng 2019; 7(3)103094
[http://dx.doi.org/10.1016/j.jece.2019.103094]
[107]
Devi M, Devi S, Sharma V, Rana N, Bhatia RK, Bhatt AK. Green synthesis of silver nanoparticles using methanolic fruit extract of Aegle marmelos and their antimicrobial potential against human bacterial pathogens. J Tradit Complement Med 2019; 10(2): 158-65.
[http://dx.doi.org/10.1016/j.jtcme.2019.04.007] [PMID: 32257879]
[108]
Singh C, Kumar J, Kumar P, Chauhan BS, et al. Green synthesis of silver nanoparticles using aqueous leaf extract of Premna integrifolia (L.) rich in polyphenols and evaluation of their antioxidant, antibacterial and cytotoxic activity. Biotechnol Biotechnol Equip 2019; 33(1): 359-71.
[http://dx.doi.org/10.1080/13102818.2019.1577699]
[109]
Jahan I, Erci F, Isildak I. Microwave-assisted green synthesis of non-cytotoxic silver nanoparticles using the aqueous extract of Rosa santana (rose) petals and their antimicrobial activity. Anal Lett 2019; 52(12): 1860-73.
[http://dx.doi.org/10.1080/00032719.2019.1572179]
[110]
Taib SHM, Shameli K, Nia PM, et al. Electrooxidation of nitrite based on green synthesis of gold nanoparticles using Hibiscus sabdariffa leaves. J Taiwan Institute Chem Eng 2019; 95: 616-26.
[http://dx.doi.org/10.1016/j.jtice.2018.09.021]
[111]
Guo Y, Jiang N, Zhang L, Yin M. Green synthesis of gold nanoparticles from Fritillaria cirrhosa and its anti-diabetic activity on Streptozotocin induced rats. Arab J Chem 2020; 13(4): 5096-106.
[http://dx.doi.org/10.1016/j.arabjc.2020.02.009]
[112]
Asnag G, Oraby A, Abdelghany A. Green synthesis of gold nanoparticles and its effect on the optical, thermal and electrical properties of carboxymethyl cellulose. Compos, Part B Eng 2019; 172: 436-46.
[http://dx.doi.org/10.1016/j.compositesb.2019.05.044]
[113]
Vijayan R, Joseph S, Mathew B. Anticancer, antimicrobial, antioxidant, and catalytic activities of green-synthesized silver and gold nanoparticles using Bauhinia purpurea leaf extract. Bioprocess Biosyst Eng 2019; 42(2): 305-19.
[http://dx.doi.org/10.1007/s00449-018-2035-8] [PMID: 30421171]
[114]
Yadav S, Sharma M, Ganesh N, Srivastava S, Srivastava MM. Bioactive principle loaded gold nanoparticles as potent anti-melanoma agent: Green synthesis, characterization, and in vitro bioefficacy. Asian J Green Chem 2019; 3: 492-507.
[115]
Veena S, Devasena T, Sathak S, Yasasve M, Vishal L. Green synthesis of gold nanoparticles from vitex negundo leaf extract: characterization and in vitro evaluation of antioxidant-antibacterial activity. J Cluster Sci 2019; 30(6): 1591-7.
[http://dx.doi.org/10.1007/s10876-019-01601-z]
[116]
Balwe SG, Rokade AA, Park SS, Jeong YT. Green synthesis and characterization of supported gold nanoparticles (Au@ PS) from Schisandra chinensis fruit extract: An efficient and reusable catalyst for the synthesis of chromeno [2, 3-d] pyrimidin-2-yl) phenol derivatives under solvent-free conditions. Catal Commun 2019; 128.
[http://dx.doi.org/10.1016/j.catcom.2019.05.010]
[117]
Divakaran D, Lakkakula JR, Thakur M, Kumawat MK, Srivastava R. Dragon fruit extract capped gold nanoparticles: Synthesis and their differential cytotoxicity effect on breast cancer cells. Mater Lett 2019; 236: 498-502.
[http://dx.doi.org/10.1016/j.matlet.2018.10.156]
[118]
Satpathy S, Patra A, Ahirwar B, Hussain MD. Process optimization for green synthesis of gold nanoparticles mediated by extract of Hygrophila spinosa T. Anders and their biological applications. Physica E 2019; 121113830
[http://dx.doi.org/10.1016/j.physe.2019.113830]
[119]
Wang L, Xu J, Yan Y, Liu H, Karunakaran T, Li F. Green synthesis of gold nanoparticles from Scutellaria barbata and its anticancer activity in pancreatic cancer cell (PANC-1). Artif Cells Nanomed Biotechnol 2019; 47(1): 1617-27.
[http://dx.doi.org/10.1080/21691401.2019.1594862] [PMID: 31014134]
[120]
Sharma TSK, Selvakumar K, Hwa KY, Sami P, Kumaresan M. Biogenic fabrication of gold nanoparticles using Camellia japonica L. leaf extract and its biological evaluation. J Mater Res Technol 2019; 8(1): 1412-8.
[http://dx.doi.org/10.1016/j.jmrt.2018.10.006]
[121]
Sun B, Hu N, Han L, Pi Y, Gao Y, Chen K. Anticancer activity of green synthesised gold nanoparticles from Marsdenia tenacissima inhibits A549 cell proliferation through the apoptotic pathway. Artif Cells Nanomed Biotechnol 2019; 47(1): 4012-9.
[http://dx.doi.org/10.1080/21691401.2019.1575844] [PMID: 31591910]
[122]
Sunderam V, Thiyagarajan D, Lawrence AV, Mohammed SSS, Selvaraj A. In-vitro antimicrobial and anticancer properties of green synthesized gold nanoparticles using Anacardium occidentale leaves extract. Saudi J Biol Sci 2019; 26(3): 455-9.
[http://dx.doi.org/10.1016/j.sjbs.2018.12.001] [PMID: 30899157]
[123]
Talebpour F, Ghahghaei A. Effect of green synthesis of gold nanoparticles (AuNPs) from Hibiscus sabdariffa on the aggregation of α-lactalbumin. Int J Pept Res Ther 2020; 1-10.
[http://dx.doi.org/10.1007/s10989-020-10023-9]
[124]
Khoshnamvand M, Ashtiani S, Huo C, Saeb SP, Liu J. Use of Alcea rosea leaf extract for biomimetic synthesis of gold nanoparticles with innate free radical scavenging and catalytic activities. J Mol Struct 2019; 1179: 749-55.
[http://dx.doi.org/10.1016/j.molstruc.2018.11.079]
[125]
Lee YJ, Ahn E-Y, Park Y. Shape-dependent cytotoxicity and cellular uptake of gold nanoparticles synthesized using green tea extract. Nanoscale Res Lett 2019; 14(1): 129.
[http://dx.doi.org/10.1186/s11671-019-2967-1] [PMID: 30976946]
[126]
Qian L, Su W, Wang Y, Dang M, Zhang W, Wang C. Synthesis and characterization of gold nanoparticles from aqueous leaf extract of Alternanthera sessilis and its anticancer activity on cervical cancer cells (HeLa). Artif Cells Nanomed Biotechnol 2019; 47(1): 1173-80.
[http://dx.doi.org/10.1080/21691401.2018.1549064] [PMID: 30942109]
[127]
Kumar I, Mondal M, Meyappan V, Sakthivel N. Green one-pot synthesis of gold nanoparticles using Sansevieria roxburghiana leaf extract for the catalytic degradation of toxic organic pollutants. Mater Res Bull 2019; 117: 18-27.
[http://dx.doi.org/10.1016/j.materresbull.2019.04.029]
[128]
Boomi P, Ganesan RM, Poorani G, Gurumallesh Prabu H, Ravikumar S, Jeyakanthan J. Biological synergy of greener gold nanoparticles by using Coleus aromaticus leaf extract. Mater Sci Eng C 2019; 99: 202-10.
[http://dx.doi.org/10.1016/j.msec.2019.01.105] [PMID: 30889692]
[129]
Liu R, Pei Q, Shou T, Zhang W, Hu J, Li W. Apoptotic effect of green synthesized gold nanoparticles from Curcuma wenyujin extract against human renal cell carcinoma A498 cells. Int J Nanomedicine 2019; 14: 4091-103.
[http://dx.doi.org/10.2147/IJN.S203222] [PMID: 31239669]
[130]
Wu T, Duan X, Hu C, et al. Synthesis and characterization of gold nanoparticles from Abies spectabilis extract and its anticancer activity on bladder cancer T24 cells. Artif Cells Nanomed Biotechnol 2019; 47(1): 512-23.
[http://dx.doi.org/10.1080/21691401.2018.1560305] [PMID: 30810403]
[131]
Patil MP, Bayaraa E, Subedi P, Piad LLA, Tarte NH, Kim G-D. Biogenic synthesis, characterization of gold nanoparticles using Lonicera japonica and their anticancer activity on HeLa cells. J Drug Deliv Sci Technol 2019; 51: 83-90.
[http://dx.doi.org/10.1016/j.jddst.2019.02.021]
[132]
Folorunso A, Akintelu S, Oyebamiji AK, Ajayi S, et al. Biosynthesis, characterization and antimicrobial activity of gold nanoparticles from leaf extracts of Annona muricata. J Nanostructure Chem 2019; 9(2): 111-7.
[http://dx.doi.org/10.1007/s40097-019-0301-1]
[133]
Khatua A, Priyadarshini E, Rajamani P, et al. Phytosynthesis, characterization and fungicidal potential of emerging gold nanoparticles using Pongamia pinnata leave extract: a novel approach in nanoparticle synthesis. J Cluster Sci 2019; 31: 125-31.
[134]
Vijayakumar S. Eco-friendly synthesis of gold nanoparticles using fruit extracts and in vitro anticancer studies. J Saudi Chem Soc 2019; 23(6): 753-61.
[http://dx.doi.org/10.1016/j.jscs.2018.12.002]
[135]
Chahardoli A, Karimi N, Fattahi A. Nigella arvensis leaf extract mediated green synthesis of silver nanoparticles: Their characteristic properties and biological efficacy. Adv Powder Technol 2018; 29(1): 202-10.
[http://dx.doi.org/10.1016/j.apt.2017.11.003]
[136]
Otunola GA, Afolayan AJ. In vitro antibacterial, antioxidant and toxicity profile of silver nanoparticles green-synthesized and characterized from aqueous extract of a spice blend formulation. Biotechnol Biotechnol Equip 2018; 32(3): 724-33.
[http://dx.doi.org/10.1080/13102818.2018.1448301]
[137]
Mani A, Vasanthi C, Gopal V, Chellathai D. Role of phyto-stabilised silver nanoparticles in suppressing adjuvant induced arthritis in rats. Int Immunopharmacol 2016; 41: 17-23.
[http://dx.doi.org/10.1016/j.intimp.2016.10.013] [PMID: 27788371]
[138]
Kumar PV, Kala SMJ, Prakash K. Green synthesis of gold nanoparticles using croton caudatus geisel leaf extract and their biological studies. Mater Lett 2019; 236: 19-22.
[http://dx.doi.org/10.1016/j.matlet.2018.10.025]
[139]
Siddiq AM, Thangam R, Madhan B, Alam MS. Green (gemini) surfactant mediated gold nanoparticles green synthesis: Effect on triple negative breast cancer cells. Nano-Structures & Nano-Objects 2019; 19100373
[http://dx.doi.org/10.1016/j.nanoso.2019.100373]
[140]
Azizi S, Mahdavi Shahri M, Rahman HS, Rahim RA, Rasedee A, Mohamad R. Green synthesis palladium nanoparticles mediated by white tea (Camellia sinensis) extract with antioxidant, antibacterial, and antiproliferative activities toward the human leukemia (MOLT-4) cell line. Int J Nanomedicine 2017; 12: 8841-53.
[http://dx.doi.org/10.2147/IJN.S149371] [PMID: 29276385]
[141]
Ghosh S, Nitnavare R, Dewle A, et al. Novel platinum-palladium bimetallic nanoparticles synthesized by Dioscorea bulbifera: anticancer and antioxidant activities. Int J Nanomedicine 2015; 10: 7477-90.
[PMID: 26719690]
[142]
Rokade SS, Joshi KA, Mahajan K, et al. Gloriosa superba mediated synthesis of platinum and palladium nanoparticles for induction of apoptosis in breast cancer. Bioinorg Chem Appl 2018; 20184924186
[http://dx.doi.org/10.1155/2018/4924186]
[143]
Thakore SI, Nagar PS, Jadeja RN, Thounaojam M, Devkar RV, Rathore PS. Sapota fruit latex mediated synthesis of Ag, Cu mono and bimetallic nanoparticles and their in vitro toxicity studies. Arab J Chem 2015; 12(5): 694-700.
[144]
Chitturi KL, Garimella S, Marapaka AK, Kudle KR, Merugu R. Single pot green synthesis, characterization, antitumor antibacterial, antioxidant activity of bimetallic silver and copper nanoparticles using fruit pulp of palmyra fruit. J Bionanoscience 2018; 12(2): 284-9.
[http://dx.doi.org/10.1166/jbns.2018.1520]
[145]
Sathishkumar G, Logeshwaran V, Sarathbabu S, et al. Green synthesis of magnetic Fe3O4 nanoparticles using Couroupita guianensis Aubl. Fruit extract for their antibacterial and cytotoxicity activities. Artif Cells Nanomed Biotechnol 2018; 46(3): 589-98.
[http://dx.doi.org/10.1080/21691401.2017.1332635] [PMID: 28554257]
[146]
Maqbool Q. Green-synthesised cerium oxide nanostructures (CeO 2-NS) show excellent biocompatibility for phyto-cultures as compared to silver nanostructures (Ag-NS). RSC Advances 2017; 7(89): 56575-85.
[http://dx.doi.org/10.1039/C7RA12082F]
[147]
Naika HR, Lingaraju K, Manjunath K, et al. Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. J Taibah Uni Sci 2015; 9(1): 7-12.
[http://dx.doi.org/10.1016/j.jtusci.2014.04.006]
[148]
Santhoshkumar T, Rahuman AA, Jayaseelan C, et al. Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pac J Trop Med 2014; 7(12): 968-76.
[http://dx.doi.org/10.1016/S1995-7645(14)60171-1] [PMID: 25479626]
[149]
Khalil MM, Ismail EH, El-Magdoub F. Biosynthesis of Au nanoparticles using olive leaf extract: 1st nano updates. Arab J Chem 2012; 5(4): 431-7.
[http://dx.doi.org/10.1016/j.arabjc.2010.11.011]
[150]
Armendariz V, Herrera I, Jose-yacaman M, Troiani H, Santiago P, Gardea-Torresdey JL. Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nanopart Res 2004; 6(4): 377-82.
[http://dx.doi.org/10.1007/s11051-004-0741-4]
[151]
Song JY, Kim BS. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 2009; 32(1): 79-84.
[http://dx.doi.org/10.1007/s00449-008-0224-6] [PMID: 18438688]
[152]
Ali K, Ahmed B, Dwivedi S, Saquib Q, Al-Khedhairy AA, Musarrat J. Microwave accelerated green synthesis of stable silver nanoparticles with Eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on clinical isolates. PLoS One 2015; 10(7)e0131178
[http://dx.doi.org/10.1371/journal.pone.0131178] [PMID: 26132199]
[153]
Song JY, Kwon E-Y, Kim BS. Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst Eng 2010; 33(1): 159-64.
[http://dx.doi.org/10.1007/s00449-009-0373-2] [PMID: 19701776]
[154]
Dubey SP, Lahtinen M, Sillanpää M. Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids Surf A Physicochem Eng Asp 2010; 364(1-3): 34-41.
[http://dx.doi.org/10.1016/j.colsurfa.2010.04.023]
[155]
Dwivedi AD, Gopal K. Biosynthesis of silver and gold nanoparticles using chenopodium album leaf extract. Colloids Surf A Physicochem Eng Asp 2010; 369(1-3): 27-33.
[http://dx.doi.org/10.1016/j.colsurfa.2010.07.020]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy